Requirements for Arabidopsis ATARP2 and ATARP3 During Epidermal Development

Total Page:16

File Type:pdf, Size:1020Kb

Requirements for Arabidopsis ATARP2 and ATARP3 During Epidermal Development Current Biology, Vol. 13, 1341–1347, August 5, 2003, 2003 Elsevier Science Ltd. All rights reserved. DOI 10.1016/S0960-9822(03)00493-7 Requirements for Arabidopsis ATARP2 and ATARP3 during Epidermal Development Jie Le, Salah El-Din El-Assal, Dipanwita Basu, stage-specific swelling and reduced branch elongation Mohamed E. Saad, and Daniel B. Szymanski* defects (data not shown). Because dis1-1 was a pre- Agronomy Department dicted null allele of DIS1 (see below), we used this allele Purdue University for all of our detailed phenotypic characterizations. Mea- Lily Hall surements with scanning electron microscopy (SEM) 915 West State Street demonstrated that 40% (n ϭ 43) of dis1-1 stage 4 tri- West Lafayette, Indiana 47907-2054 chomes had a cell diameter of more than 30 ␮m. In the wild-type, a stage 4 cell diameter exceeding 30 ␮m was not observed in either this (n ϭ 45) or previous studies Summary [4]. During stage 6, papillae or tubercles decorate the surface of highly expanded trichomes. Papillae on the Plant cells employ the actin cytoskeleton to stably stalks of wild-type trichomes were slightly oval and var- ␮ ف ␮ ف position organelles, as tracks for long distance trans- ied in length from 1.5 mto 3 m (Figure 1C). In port, and to reorganize the cytoplasm in response to mature dis1 trichomes, papillae at the tips of abortive developmental and environmental cues [1]. While di- branches were often absent (Figure 1D). In obviously ␮ ف verse classes of actin binding proteins have been im- swollen regions of the stalk, papillae up to 9 min plicated in growth control, the mechanisms of cy- length were common. Equivalently sized papillae were not toskeletal reorganization and the cellular functions of observed in the wild-type. In both mutant and wild-type specific actin filament arrays are unclear. Arabidopsis cells, the long axis of the papillae and the cell were trichome morphogenesis includes distinct require- aligned. Presumably, the orientation of the papillae re- ments for the microtubule and actin filament cytoskel- flected some aspect of polarized growth that was main- etons. It also is a genetically tractable process that is tained in the mutant. Pavement cells are another highly providing new knowledge about cytoskeleton function polarized cell type that appear to utilize both microtu- in plants [2]. The “distorted group” of mutants defines bule and actin-filament structures during morphogene- a class of at least eight genes that are required during sis [6]. At 12 days after germination (DAG), wild-type the actin-dependent phase of trichome growth. Using pavement cells located in the distal 1/3 of the cotyledon map-based cloning and a candidate gene approach, were highly lobed (Figure 1E). Some dis1 cotyledon we identified mutations in ARP3 (ATARP3) and ARP2 pavement cells at comparable positions were highly (ATARP2) genes as the cause of the distorted1 (dis1) lobed (Figure 1F). Other dis1 pavement cells in the same and wurm (wrm) phenotypes, respectively. ARP2 and region of the identical cotyledon had reduced lobe ARP3 are components of the evolutionarily conserved expansion (Figure 1G). dis1-T1 pavement cells displayed ARP2/3 complex that nucleates actin filament poly- similar phenotypes (data not shown). We have no expla- merization [3]. Mutations in DIS1 and WRM caused nation for this patchy phenotype. dis1 pavement cells severe trichome growth defects but had relatively mild consistently failed to adhere normally, and gaps be- effects on shoot development. DIS1 rescued the phe- tween adjacent cells were frequently detected (Figures notype of ⌬arp3 when overexpressed in S. cerevisiae. 