1 Global Analysis of Gene Expression Reveals Mrna Superinduction Is

Total Page:16

File Type:pdf, Size:1020Kb

1 Global Analysis of Gene Expression Reveals Mrna Superinduction Is 1 2 3 4 5 Global analysis of gene expression reveals mRNA superinduction is required for the 6 inducible immune response to a bacterial pathogen 7 8 9 10 Kevin C. Barry1, Nicholas T. Ingolia2*, and Russell E. Vance1,3,4* 11 12 13 14 1Division of Immunology and Pathogenesis, Department of Molecular & Cell Biology 15 2Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular 16 & Cell Biology 17 3Cancer Research Laboratory 18 4Howard Hughes Medical Institute 19 University of California, Berkeley, California 94720, USA. 20 21 22 23 *Correspondence: Russell E. Vance, Division of Immunology and Pathogenesis, 24 Department of Molecular and Cell Biology, University of California, Berkeley, CA 25 94720-3200. Phone: (510) 643-2795. Fax: (510) 642-1386. E-mail: [email protected] 26 or Nicholas T. Ingolia, Division of Biochemistry, Biophysics and Structural Biology 27 Department of Molecular and Cell Biology, University of California, Berkeley, CA 28 94720-3200. Phone: (510) 664-7071. Email: [email protected] 29 1 30 Abstract 31 The inducible innate immune response to infection requires a concerted process of gene 32 expression that is regulated at multiple levels. Most global analyses of the innate immune 33 response have focused on transcription induced by defined immunostimulatory ligands, 34 such as lipopolysaccharide. However, the response to pathogens involves additional 35 complexity, as pathogens interfere with virtually every step of gene expression. How 36 cells respond to pathogen-mediated disruption of gene expression to nevertheless initiate 37 protective responses remains unclear. We previously discovered that a pathogen- 38 mediated blockade of host protein synthesis provokes the production of specific pro- 39 inflammatory cytokines. It remains unclear how these cytokines are produced despite the 40 global pathogen-induced block of translation. We addressed this question by using 41 parallel RNAseq and ribosome profiling to characterize the response of macrophages to 42 infection with the intracellular bacterial pathogen Legionella pneumophila. Our results 43 reveal that mRNA superinduction is required for the inducible immune response to a 44 bacterial pathogen. 2 45 Introduction 46 Gene expression is a concerted process that is regulated at multiple steps, including 47 transcription, mRNA degradation, translation, and protein degradation. Most global 48 studies of gene expression have focused on the transcriptional response, but the relative 49 importance of transcription in determining protein levels remains debated (1-6). One 50 recent study analyzed the response of dendritic cells to lipopolysaccharide (LPS) and 51 found that changes in mRNA levels accounted for ~90% of observed alterations in 52 protein levels (7). However, the response to infection with a virulent pathogen is certainly 53 more complicated than the response to a purified immunostimulatory ligand such as LPS. 54 Indeed, pathogens have evolved to disrupt or manipulate almost every cellular process 55 involved in gene expression (8). An effective innate immune response to infection 56 therefore requires that host cells be able to induce appropriate responses in the face of 57 pathogen manipulation. 58 Inhibition of host protein synthesis is a common strategy used by many viral and 59 bacterial pathogens to disrupt host gene expression (9, 10). For example, the intracellular 60 bacterial pathogen Legionella pneumophila uses its Dot/Icm type IV secretion system 61 (T4SS) to translocate into host cells several effector proteins that block host protein 62 synthesis, including at least four effectors that target the elongation factor eEF1A (10-14). 