Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation By

Total Page:16

File Type:pdf, Size:1020Kb

Bulgeless Giant Galaxies Challenge Our Picture of Galaxy Formation By RECEIVED 2010 APRIL 12; ACCEPTED 2010 AUGUST 18 Preprint typeset using LATEX style emulateapj v. 04/03/99 BULGELESS GIANT GALAXIES CHALLENGE OUR PICTURE OF GALAXY FORMATION BY HIERARCHICAL CLUSTERING1,2 JOHN KORMENDY3,4,5,NIV DRORY5,RALF BENDER4,5, AND MARK E. CORNELL3 Received 2010 April 12; Accepted 2010 August 18 ABSTRACT To better understand the prevalence of bulgeless galaxies in the nearby field, we dissect giant Sc – Scd galaxies with Hubble Space Telescope (HST) photometry and Hobby-Eberly Telescope (HET) spectroscopy. We use the HET High Resolution Spectrograph (resolution R λ/FWHM 15,000) to measure stellar velocity dispersions in the nuclear star clusters and (pseudo)bulges of≡ the pure-disk≃ galaxies M33, M101, NGC 3338, NGC 3810, NGC 6503, and NGC 6946. The dispersions range from 20 1kms−1 in the nucleus of M33 to 78 2kms−1 in the pseudobulge of NGC 3338. We use HST archive images± to measure the brightness profiles of the± nuclei and (pseudo)bulges in M101, NGC 6503, and NGC 6946 and hence to estimate their masses. The results imply small mass-to-light ratios consistent with young stellar populations. These observations lead to two conclusions: 6 (1) Upper limits on the masses of any supermassive black holes (BHs) are M• < (2.6 0.5) 10 M⊙ in M101 6 ± × and M• < (2.0 0.6) 10 M⊙ in NGC 6503. ∼ (2) We∼ show± that the× above galaxies contain only tiny pseudobulges that make up < 3 % of the stellar mass. This provides the strongest constraints to date on the lack of classical bulges in the biggest∼ pure-disk galaxies. We inventory the galaxies in a sphere of radius 8 Mpc centered on our Galaxy to see whether giant, pure-disk −1 galaxies are common or rare. We find that at least 11 of 19 galaxies with Vcirc > 150 km s , including M101, NGC 6946, IC 342, and our Galaxy, show no evidence for a classical bulge. Four may contain small classical bulges that contribute 5–12% of the light of the galaxy. Only four of the 19 giant galaxies are ellipticals or have classical bulges that contribute 1/3 of the galaxy light. We conclude that pure-disk galaxies are far from rare. It is hard to understand how bulgeless∼ galaxies could form as the quiescent tail of a distribution of merger histories. Recognition of pseudobulges makes the biggest problem with cold dark matter galaxy formation more acute: How can hierarchical clustering make so many giant, pure-disk galaxies with no evidence for merger-built bulges? Finally, we emphasize that this problem is a strong function of environment: the Virgo cluster is not a puzzle, because more than 2/3 of its stellar mass is in merger remnants. Subject headings: galaxies: evolution — galaxies: formation — galaxies: individual (M33, NGC 3338, NGC 3810, NGC 5457, NGC 6503, NGC 6946) — galaxies: nuclei — galaxies: photometry — galaxies: structure 1. INTRODUCTION and 3 are long. Readers who need σ and M• results can find them in Figure 1 and Table 1. Readers who are interested in the This paper has two aims. First, we derive upper limits on smallest pseudobulges can concentrate on §3. Readers whose the masses M• of any supermassive BHs in two giant, pure- disk galaxies. This provides data for a study (Kormendy et al. interest is the challenge that pure-disk galaxies present for our picture of galaxy formation should skip directly to §4. 2010) of the lack of correlation (Kormendy & Gebhardt 2001) between BHs and galaxy disks. Second, we inventory disks, pseudobulges, and classical bulges in the nearby universe and 1.2. Introduction to the Velocity Dispersion Measurements show that giant, pure-disk galaxies are not rare. This highlights Nuclei are expected to have velocity dispersions that range the biggest problem with our mostly well supported picture of from those of globular clusters, σ 10 km s−1, to values hierarchical clustering: How can so many pure-disk galaxies similar to those in the smallest classical∼ bulges and ellipticals form, given so much merger violence? Both studies need (e.g., M32: σ 60 km s−1; Tonry 1984; 1987; Dressler & arXiv:1009.3015v1 [astro-ph.GA] 15 Sep 2010 the same observations: photometry to measure structure and Richstone 1988;≃ van der Marel et al. 1994a, b; Bender et al. spectroscopy to measure velocity dispersions and masses. 1996). But nuclei are faint and embedded in bright disks. The σ constraint implies that we need high dispersion, and the 1.1. A Practical Guide to Readers faintness implies that we need a large telescope. As a result, In §2, we measure stellar velocity dispersions in high-mass, few σ measurements of nuclei are available. The best object– Sc–Scd galaxies that contain only nuclei or extremely small now very well measured–is M33, whose exceptionally well pseudobulges. In §3, we derive HST- and ground-basedsurface defined nucleus has a velocity dispersion of σ 21 3kms−1 photometry of the most useful subset of our galaxies to see (Kormendy & McClure 1993; Gebhardt et al.