1F and 1G). Developing dis1 trichomes had defects in cytoplasmic With the exception of the striking trichome phenotype, actin bundle organization and reduced relative amounts the whole plant architecture of dis1 and wrm plants was of cytoplasmic actin filaments in developing branches. very similar to that of the wild-type (Figures 1H–1J). However, shoot fresh weight accumulation of dis1-1 and phenotypically wild-type siblings differed at 15 DAG. Results and Discussion In one representative experiment, the mean dis1 shoot weight (75 Ϯ 9mg[nϭ 6]) was reduced by 35% com- Branch position, shape, and number are tightly regu- pared to the wild-type (117 Ϯ 9mg[nϭ 6]). The pheno- lated during wild-type trichome development [4]. Wild- types are consistent with the detection of DIS1 transcript type trichomes in the process of branch formation (stage in roots and leaves [7]. Despite the clear actin-depen- 3) and one that recently completed branching (stage 4) dent growth of root hairs [8], dis1 root hairs were very are labeled in Figure 1A. Most of the cell volume is similar to those of the wild-type (data not shown). Pollen generated during a massive cell expansion phase (stage germination and tip growth did not require DIS1 or WRM, 5) that occurs after branch initiation is complete. Tri- because all of the alleles examined in this study were chome shape on dis1 leaves was indistinguishable from efficiently transmitted through pollen and dis1 and wrm that of the wild-type through stage 3, but subsequently, plants yielded thousands of seeds. However, these re- the trichomes were swollen, twisted, and often had a sults do not preclude a subtle or conditional effect of reduced branch length (Figure 1B). Recessive dis1, wrm, DIS1 or WRM on pollen development. and gnarled (grl) mutations cause indistinguishable To identify the affected genes, we initiated map-based stage-specific swelling [4, 5], and each of the dis1 and cloning of DIS1. Consistent with its published position wrm alleles described in this paper also had the same on the classical map [9], dis1 mapped between T28P6 and F9L1 on the upper arm of chromosome 1 (Figure *Correspondence: [email protected] 2A). Unfortunately, in mapping populations that em- Current Biology 1342 Figure 2. Mapping and Molecular Characterization of DIS1 and WRM Mutant Alleles (A) The mapping interval of the DIS1 gene. The boxes indicate the molecular marker, and the oval represents DIS1-containing BAC (F3F19). The recombinant frequency for each marker is given. (B) The physical structure of the DIS1 gene. Exons are represented by closed rectangles, and introns are represented by lines. F1, R2, and R9 are PCR primers. The dis1-1, dis1-2, and dis1-T1 alleles are Figure 1. Trichome, Pavement Cell, and Shoot Phenotypes of Wild- defined. Type, dis, and wrm Seedlings (C) The physical structure of the WRM gene. The wrm-1, wrm-2, (A) The upper surface of developing leaves of wild-type. Inset, higher and wrm-T1 alleles are defined. magnification view of a stage 4 trichome. (D and E) RT-PCR analysis of the DIS1 mRNA in wild-type and (B) The upper surface of developing leaves of dis1. Inset, higher mutant backgrounds. (D) RT-PCR using primers F1 and R2. (E) RT- magnification view of a stage 4 trichome. PCR using primers F1 and R9. Lane 1, no (Ϫ) reverse transcriptase (C) Papillae on mature wild-type trichomes. (RT) wild-type; lane 2, Plus (ϩ) RT wild-type; lane 3, dis1-1 (ϩRT); (D) Papillae on mature dis1 trichomes; middle panel, higher magnifi- lane 4, dis1-2 (ϩRT); lane 5, dis1-T1 (ϩRT). cations