63 Similarly, the bacterial pathogen Pseudomonas aeruginosa blocks host translation 64 elongation by secretion of exotoxin A (10, 15, 16). Interestingly, we previously 65 discovered that host cells respond to protein synthesis inhibition — whether by 66 Legionella, exotoxin A, or by pharmacological agents that block translation initiation or 67 elongation — by initiating a specific host response characterized by production of 68 specific pro-inflammatory cytokines, including interleukin-23 (Il23a), granulocyte 69 macrophage colony stimulating factor (Csf2) and interleukin-1α (Il1a) (11, 13). The 70 mechanism by which infected host cells are able to produce certain cytokines despite a 71 global (>90%) block in protein synthesis remains unclear, but at least two distinct models 72 have been proposed (9-11, 13, 15, 17-19). One model posits that the block in protein 73 synthesis leads to superinduction of cytokine mRNAs that is sufficient to overcome the 3 74 partial block in host protein synthesis (11, 13). Alternatively, it has been proposed that 75 host cells may circumvent the global block in protein synthesis by selective translation of 76 specific cytokine transcripts (15, 20). 77 To determine how host cells mount an inflammatory response when protein 78 synthesis is disrupted, we performed parallel RNAseq and ribosome profiling (21-23) of 79 Legionella-infected mouse primary bone marrow derived macrophages (BMMs). The 80 results reveal the relative contributions of translational regulation and mRNA induction 81 in controlling immune responses to pathogenic L. pneumophila, and support a model in 82 which the majority of gene induction in response to pathogenic infections occurs at the 83 level of mRNA induction. We were able to identify a subset of mRNAs that display 84 higher-than-average ribosome occupancy, but the elevated occupancy of these mRNAs 85 was observed in uninfected cells as well as in cells infected with L. pneumophila. We 86 propose that mRNA superinduction provides a robust mechanism for host cells to initiate 87 a response to infection despite pathogen-mediated disruption of host gene expression. 4 88 Results 89 mRNA superinduction mediates the host response to virulent L. pneumophila 90 The relative role of transcription versus translation in mediating the inducible response to 91 an infection with a virulent bacterial pathogen remains unclear. Thus, we performed 92 ribosome profiling (21-23) and total (rRNA-depleted) RNA sequencing of bone marrow- 93 derived macrophages (BMMs) infected with L. pneumophila. BMMs were infected with 94 a virulent ΔflaA strain, an avirulent T4SS-deficient ΔdotAΔflaA strain, or a Δ7ΔflaA 95 strain that lacks the 7 effectors associated with inhibition of host protein synthesis. RNA 96 was isolated at 6 hours post-infection, which was the earliest we could detect significant 97 L. pneumophila-induced translation inhibition without marked cytotoxicity (data not 98 shown). L. pneumophila strains on the ΔflaA background were used to reduce cell 99 cytotoxicity by avoiding the effects of NAIP5/NLRC4 inflammasome activation by 100 flagellin (24, 25) and we previously showed loss of flagellin does not affect blockade of 101 host translation or the transcriptional induction of inflammatory cytokines (11). Control 102 experiments demonstrated that ~90% of macrophages were infected with at least one 103 bacterium under our infection conditions (Figs. 1 S1A-B). 104 Lysates from infected macrophages were split and used to generate ribosome 105 profiling libraries and RNAseq libraries, thereby allowing us to compare directly the 106 mRNA levels and ribosome occupancy of those mRNAs from the same cells. As a 107 confirmation of the quality of the ribosome profiling libraries, ribosome footprints were 108 found to map preferentially to the exonic regions of infection-induced genes (Fig. 1), and 109 showed a strong bias towards 27-28 nucleotide fragment lengths (Fig. 1 S2), consistent 110 with the known size of ribosome-protected footprints. In accord with previous studies, 111 induction of ribosome footprints on Gem, Csf2, and Il23a required the 7-bacterial 112 effectors associated with the block in host protein synthesis, while induction of ribosome 113 footprints corresponding to Il1a and Il1b required the bacterial T4SS (Fig. 1A-F). 