≃ 2001).± We use whether they contain small classical bulges, pseudobulges, or it as a test case for our observations. The “gold standard” of nuclei and to measure nuclear masses and M• limits. Sections 2 nuclear dispersion measurements is Walcher et al. (2005); they 1Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. 2Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at STScI, which is operated by AURA, Inc., under NASA contract NAS 5-26555. These observations are associated with program numbers 7330, 7919, 8591, 8597, 8599, 9293, 9360, 9490, 9788, and 11080. 3Department of Astronomy, The University of Texas at Austin, 1 University Station C1400, Austin, Texas 78712-0259, USA; [email protected]; [email protected] 4Universitäts-Sternwarte, Scheinerstrasse 1, München D-81679, Germany 5Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching-bei-München, Germany; [email protected]; [email protected] 1 2 Kormendy et al. used the Ultraviolet and Visual Echelle Spectrograph on the the K0 – K3 stars in many previous papers; they reliably fit Very Large Telescope to measure 9 nuclei of generally modest- the spectra of low- to moderate-dispersion galaxies very well. sized galaxies at a resolution of R = 35,000. In any case, (1) the Ca infrared triplet region is relatively This paper reports R = 15,000 measurements of σ in M33, insensitive to template mismatch (Dressler 1984), and (2) NGC3338, NGC3810, NGC5457, NGC6503, and NGC6946. the FCQ program that provides our final dispersion values is In choosing targets, we favored the largest pure-disk galaxies specifically engineered to minimize problems with template that have the smallest possible pseudobulges (Kormendy & mismatch (Bender 1990). Kennicutt 2004) and the smallest possible distances. The most 2.2. Preprocessing of Spectra important galaxies for our purposes are NGC 5457 = M101 and NGC 6946. A closely similar object is IC 342, for which Spectral reductions were carried out using the interactive Böker et al. (1999) measured a nuclear dispersion of σ =33 3 image processing system IRAF6 (Tody 1993). The echelle km s−1 at a spectral resolution of R = 21,500. All three± are software package was used to remove instrumental signatures Scd galaxies with extremely small pseudobulges or nuclear star from the data. For each night, we created a bias frame, a clusters but essentially the largest possible asymptotic rotation continuum flat, and a Thorium-Argon arc-lamp spectrum from velocities 200 km s−1 consistent with our requirement that calibration data taken before and after the observations. Science they contain∼ no classical bulges. frames were first bias and overscan corrected. Bad pixels Late in our data reduction, we were scooped by Ho et al. were flagged. Next, we removed cosmic ray hits using the (2009), who measured σ and collected published σ data for spectroscopy-optimizedversion of L.A.COSMIC (van Dokkum 428 galaxies. All of our objects are included in their paper. 2001), and we coadded the three spectra obtained for each However, their instrumental velocity dispersion is σinstr = 42 galaxy. We traced and fitted the spectral orders in the km s−1, whereas ours is 8 km s−1. Our measurements therefore continuum flats using 3rd-order Legendre polynomials. We provide important confirmation. Most of their measurements removed the spectral signature of the continuum lamp from th prove to be remarkably accurate, even when σ < σinstr. We the flat fields by fitting the continuum using 7 -order Legendre disagree on two values. Also, our measurementshave estimated polynomials along the dispersion direction and divided the flat errors that are a factor of 4 smaller than theirs. Confidence in field frames by the fits. Next, we extracted the science spectra our understanding of the∼ smallest central velocity dispersions (galaxies and velocity standard stars) using these normalized in the biggest pure-disk galaxies is correspondingly increased. flat fields to obtain one-dimensional spectra for each order. This provided one, multi-order spectrum of the galaxy nucleus 2. OBSERVATIONS AND DATA REDUCTION from the object fiber plus two “sky” spectra at galactocentric distances of 10′′ bracketing the nucleus. Finally, all spectra 2.1. Observations were wavelength calibrated using the Th-Ar lamp spectra to an The spectra were obtained with the High Resolution accuracy of 0.02 pixel 0.003 Å 0.1 km s−1. Spectrograph (HRS: Tull 1988) and the 9 m Hobby-Eberly The remaining∼ tasks are≃ sky subtraction≃ and the combination Telescope (HET: Ramsey et al.