of regions from (C) and (D). (E) The upper surface of 12 DAG wild-type cotyledon pavements cells. distorted trichome phenotype. Salk_010045 contained (F and G) The upper surface of 12 DAG dis1 cotyledon pavements an insertion in the ATARP3 gene, and lines homozygous cells. (H) A wild-type seedling (11 DAG). for the insertion displayed a completely penetrant, dis- (I) A dis1 seedling (11 DAG). torted trichome phenotype that was indistinguishable (J) A wrm seedling (11 DAG). from dis1-1. Progeny from hemizygous Salk_010045 The scale bars represent 50 ␮m in (A) and (B), 10 ␮m in the insets plants segregated for the trichome phenotype. All F1 ␮ ␮ of (A) and (B), 10 m in (C) and (D), 2 m in the insets of (C) and plants derived from crosses between dis1-1 (n ϭ 24), (D), 50 ␮m in (E)–(G), and 2 mm in (H)–(J). The stage of an individual dis1-2 (n ϭ 29), and Salk_010045 were mutant. Therefore trichome is labeled with a number. The arrowheads indicate the gaps between adjacent pavement cells. Salk_010045 was allelic to dis1-1 and dis1-2 and was renamed dis1-T1. We wanted to determine if the ATARP3 gene sequence was altered in dis1-1 and ployed the dis1-1 allele, we failed to detect recombina- dis1-2. dis1-1 was originally isolated in the Landsberg tion within a 500 kb interval that was expected to contain erecta (Ler) background, and dis1-2 was originally iso- DIS1 (0 recombinants/1012 chromosomes). ATARP3 [7] lated in Columbia-O (Col). Compared to the Ler se- is located within our mapping interval on chromosome quence, dis1-1 had a single nucleotide change that intro- 1. wrm also mapped to a region of chromosome 3 that duced a nonsense mutation at amino acid 98 (W98*) contains ATARP2 ([5], D.B.S., unpublished data). There- (Figures 2B and S1 [in the Supplemental Data available fore, we tested the ability of publicly available Salk with this article online]). The dis1-2 allele eliminated a T-DNA insertions into ATARP3 and ATARP2 to cause a consensus splice acceptor sequence of intron 1 (Figure DIS1 and WRM Encode ARP2/3 Complex Homologs 1343 Table 1. Amino Acid Sequence Comparisons between Predicted Arabidopsis ARP2/3 Complex Components and Homologs in Human and S. cerevisiae Arabidopsis Human: Ident. % Yeast: Ident. % Genea (Sim. %) (Sim. %) ATARP2b 61 (79) 56 (74) ATARP3b 56 (71) 51 (63) ATARPC1Ab 42 (59) 34 (51) ATARPC1Bb 42 (61) 34 (51) ATARPC2Ab 26 (46) 28 (47) ATARPC2Bb 29 (47) 23 (44) ATARPC3b 47 (66) 39 (58) ATARPC4 65 (81) 59 (74) ATARPC5b 32 (53) 23 (45) Figure 3.
Recommended publications
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome Edward L. Huttlin1*, Raphael J. Bruckner1,3, Jose Navarrete-Perea1, Joe R. Cannon1,4, Kurt Baltier1,5, Fana Gebreab1, Melanie P. Gygi1, Alexandra Thornock1, Gabriela Zarraga1,6, Stanley Tam1,7, John Szpyt1, Alexandra Panov1, Hannah Parzen1,8, Sipei Fu1, Arvene Golbazi1, Eila Maenpaa1, Keegan Stricker1, Sanjukta Guha Thakurta1, Ramin Rad1, Joshua Pan2, David P. Nusinow1, Joao A. Paulo1, Devin K. Schweppe1, Laura Pontano Vaites1, J. Wade Harper1*, Steven P. Gygi1*# 1Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA. 2Broad Institute, Cambridge, MA, 02142, USA. 3Present address: ICCB-Longwood Screening Facility, Harvard Medical School, Boston, MA, 02115, USA. 4Present address: Merck, West Point, PA, 19486, USA. 5Present address: IQ Proteomics, Cambridge, MA, 02139, USA. 6Present address: Vor Biopharma, Cambridge, MA, 02142, USA. 7Present address: Rubius Therapeutics, Cambridge, MA, 02139, USA. 8Present address: RPS North America, South Kingstown, RI, 02879, USA. *Correspondence: [email protected] (E.L.H.), [email protected] (J.W.H.), [email protected] (S.P.G.) #Lead Contact: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.01.19.905109; this version posted January 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Advancing a Clinically Relevant Perspective of the Clonal Nature of Cancer