114 We first analyzed WT BMMs for T4SS-dependent gene induction, defined as the 115 ratio of normalized read counts in the virulent ΔflaA to avirulent ΔdotAΔflaA L. 116 pneumophila-infected conditions (see Methods). We found that the majority of T4SS- 5 117 dependent increases in ribosome footprints could be explained at the level of mRNA 118 induction, as there was nearly a perfect linear correlation between the extent of mRNA 119 induction and ribosome footprints for all T4SS-induced genes (Fig. 2A). This correlation 120 held for numerous known pathogen-induced mRNAs, including Il23a, Gem, Csf2, Il6, 121 Tnf, Cxcl1, Cxcl2, Dusp1, and Dusp2, as well as for the cytokines Il1a and Il1b that were 122 previously proposed to be preferentially translated (20). To confirm that cytokine protein 123 levels correlate with mRNA levels, we infected BMMs with ΔflaA or ΔdotAΔflaA L. 124 pneumophila and measured the levels of 42 cytokines or immune related proteins in the 125 supernatants or cell lysates of these BMMs at 6h, using commercially available bead 126 arrays. Of the cytokines assayed, 18 cytokines/proteins were measured above the limit of 127 detection in lysates, and 22 cytokines/proteins were measured above the limit of detection 128 in supernatants. The T4SS-dependent fold-induction of these protein levels was plotted 129 versus the T4SS-dependent fold-induction of mRNA levels (Fig. 2B-C). We observed a 130 robust correlation between the extent of mRNA induction and the extent of protein 131 induction, particularly
Recommended publications
  • Histone-Related Genes Are Hypermethylated in Lung Cancer
    Published OnlineFirst October 1, 2019; DOI: 10.1158/0008-5472.CAN-19-1019 Cancer Genome and Epigenome Research Histone-Related Genes Are Hypermethylated in Lung Cancer and Hypermethylated HIST1H4F Could Serve as a Pan-Cancer Biomarker Shihua Dong1,Wei Li1, Lin Wang2, Jie Hu3,Yuanlin Song3, Baolong Zhang1, Xiaoguang Ren1, Shimeng Ji3, Jin Li1, Peng Xu1, Ying Liang1, Gang Chen4, Jia-Tao Lou2, and Wenqiang Yu1 Abstract Lung cancer is the leading cause of cancer-related deaths lated in all 17 tumor types from TCGA datasets (n ¼ 7,344), worldwide. Cytologic examination is the current "gold stan- which was further validated in nine different types of cancer dard" for lung cancer diagnosis, however, this has low sensi- (n ¼ 243). These results demonstrate that HIST1H4F can tivity. Here, we identified a typical methylation signature of function as a universal-cancer-only methylation (UCOM) histone genes in lung cancer by whole-genome DNA methyl- marker, which may aid in understanding general tumorigen- ation analysis, which was validated by The Cancer Genome esis and improve screening for early cancer diagnosis. Atlas (TCGA) lung cancer cohort (n ¼ 907) and was further confirmed in 265 bronchoalveolar lavage fluid samples with Significance: These findings identify a new biomarker for specificity and sensitivity of 96.7% and 87.0%, respectively. cancer detection and show that hypermethylation of histone- More importantly, HIST1H4F was universally hypermethy- related genes seems to persist across cancers. Introduction to its low specificity, LDCT is far from satisfactory as a screening tool for clinical application, similar to other currently used cancer Lung cancer is one of the most common malignant tumors and biomarkers, such as carcinoembryonic antigen (CEA), neuron- the leading cause of cancer-related deaths worldwide (1, 2).
    [Show full text]
  • Genome-Wide DNA Methylation Analysis Reveals Molecular Subtypes of Pancreatic Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 17), pp: 28990-29012 Research Paper Genome-wide DNA methylation analysis reveals molecular subtypes of pancreatic cancer Nitish Kumar Mishra1 and Chittibabu Guda1,2,3,4 1Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA 2Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE, 68198, USA 3Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA 4Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA Correspondence to: Chittibabu Guda, email: [email protected] Keywords: TCGA, pancreatic cancer, differential methylation, integrative analysis, molecular subtypes Received: October 20, 2016 Accepted: February 12, 2017 Published: March 07, 2017 Copyright: Mishra et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC-BY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Pancreatic cancer (PC) is the fourth leading cause of cancer deaths in the United States with a five-year patient survival rate of only 6%. Early detection and treatment of this disease is hampered due to lack of reliable diagnostic and prognostic markers. Recent studies have shown that dynamic changes in the global DNA methylation and gene expression patterns play key roles in the PC development; hence, provide valuable insights for better understanding the initiation and progression of PC. In the current study, we used DNA methylation, gene expression, copy number, mutational and clinical data from pancreatic patients.