Recommended publications
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • 1. Introduction
    THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other.
    [Show full text]
  • RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA
    1 ; NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia t PROPERTY OF TH E U.S. G - iM RADIO ASTRONOMY OBERVTORY Quarterly Report CHARLOTTESVILLE, VA. 4 OCT 2 2em , July 1, 1984 - September 30, 1984 .. _._r_.__. _.. RESEARCH PROGRAMS 140-ft Telescope Hours Scheduled observing 1853.75 Scheduled maintenance and equipment changes 205.00 Scheduled tests and calibration 145.25 Time lost due to: equipment failure 122.00 power 3.25 weather 0.25 interference 14.50 The following continuum program was conducted during this quarter. No. Observer Program W193 N. White (European Space Observations at 6 cm of the eclipsing Agency) RS CVn system AR Lac. J. Culhane (Cambridge) J. Kuijpers (Utrecht) K. Mason (Cambridge) A. Smith (European Space Agency) The following line programs were conducted during this quarter. No. Observer Program B406 M. Bell (Herzberg) Observations at 13.9 GHz in search of H. Matthews (Herzberg) C6 H in TMC1. T. Sears (Brookhaven) B422 M. Bell (Herzberg) Observations at 3 cm to search for H. Matthews (Herzberg) C5 H in TMC1 and examination of T. Sears (Brookhaven) spectral features in IRC+10216 thought to be due to HC 9 N or C5 H. B423 M. Bell (Herzberg) Observations at 9895 MHz in an attempt H. Matthews (Herzberg) to detect C3 N in absorption against Cas A. 2 No. Observer Program B424 W. Batria Observations at 9.1 GHz of a newly discovered comet. C216 F. Clark (Kentucky) Observations at 6 cm and 18 cm of OH S. Miller (Kentucky) and H20 to study stellar winds and cloud dynamics.
    [Show full text]
  • The Type II-Plateau Supernova 2017Eaw in NGC 6946 and Its Red Supergiant Progenitor
    The Astrophysical Journal, 875:136 (23pp), 2019 April 20 https://doi.org/10.3847/1538-4357/ab1136 © 2019. The American Astronomical Society. All rights reserved. The Type II-plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant Progenitor Schuyler D. Van Dyk1 , WeiKang Zheng2 , Justyn R. Maund3 , Thomas G. Brink2, Sundar Srinivasan4,5, Jennifer E. Andrews6, Nathan Smith6, Douglas C. Leonard7, Viktoriya Morozova8 , Alexei V. Filippenko2,9 , Brody Conner10, Dan Milisavljevic10 , Thomas de Jaeger2, Knox S. Long11,12 , Howard Isaacson2 , Ian J. M. Crossfield13, Molly R. Kosiarek14,21 , Andrew W. Howard15 , Ori D. Fox11 , Patrick L. Kelly16 , Anthony L. Piro17 , Stuart P. Littlefair3 , Vik S. Dhillon3,18, Richard Wilson19, Timothy Butterley19, Sameen Yunus2, Sanyum Channa2, Benjamin T. Jeffers2, Edward Falcon2, Timothy W. Ross2, Julia C. Hestenes2, Samantha M. Stegman2, Keto Zhang2, and Sahana Kumar2,20 1 Caltech/Spitzer Science Center, Caltech/IPAC, Mailcode 100-22, Pasadena, CA 91125, USA 2 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA 3 Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK 4 Institute of Astronomy & Astrophysics, Academia Sinica, 11F, Astronomy-Mathematics Building, No. 1, Roosevelt Rd, Sec 4, Taipei 10617, Taiwan, Republic of China 5 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autonóma de México, Antigua Carretera a Pátzcuaro # 8701 Ex-Hda., San José de la Huerta, Morelia, Michoacán, C.P. 58089, Mexico
    [Show full text]
  • Hubble Space Telescope Images of the Ultraluminous Supernova Remnant Complex in NGC 6946 William P
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Dartmouth Digital Commons (Dartmouth College) Dartmouth College Dartmouth Digital Commons Open Dartmouth: Faculty Open Access Articles 3-2001 Hubble Space Telescope Images of the Ultraluminous Supernova Remnant Complex in NGC 6946 William P. Blair Johns Hopkins University Robert A. Fesen Dartmouth College Eric M. Schlegel Harvard-Smithsonian Center for Astrophysics Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Blair, William P.; Fesen, Robert A.; and Schlegel, Eric M., "Hubble Space Telescope Images of the Ultraluminous Supernova Remnant Complex in NGC 6946" (2001). Open Dartmouth: Faculty Open Access Articles. 2227. https://digitalcommons.dartmouth.edu/facoa/2227 This Article is brought to you for free and open access by Dartmouth Digital Commons. It has been accepted for inclusion in Open Dartmouth: Faculty Open Access Articles by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. THE ASTRONOMICAL JOURNAL, 121:1497È1506, 2001 March ( 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. HUBBL E SPACE T EL ESCOPE IMAGES OF THE ULTRALUMINOUS SUPERNOVA REMNANT COMPLEX IN NGC 69461 WILLIAM P. BLAIR Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686; wpb=pha.jhu.edu ROBERT A. FESEN