    Advancing a clinically relevant perspective of the clonal nature of cancer Christian Ruiza,b, Elizabeth Lenkiewicza, Lisa Eversa, Tara Holleya, Alex Robesona, Jeffrey Kieferc, Michael J. Demeurea,d, Michael A. Hollingsworthe, Michael Shenf, Donna Prunkardf, Peter S. Rabinovitchf, Tobias Zellwegerg, Spyro Moussesc, Jeffrey M. Trenta,h, John D. Carpteni, Lukas Bubendorfb, Daniel Von Hoffa,d, and Michael T. Barretta,1 aClinical Translational Research Division, Translational Genomics Research Institute, Scottsdale, AZ 85259; bInstitute for Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; cGenetic Basis of Human Disease, Translational Genomics Research Institute, Phoenix, AZ 85004; dVirginia G. Piper Cancer Center, Scottsdale Healthcare, Scottsdale, AZ 85258; eEppley Institute for Research in Cancer and Allied Diseases, Nebraska Medical Center, Omaha, NE 68198; fDepartment of Pathology, University of Washington, Seattle, WA 98105; gDivision of Urology, St. Claraspital and University of Basel, 4058 Basel, Switzerland; hVan Andel Research Institute, Grand Rapids, MI 49503; and iIntegrated Cancer Genomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004 Edited* by George F. Vande Woude, Van Andel Research Institute, Grand Rapids, MI, and approved June 10, 2011 (received for review March 11, 2011) Cancers frequently arise as a result of an acquired genomic insta- on the basis of morphology alone (8). Thus, the application of bility and the subsequent clonal evolution of neoplastic cells with purification methods such as laser capture microdissection does variable patterns of genetic aberrations. Thus, the presence and not resolve the complexities of many samples. A second approach behaviors of distinct clonal populations in each patient’s tumor is to passage tumor biopsies in tissue culture or in xenografts (4, 9– may underlie multiple clinical phenotypes in cancers.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supp Material.Pdf
    Simon et al. Supplementary information: Table of contents p.1 Supplementary material and methods p.2-4 • PoIy(I)-poly(C) Treatment • Flow Cytometry and Immunohistochemistry • Western Blotting • Quantitative RT-PCR • Fluorescence In Situ Hybridization • RNA-Seq • Exome capture • Sequencing Supplementary Figures and Tables Suppl. items Description pages Figure 1 Inactivation of Ezh2 affects normal thymocyte development 5 Figure 2 Ezh2 mouse leukemias express cell surface T cell receptor 6 Figure 3 Expression of EZH2 and Hox genes in T-ALL 7 Figure 4 Additional mutation et deletion of chromatin modifiers in T-ALL 8 Figure 5 PRC2 expression and activity in human lymphoproliferative disease 9 Figure 6 PRC2 regulatory network (String analysis) 10 Table 1 Primers and probes for detection of PRC2 genes 11 Table 2 Patient and T-ALL characteristics 12 Table 3 Statistics of RNA and DNA sequencing 13 Table 4 Mutations found in human T-ALLs (see Fig. 3D and Suppl. Fig. 4) 14 Table 5 SNP populations in analyzed human T-ALL samples 15 Table 6 List of altered genes in T-ALL for DAVID analysis 20 Table 7 List of David functional clusters 31 Table 8 List of acquired SNP tested in normal non leukemic DNA 32 1 Simon et al. Supplementary Material and Methods PoIy(I)-poly(C) Treatment. pIpC (GE Healthcare Lifesciences) was dissolved in endotoxin-free D-PBS (Gibco) at a concentration of 2 mg/ml. Mice received four consecutive injections of 150 μg pIpC every other day. The day of the last pIpC injection was designated as day 0 of experiment.