    [Show full text]
  • A Mutation in Histone H2B Represents a New Class of Oncogenic Driver
    Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A Mutation in Histone H2B Represents A New Class Of Oncogenic Driver Richard L. Bennett1, Aditya Bele1, Eliza C. Small2, Christine M. Will2, Behnam Nabet3, Jon A. Oyer2, Xiaoxiao Huang1,9, Rajarshi P. Ghosh4, Adrian T. Grzybowski5, Tao Yu6, Qiao Zhang7, Alberto Riva8, Tanmay P. Lele7, George C. Schatz9, Neil L. Kelleher9 Alexander J. Ruthenburg5, Jan Liphardt4 and Jonathan D. Licht1 * 1 Division of Hematology/Oncology, University of Florida Health Cancer Center, Gainesville, FL 2 Division of Hematology/Oncology, Northwestern University 3 Department of Cancer Biology, Dana Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 4 Department of Bioengineering, Stanford University 5 Department of Molecular Genetics and Cell Biology, The University of Chicago 6 Department of Chemistry, Tennessee Technological University 7 Department of Chemical Engineering, University of Florida 8 Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida 9 Department of Chemistry, Northwestern University, Evanston IL 60208 Running title: Histone mutations in cancer *Corresponding Author: Jonathan D. Licht, MD The University of Florida Health Cancer Center Cancer and Genetics Research Complex, Suite 145 2033 Mowry Road Gainesville, FL 32610 352-273-8143 [email protected] Disclosures: The authors have no conflicts of interest to declare Downloaded from cancerdiscovery.aacrjournals.org on September 27, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
    [Show full text]
  • HIST1H2BH/HIST1H2BK/HIST3H2BB Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap18559c
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 HIST1H2BH/HIST1H2BK/HIST3H2BB Antibody (Center) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP18559c Specification HIST1H2BH/HIST1H2BK/HIST3H2BB Antibody (Center) - Product Information Application WB,E Primary Accession Q93079 Other Accession P57053, Q9PSW9, P0C1H5, P0C1H4, Q6PC60, Q8CGP0, Q8N257, Q9D2U9, Q5QNW6, Q64524, Q16778, Q64525, Q00715, Q5BJA5, P0C1H3, P62808, Q8CGP2, P23527, Q99877, Q32L48, P10854, Q99879, Q99880, Q8CGP1, O60814, Q2M2T1, HIST1H2BH/HIST1H2BK/HIST3H2BB Antibody P06899, Q64478, (Center) (Cat. #AP18559c) western blot P10853, P58876, analysis in MCF-7 cell line lysates Q6ZWY9, P62807 (35ug/lane).This demonstrates the Reactivity Human HIST1H2BH/HIST1H2BK/HIST3H2BB antibody Predicted Xenopus, Mouse, detected the Bovine, Chicken, HIST1H2BH/HIST1H2BK/HIST3H2BB protein Zebrafish, Rat (arrow). Host Rabbit Clonality Polyclonal Isotype Rabbit Ig HIST1H2BH/HIST1H2BK/HIST3H2BB Calculated MW 13892 Antibody (Center) - Background Antigen Region 26-52 Histones are basic nuclear proteins that are HIST1H2BH/HIST1H2BK/HIST3H2BB Antibody responsible (Center) - Additional Information for the nucleosome structure of the chromosomal fiber in Gene ID 8345 eukaryotes. Two molecules of each of the four core histones (H2A, Other Names H2B, H3, and H4) form an octamer, around Histone H2B type 1-H, Histone H2Bj, H2B/j, which approximately 146 bp HIST1H2BH, H2BFJ of DNA is wrapped in repeating units, called nucleosomes. The Target/Specificity linker histone, H1, interacts with linker DNA This HIST1H2BH/HIST1H2BK/HIST3H2BB between nucleosomes antibody is generated from rabbits and functions in the compaction of chromatin immunized with a KLH conjugated synthetic into higher order peptide between 26-52 amino acids from structures. This gene is intronless and encodes the Central region of human a member of the HIST1H2BH/HIST1H2BK/HIST3H2BB.
    [Show full text]
  • A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder
    INVESTIGATION A Discovery Resource of Rare Copy Number Variations in Individuals with Autism Spectrum Disorder Aparna Prasad,* Daniele Merico,* Bhooma Thiruvahindrapuram,* John Wei,* Anath C. Lionel,*,† Daisuke Sato,* Jessica Rickaby,* Chao Lu,* Peter Szatmari,‡ Wendy Roberts,§ Bridget A. Fernandez,** Christian R. Marshall,*,†† Eli Hatchwell,‡‡ Peggy S. Eis,‡‡ and Stephen W. Scherer*,†,††,1 *The Centre for Applied Genomics, Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto M5G 1L7, Canada, †Department of Molecular Genetics, University of Toronto, Toronto M5G 1L7, Canada, ‡Offord Centre for Child Studies, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8P 3B6, § Canada, Autism Research Unit, The Hospital for Sick Children, Toronto M5G 1X8, Canada, **Disciplines of Genetics and Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3V6, Canada, ††McLaughlin Centre, University of Toronto, Toronto M5G 1L7, Canada, and ‡‡Population Diagnostics, Inc., Melville, New York 11747 ABSTRACT The identification of rare inherited and de novo copy number variations (CNVs) in human KEYWORDS subjects has proven a productive approach to highlight risk genes for autism spectrum disorder (ASD). A rare variants variety of microarrays are available to detect CNVs, including single-nucleotide polymorphism (SNP) arrays gene copy and comparative genomic hybridization (CGH) arrays. Here, we examine a cohort of 696 unrelated ASD number cases using a high-resolution one-million feature CGH microarray, the majority of which were previously chromosomal genotyped with SNP arrays. Our objective was to discover new CNVs in ASD cases that were not detected abnormalities by SNP microarray analysis and to delineate novel ASD risk loci via combined analysis of CGH and SNP array cytogenetics data sets on the ASD cohort and CGH data on an additional 1000 control samples.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Chew Et Al-2021-Nature Communi
    Short H2A histone variants are expressed in cancer Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, Antoine Molaro, Jay Sarthy To cite this version: Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, et al.. Short H2A histone variants are expressed in cancer. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.490. 10.1038/s41467-020-20707-x. hal-03118929 HAL Id: hal-03118929 https://hal.archives-ouvertes.fr/hal-03118929 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-020-20707-x OPEN Short H2A histone variants are expressed in cancer Guo-Liang Chew 1, Marie Bleakley2, Robert K. Bradley 3,4,5, Harmit S. Malik4,6, Steven Henikoff 4,6, ✉ ✉ Antoine Molaro 4,7 & Jay Sarthy 4 Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through 1234567890():,; analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization.