    [Show full text]
  • Yankee Digital Dandy
    EQUIPMENT REVIEW Yankee Robotics’ new CCD camera combines maximum sensitivity, low noise, and a great price. /// BY BOB FERA Yankee digital dandy The field of advanced charge-coupled device (CCD) imaging is dominated by high-quality instruments from a few well-known manufacturers, such as Santa Barbara Instruments Group (SBIG), Finger Lakes Instrumentation (FLI), and Starlight Express. Recently, a new player entered the sures 18mm by 27mm, a game with a unique approach to CCD- USB-2.0 interface, and a camera design. That company, Yankee lifetime warranty. Robotics of San Diego, has introduced its Unlike some systems, Trifid-2 line of cameras and is aiming the Trifid-2 does not come directly at the big boys. with either a filter wheel I tested Yankee’s top-of-the-line model, or an onboard guiding which features Kodak’s KAF-6303E CCD chip. Using the camera detector, to see if it measures up to the thus requires purchasing competition. It does. and integrating a third- The first thing prospective customers party filter wheel from a will notice about the Trifid-2 is the price, company such as FLI or Optec, which, at $6,895 (with the Class 2 imaging Inc. Also, you’ll need an off-axis chip), is thousands of dollars less than com- guider or a guide scope with a dedicated petitors’ cameras equipped with the same autoguider, such as SBIG’s ST-4, ST-V, or THE TRIFID-2 CCD camera houses a 6- 6-megapixel KAF-6303E detector. What ST-402ME. But, even after adding in these megapixel Kodak KAF-6303E CCD chip.
    [Show full text]
  • Classification of Galaxies Using Fractal Dimensions
    UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • A Search for Supernova Light Echoes in NGC 6946 with SITELLE a Search for Supernova Light Echoes in NGC 6946 with SITELLE
    A Search for Supernova Light Echoes in NGC 6946 with SITELLE A Search for Supernova Light Echoes in NGC 6946 with SITELLE By Michael Radica, B.Sc. A Thesis Submitted to the School of Graduate Studies in the Partial Fulfillment of the Requirements for the Degree Master of Science McMaster University c Copyright by Michael Radica August 23, 2019 McMaster University Master of Science (2019) Hamilton, Ontario (Physics & Astronomy) TITLE: A Search for Supernova Light Echoes in NGC 6946 with SITELLE AUTHOR: Michael Radica (McMaster University) SUPERVISOR: Dr. Douglas Welch NUMBER OF PAGES: ix, 88 ii Abstract Scattered light echoes provide a unique way to engage in late-time study of supernovae. Formed when light from a supernova scatters off of nearby dust, and arrives at Earth long after the supernova has initially faded from the sky, light echoes can be used to study the precursor supernova through both photometric and spectroscopic methods. The detection rate of light echoes, especially from Type II supernovae, is not well understood, and large scale searches are confounded by uncertainties in supernova ages and peak luminosities. We provide a novel spectroscopic search method for detecting light echoes, and test it with 4 hours of observations of NGC 6946 using the SITELLE Imaging Fourier Transform Spectrometer mounted on the Canada-France-Hawaii Telescope. Our procedure relies on fitting a sloped model to continuum emission, and identifying negatively-sloped continua with the downslope of the emission component of a highly-broadened P-Cygni profile in the Hα line, characteristic of supernova ejecta. We find no clear evidence for light echoes from any of the ten known Type II su- pernovae in NGC 6946, and only one light echo candidate from potential historical supernovae predating 1917.