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Tumour-Stroma Signalling in Cancer Cell Motility and Metastasis
    Tumour-Stroma Signalling in Cancer Cell Motility and Metastasis by Valbona Luga A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy, Department of Molecular Genetics, University of Toronto © Copyright by Valbona Luga, 2013 Tumour-Stroma Signalling in Cancer Cell Motility and Metastasis Valbona Luga Doctor of Philosophy Department of Molecular Genetics University of Toronto 2013 Abstract The tumour-associated stroma, consisting of fibroblasts, inflammatory cells, vasculature and extracellular matrix proteins, plays a critical role in tumour growth, but how it regulates cancer cell migration and metastasis is poorly understood. The Wnt-planar cell polarity (PCP) pathway regulates convergent extension movements in vertebrate development. However, it is unclear whether this pathway also functions in cancer cell migration. In addition, the factors that mobilize long-range signalling of Wnt morphogens, which are tightly associated with the plasma membrane, have yet to be completely characterized. Here, I show that fibroblasts secrete membrane microvesicles of endocytic origin, termed exosomes, which promote tumour cell protrusive activity, motility and metastasis via the exosome component Cd81. In addition, I demonstrate that fibroblast exosomes activate autocrine Wnt-PCP signalling in breast cancer cells as detected by the association of Wnt with Fzd receptors and the asymmetric distribution of Fzd-Dvl and Vangl-Pk complexes in exosome-stimulated cancer cell protrusive structures. Moreover, I show that Pk expression in breast cancer cells is essential for fibroblast-stimulated cancer cell metastasis. Lastly, I reveal that trafficking in cancer cells promotes tethering of autocrine Wnt11 to fibroblast exosomes. These studies further our understanding of the role of ii the tumour-associated stroma in cancer metastasis and bring us closer to a more targeted approach for the treatment of cancer spread.
    [Show full text]
  • Novel Targets of Apparently Idiopathic Male Infertility
    International Journal of Molecular Sciences Review Molecular Biology of Spermatogenesis: Novel Targets of Apparently Idiopathic Male Infertility Rossella Cannarella * , Rosita A. Condorelli , Laura M. Mongioì, Sandro La Vignera * and Aldo E. Calogero Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; [email protected] (R.A.C.); [email protected] (L.M.M.); [email protected] (A.E.C.) * Correspondence: [email protected] (R.C.); [email protected] (S.L.V.) Received: 8 February 2020; Accepted: 2 March 2020; Published: 3 March 2020 Abstract: Male infertility affects half of infertile couples and, currently, a relevant percentage of cases of male infertility is considered as idiopathic. Although the male contribution to human fertilization has traditionally been restricted to sperm DNA, current evidence suggest that a relevant number of sperm transcripts and proteins are involved in acrosome reactions, sperm-oocyte fusion and, once released into the oocyte, embryo growth and development. The aim of this review is to provide updated and comprehensive insight into the molecular biology of spermatogenesis, including evidence on spermatogenetic failure and underlining the role of the sperm-carried molecular factors involved in oocyte fertilization and embryo growth. This represents the first step in the identification of new possible diagnostic and, possibly, therapeutic markers in the field of apparently idiopathic male infertility. Keywords: spermatogenetic failure; embryo growth; male infertility; spermatogenesis; recurrent pregnancy loss; sperm proteome; DNA fragmentation; sperm transcriptome 1. Introduction Infertility is a widespread condition in industrialized countries, affecting up to 15% of couples of childbearing age [1]. It is defined as the inability to achieve conception after 1–2 years of unprotected sexual intercourse [2].
    [Show full text]
  • Screening Differentially Expressed Genes of Pancreatic Cancer
    Xu et al. BMC Cancer (2020) 20:298 https://doi.org/10.1186/s12885-020-06722-7 RESEARCH ARTICLE Open Access Screening differentially expressed genes of pancreatic cancer between Mongolian and Han people using bioinformatics technology Jiasheng Xu1†, Kaili Liao2†, Zhonghua Fu3* and Zhenfang Xiong1* Abstract Background: To screen and analyze differentially expressed genes in pancreatic carcinoma tissues taken from Mongolian and Han patients by Affymetrix Genechip. Methods: Pancreatic ductal cell carcinoma tissues were collected from the Mongolian and Han patients undergoing resection in the Second Affiliated Hospital of Nanchang University from March 2015 to May 2018 and the total RNA was extracted. Differentially expressed genes were selected from the total RNA qualified by Nanodrop 2000 and Agilent 2100 using Affymetrix and a cartogram was drawn; The gene ontology (GO) analysis and Pathway analysis were used for the collection and analysis of biological information of these differentially expressed genes. Finally, some differentially expressed genes were verified by real-time PCR. Results: Through the microarray analysis of gene expression, 970 differentially expressed genes were detected by comparing pancreatic cancer tissue samples between Mongolian and Han patients. A total of 257 genes were significantly up-regulated in pancreatic cancer tissue samples in Mongolian patients; while a total of 713 genes were down-regulated. In the Gene Ontology database, 815 differentially expressed genes were identified with clear GO classification, and CPB1 gene showed the highest increase in expression level (multiple difference: 31.76). The pathway analysis detected 28 signaling pathways that included these differentially expressed genes, involving a total of 178 genes. Among these pathways, the enrichment of differentially expressed genes in the FAK signaling pathway was the strongest and COL11A1 gene showed the highest multiple difference (multiple difference: 5.02).