    [Show full text]
  • A Mutation in Histone H2B Represents a New Class of Oncogenic Driver
    Published OnlineFirst July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 RESEARCH ARTICLE A Mutation in Histone H2B Represents a New Class of Oncogenic Driver Richard L. Bennett1, Aditya Bele1, Eliza C. Small2, Christine M. Will2, Behnam Nabet3, Jon A. Oyer2, Xiaoxiao Huang1,4, Rajarshi P. Ghosh5, Adrian T. Grzybowski6, Tao Yu7, Qiao Zhang8, Alberto Riva9, Tanmay P. Lele8, George C. Schatz4, Neil L. Kelleher4, Alexander J. Ruthenburg6, Jan Liphardt5, and Jonathan D. Licht1 Downloaded from cancerdiscovery.aacrjournals.org on September 30, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst July 23, 2019; DOI: 10.1158/2159-8290.CD-19-0393 ABSTRACT By examination of the cancer genomics database, we identified a new set of mutations in core histones that frequently recur in cancer patient samples and are predicted to disrupt nucleosome stability. In support of this idea, we characterized a glutamate to lysine mutation of histone H2B at amino acid 76 (H2B-E76K), found particularly in bladder and head and neck cancers, that disrupts the interaction between H2B and H4. Although H2B-E76K forms dimers with H2A, it does not form stable histone octamers with H3 and H4 in vitro, and when recon- stituted with DNA forms unstable nucleosomes with increased sensitivity to nuclease. Expression of the equivalent H2B mutant in yeast restricted growth at high temperature and led to defective nucleosome-mediated gene repression. Significantly, H2B-E76K expression in the normal mammary epithelial cell line MCF10A increased cellular proliferation, cooperated with mutant PIK3CA to pro- mote colony formation, and caused a significant drift in gene expression and fundamental changes in chromatin accessibility, particularly at gene regulatory elements.
    [Show full text]
  • Noncoding Rnas As Novel Pancreatic Cancer Targets
    NONCODING RNAS AS NOVEL PANCREATIC CANCER TARGETS by Amy Makler A Thesis Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL August 2018 Copyright 2018 by Amy Makler ii ACKNOWLEDGEMENTS I would first like to thank Dr. Narayanan for his continuous support, constant encouragement, and his gentle, but sometimes critical, guidance throughout the past two years of my master’s education. His faith in my abilities and his belief in my future success ensured I continue down this path of research. Working in Dr. Narayanan’s lab has truly been an unforgettable experience as well as a critical step in my future endeavors. I would also like to extend my gratitude to my committee members, Dr. Binninger and Dr. Jia, for their support and suggestions regarding my thesis. Their recommendations added a fresh perspective that enriched our initial hypothesis. They have been indispensable as members of my committee, and I thank them for their contributions. My parents have been integral to my successes in life and their support throughout my education has been crucial. They taught me to push through difficulties and encouraged me to pursue my interests. Thank you, mom and dad! I would like to thank my boyfriend, Joshua Disatham, for his assistance in ensuring my writing maintained a logical progression and flow as well as his unwavering support. He was my rock when the stress grew unbearable and his encouraging words kept me pushing along.