    [Show full text]
  • April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • 7.5 X 11.5.Threelines.P65
    Cambridge University Press 978-0-521-19267-5 - Observing and Cataloguing Nebulae and Star Clusters: From Herschel to Dreyer’s New General Catalogue Wolfgang Steinicke Index More information Name index The dates of birth and death, if available, for all 545 people (astronomers, telescope makers etc.) listed here are given. The data are mainly taken from the standard work Biographischer Index der Astronomie (Dick, Brüggenthies 2005). Some information has been added by the author (this especially concerns living twentieth-century astronomers). Members of the families of Dreyer, Lord Rosse and other astronomers (as mentioned in the text) are not listed. For obituaries see the references; compare also the compilations presented by Newcomb–Engelmann (Kempf 1911), Mädler (1873), Bode (1813) and Rudolf Wolf (1890). Markings: bold = portrait; underline = short biography. Abbe, Cleveland (1838–1916), 222–23, As-Sufi, Abd-al-Rahman (903–986), 164, 183, 229, 256, 271, 295, 338–42, 466 15–16, 167, 441–42, 446, 449–50, 455, 344, 346, 348, 360, 364, 367, 369, 393, Abell, George Ogden (1927–1983), 47, 475, 516 395, 395, 396–404, 406, 410, 415, 248 Austin, Edward P. (1843–1906), 6, 82, 423–24, 436, 441, 446, 448, 450, 455, Abbott, Francis Preserved (1799–1883), 335, 337, 446, 450 458–59, 461–63, 470, 477, 481, 483, 517–19 Auwers, Georg Friedrich Julius Arthur v. 505–11, 513–14, 517, 520, 526, 533, Abney, William (1843–1920), 360 (1838–1915), 7, 10, 12, 14–15, 26–27, 540–42, 548–61 Adams, John Couch (1819–1892), 122, 47, 50–51, 61, 65, 68–69, 88, 92–93,
    [Show full text]
  • Exposé (Pdf 8,4Mo)
    La constellation du Dragon Draco-Draconis-Dra J-L Mainardi Octobre 2019 Albedo 38 1 Polaris mv= 2,2 mv = 2,8 mv= 2,7 mv= 3,7 Le Dragon s’étend de l’AD 9H à l’AD 20 H et en déclinaison jusqu’à +50 ° == > constellation circumpolaire 2 ‘’Atlas Coelestis’’ John Flamsteed 1729 3 Atlas de Alexandre Jamieson -1824 4 Atlas ‘’Le Miroir d’Uranie’’ R. Bloxam -1826 5 Représentation moderne Carte n°1 Revue des Cons- -tellations (1964 -Sagot- Texerau) 6 La mythologie grecque pour tout expliquer ! Le serpent Ladon Le onzième des 12 Travaux d’Hercule: 7 le vol de 3 pommes d’Or au Jardin des Hespérides Les Hespérides et les Pommes d’or qui appartiennent à Héra Les Pommes d’Or (Oranges ou Coings ?) Le deal entre Hercules Atlas rapporte les 3 pommes Atlas soutenant et Atlas d’or tandis qu’hercule l’axe du Monde soutient le monde 8 ◆ A la suite du vol, grosse colère de Héra, l’èpouse de Zeus : ==> Héra envoie au ciel ce serpent qui ne sert à rien sur Terre ! Ladon est catastérisé entre la Petite Ourse et la Grande Ourse 9 1ère partie : la queue du Dragon (entre UMa et UMi) 10 Etoiles remarquables ◆ Alpha Draconis ‘’Thuban’’ mv = 3,7 ◆ Étoile polaire au temps des Egyptiens (Khéops) (-2650 ) La Pyramide de Khéops L’orientation vers Alpha Draco (-2650 ans-4éme dynastie ) d’un couloir débouchant sur la hauteur = 137 m -base carrée de 230 m face Nord # 5 millions de T de blocs calcaire 11 Astérisme autour de Kappa (mv=3,9): == > Aux jumelles :Petite Tour Eiffel inclinée Alpha Kappa 12 Ciel Profond dans la queue du Dragon Galaxie NGC 4125 mv= 9,8-dim =5’ x3’ Galaxie NGC 4236 mv= 10,1 dim= 19’x6’ SB= 24 Galaxie NGC5866 Galaxie NGC 5907 mv =10,8 - dim =5’ x 2’ –SB=21 mv= 10,4 - dim = 11’x 2’ == > M 102 ? SB=22 13 ? La confusion M101/M102 14 2éme partie : le Corps du Dragon (entre Céphée et Umi) 15 2 galaxies dans le corps du Dragon et 1 étoile Double ε Dra mv=3,9 et 6,8 Sép=3’’ NGC 6503 mv=10,2 dim=5’x2’ facile (Le Tube Néon) NGC 6643 mv=11 dim=4’x1,5’ B Laville 16 La Star du Dragon : NGC 6543 La Nébuleuse Planétaire du Pôle de l’Ecliptique Neb.
    [Show full text]