    [Show full text]
  • Oral Administration of Lactobacillus Plantarum 299V
    Genes Nutr (2015) 10:10 DOI 10.1007/s12263-015-0461-7 RESEARCH PAPER Oral administration of Lactobacillus plantarum 299v modulates gene expression in the ileum of pigs: prediction of crosstalk between intestinal immune cells and sub-mucosal adipocytes 1 1,4 1,5 1 Marcel Hulst • Gabriele Gross • Yaping Liu • Arjan Hoekman • 2 1,3 1,3 Theo Niewold • Jan van der Meulen • Mari Smits Received: 19 November 2014 / Accepted: 28 March 2015 / Published online: 11 April 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract To study host–probiotic interactions in parts of ileum. A higher expression level of several B cell-specific the intestine only accessible in humans by surgery (je- transcription factors/regulators was observed, suggesting junum, ileum and colon), pigs were used as model for that an influx of B cells from the periphery to the ileum humans. Groups of eight 6-week-old pigs were repeatedly and/or the proliferation of progenitor B cells to IgA-com- orally administered with 5 9 1012 CFU Lactobacillus mitted plasma cells in the Peyer’s patches of the ileum was plantarum 299v (L. plantarum 299v) or PBS, starting with stimulated. Genes coding for enzymes that metabolize a single dose followed by three consecutive daily dosings leukotriene B4, 1,25-dihydroxyvitamin D3 and steroids 10 days later. Gene expression was assessed with pooled were regulated in the ileum. Bioinformatics analysis pre- RNA samples isolated from jejunum, ileum and colon dicted that these metabolites may play a role in the scrapings of the eight pigs per group using Affymetrix crosstalk between intestinal immune cells and sub-mucosal porcine microarrays.
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name actin related protein 2/3 complex, subunit 4, 20kDa Gene Symbol ARPC4 Organism Human Gene Summary This gene encodes one of seven subunits of the human Arp2/3 protein complex. This complex controls actin polymerization in cells and has been conserved throughout eukaryotic evolution. This gene encodes the p20 subunit which is necessary for actin nucleation and high-affinity binding to F-actin. Alternative splicing results in multiple transcript variants. Naturally occurring read-through transcription exists between this gene and the downstream tubulin tyrosine ligase-like family member 3 (TTLL3) which results in the production of a fusion protein. Gene Aliases ARC20, MGC13544, P20-ARC RefSeq Accession No. NC_000003.11, NT_022517.18 UniGene ID Hs.323342 Ensembl Gene ID ENSG00000241553 Entrez Gene ID 10093 Assay Information Unique Assay ID qHsaCED0002460 Assay Type SYBR® Green Detected Coding Transcript(s) ENST00000498623, ENST00000397261, ENST00000433034, ENST00000287613 Amplicon Context Sequence TTTTAAACCATCTGGCTGGATCTCGTGGCCTTCCCCCTCAGACTACCCATGTCTC CACGAAGGCGTCCTGGAGTCACTCCCCGAGCAGCG Amplicon Length (bp) 60 Chromosome Location 3:9847894-9847983 Assay Design Exonic Purification Desalted Validation Results Efficiency (%) 104 R2 0.9987 cDNA Cq 19.57 cDNA Tm (Celsius) 81.5 Page 1/5 PrimePCR™Assay Validation Report gDNA Cq 24.52 Specificity (%) 100 Information to assist with data interpretation is provided at the end of this report. Page 2/5 PrimePCR™Assay Validation Report ARPC4,
    [Show full text]