    [Show full text]
  • The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,†
    bioRxiv preprint doi: https://doi.org/10.1101/720235; this version posted July 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The Human Canonical Core Histone Catalogue David Miguel Susano Pinto*, Andrew Flaus*,† Abstract Core histone proteins H2A, H2B, H3, and H4 are encoded by a large family of genes dis- tributed across the human genome. Canonical core histones contribute the majority of proteins to bulk chromatin packaging, and are encoded in 4 clusters by 65 coding genes comprising 17 for H2A, 18 for H2B, 15 for H3, and 15 for H4, along with at least 17 total pseudogenes. The canonical core histone genes display coding variation that gives rise to 11 H2A, 15 H2B, 4 H3, and 2 H4 unique protein isoforms. Although histone proteins are highly conserved overall, these isoforms represent a surprising and seldom recognised variation with amino acid identity as low as 77 % between canonical histone proteins of the same type. The gene sequence and protein isoform diversity also exceeds com- monly used subtype designations such as H2A.1 and H3.1, and exists in parallel with the well-known specialisation of variant histone proteins. RNA sequencing of histone transcripts shows evidence for differential expression of histone genes but the functional significance of this variation has not yet been investigated. To assist understanding of the implications of histone gene and protein diversity we have catalogued the entire human canonical core histone gene and protein complement.
    [Show full text]
  • Targeting the DEK Oncogene in Head and Neck Squamous Cell Carcinoma: Functional and Transcriptional Consequences
    Targeting the DEK oncogene in head and neck squamous cell carcinoma: functional and transcriptional consequences A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements to the degree of Doctor of Philosophy (Ph.D.) in the Department of Cancer and Cell Biology of the College of Medicine March 2015 by Allie Kate Adams B.S. The Ohio State University, 2009 Dissertation Committee: Susanne I. Wells, Ph.D. (Chair) Keith A. Casper, M.D. Peter J. Stambrook, Ph.D. Ronald R. Waclaw, Ph.D. Susan E. Waltz, Ph.D. Kathryn A. Wikenheiser-Brokamp, M.D., Ph.D. Abstract Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies worldwide with over 50,000 new cases in the United States each year. For many years tobacco and alcohol use were the main etiological factors; however, it is now widely accepted that human papillomavirus (HPV) infection accounts for at least one-quarter of all HNSCCs. HPV+ and HPV- HNSCCs are studied as separate diseases as their prognosis, treatment, and molecular signatures are distinct. Five-year survival rates of HNSCC hover around 40-50%, and novel therapeutic targets and biomarkers are necessary to improve patient outcomes. Here, we investigate the DEK oncogene and its function in regulating HNSCC development and signaling. DEK is overexpressed in many cancer types, with roles in molecular processes such as transcription, DNA repair, and replication, as well as phenotypes such as apoptosis, senescence, and proliferation. DEK had never been previously studied in this tumor type; therefore, our studies began with clinical specimens to examine DEK expression patterns in primary HNSCC tissue.
    [Show full text]
  • Whole-Genome DNA Methylation and Hydroxymethylation Profiling for HBV-Related Hepatocellular Carcinoma
    INTERNATIONAL JOURNAL OF ONCOLOGY 49: 589-602, 2016 Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma CHAO YE*, RAN TAO*, QINGYI CAO, DANHUA ZHU, YINI WANG, JIE WANG, JUAN LU, ERMEI CHEN and LANJUAN LI State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China Received March 18, 2016; Accepted May 13, 2016 DOI: 10.3892/ijo.2016.3535 Abstract. Hepatocellular carcinoma (HCC) is a common tions between them. Taken together, in the present study we solid tumor worldwide with a poor prognosis. Accumulating conducted the first genome-wide mapping of DNA methyla- evidence has implicated important regulatory roles of epigen- tion combined with hydroxymethylation in HBV-related HCC etic modifications in the occurrence and progression of HCC. and provided a series of potential novel epigenetic biomarkers In the present study, we analyzed 5-methylcytosine (5-mC) for HCC. and 5-hydroxymethylcytosine (5-hmC) levels in the tumor tissues and paired adjacent peritumor tissues (APTs) from Introduction four individual HCC patients using a (hydroxy)methylated DNA immunoprecipitation approach combined with deep Hepatocellular carcinoma (HCC), a common solid tumor, is sequencing [(h)MeDIP-Seq]. Bioinformatics analysis revealed the third most frequent cause of cancer-related death in the that the 5-mC levels in the promoter regions of 2796 genes and world. Hepatitis B virus (HBV) infection is the main cause of the 5-hmC levels in 507 genes differed significantly between HCC in China (1).
    [Show full text]