OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things

Total Page:16

File Type:pdf, Size:1020Kb

OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things 1 OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things IoT Industrie 4.0 M2M 2 Welcome to the OPC Foundation! As the international standard for vertical and horizontal communication, OPC-UA provides semantic interoper- ability for the smart world of connect- ed systems. Thomas J. Burke President und Executive Director OPC Foundation OPC Unified Architecture (OPC-UA) is the data ex- OPC-UA is an IEC standard and therefore ideally change standard for safe, reliable, manufacturer- suited for cooperation with other organizations. and platform-independent industrial communication. As a global non-profit organization, the OPC Foun- It enables data exchange between products from dation coordinates the further development of the different manufacturers and across operating sys- OPC standard in collaboration with users, manufac- tems. The OPC-UA standard is based on specifica- turers and researchers. Activities include: tions that were developed in close cooperation be- tween manufacturers, users, research institutes and ➞ Development and maintenance of specifications consortia, in order to enable safe information ex- ➞ Certification and compliance tests of change in heterogeneous systems. implementations ➞ Cooperation with other standards organizations OPC has been very popular in the industry and also becoming more popular in other markets like the This brochure provides an overview of IoT, M2M Internet of Things (IoT). With the introduction of Ser- (Machine to Machine) and Industrie 4.0 requirements vice-Oriented-Architecture (SOA) in industrial auto- and illustrates solutions, technical details and imple- mation systems in 2007, OPC-UA started to offer a mentations based on OPC-UA. scalable, platform-independent solution which com- The broad approval among representatives from re- bines the benefits of web services and integrated search, industry and associations indicates OPC-UA security with a consistent data model. to be a key ingredient of data and information ex- change standards. Regards, Thomas J. Burke President and Executive Director OPC Foundation [email protected] www.opcfoundation.org 3 Contents 4 OPC-UA: INDUSTRIAL INTEROPERABILITY OPC-UA SOLUTIONS FOR IOT 36 SCALABILITY: 7 INDUSTRIE 4.0 REQUIREMENTS – OPC-UA IN SENSOR OPC-UA SOLUTION Alexandre Felt, AREVA GmbH QUOTES 37 SCALABILITY: 8 IT and Industry OPC-UA AT CHIP LEVEL 10 Industrial Suppliers and Users Prof. Jasperneite, Fraunhofer-Anwendungs- 12 Organizations – Research zentrum Industrial Automation (IOSB-INA), Lemgo 14 OPC-UA AT A GLANCE 38 SMART METERING: 16 OPC-UA TECHNOLOGY IN DETAIL CONSUMPTION INFORMATION FROM Karl-Heinz Deiretsbacher, Siemens AG and THE METER RIGHT UP TO IT ACCOUNTING Dr. Wolfgang Mahnke, ABB SYSTEMS Carsten Lorenz, Honeywell 23 SECURITY CHECK BY GERMAN FEDERAL OFFICE FOR INFORMATION SECURITY 39 HORIZONTAL: OPC-UA ENABLES M2M AND IOT OPC FOUNDATION Silvio Merz, Joint Water and Wastewater 25 Organization Authority, Vogtland 26 Specifications, Information and Events 28 Laboratory – Certification 40 RENEWABLE ENERGY: 29 OPC-UA: Integration into products OPC-UA FOR MONITORING OFFSHORE WIND FARMS COLLABORATIONS Eike Grünhagen, Adwen GmbH 31 AutomationML 32 MDIS – Offshore Oil & Gas 41 VERTICAL: 33 AIM-D – RFID and other AutoID systems OPC-UA FROM PRODUCTION 34 PLCopen – Client and server in controller RIGHT INTO SAP 35 MES-DACH – MES data profiles Roland Essmann, Elster GmbH 42 CLOUD: OPC-UA FOR IOT UP INTO THE CLOUD Clemens Vasters, Microsoft Corporation 43 ENSURING THE AVAILABILITY: OPC UA IN A TUNNEL PROJECT Bernhard Reichl, ETM 4 OPC-UA: Industrial Interoperability for IoT Digitalization is an important and very attractive INTERNET growth market. The goal is to foster the integration of At the base, the internet of things requires remote IT Technologies with products, systems, solutions device access as well. Therefore M2M is a part of the and services across the complete value chain IoT but is not limited to the exchange of data be- stretching from design to the production to mainte- tween intelligent devices. It also includes data from nance. Additionally new business opportunities will simple sensors and actors (i.e wearables for fitness arise like the digitalization of products and systems, solutions in the consumer space) that will be first ag- new and enhanced software solutions and new digi- gregated and processed locally then sent via gate- tal services. ways (a smart phone) to central systems in the cloud. IoT defines a series of technologies that have tradi- Within IoT very complex networks of intelligent sys- tionally not been connected and will now be con- tems are emerging. A similar development can be nected to an IP-based network. These technologies observed for industrial solutions: Machines and field are the most important drivers of the digital growth. devices are not just connected to networks and send In the center of the standardization is the so called data. They additionally can process and combine “Machine-to-Machine” (M2M) communication. Many data from other devices due to the increasing com- companies and associations like the OPC Founda- puting power of these devices. They can consume tion with OPC-UA have been engaged in these stan- and provide information from and to other field de- dardization efforts for many years. vices to create new value for the user. In the end a machine can, by itself, provide a maintenance strat- MACHINE INTERACTION egy for the technicians or deliver information about M2M typically defines the communication between the history of maintenance – instead of just providing two machines or the data transfer between a more data of the oil-pressure and temperature. or less intelligent device and a central computer. The communication media is either a cable modem or wireless modem. In more modern devices – in ex- ample a vending machine – the communication was using the cell-network and a SIM card was placed in each machine. It then communicated directly via a point-to-point connection with the dedicated com- puter to send sensor data – for example the fill-level – and other alarm messages to the machine owner. The business models resulting from this are mainly around logistics and maintenance as well as special condition monitoring and preventive maintenance. For example in the industrial environment, airplane turbines are sent to the airports and constantly mon- itored to send replacement parts in time to reduce the maintenance times. 5 COMMUNICATION OPC-UA INTEROPERABILITY The requirement for the communication of things The vision of IoT can only be realized, if the commu- and services inside the IoT is vastly different than to- nication of the central components is based on a day’s established structures: The IoT communication global communication standard that can fulfill the with devices will rarely happen directly. Sensor and complex requirements. Additionally to a publish/sub- device information will be published and consumer scribe model for the low-resource, one-to-many can subscribe to this information (Publish/Sub- communication paradigm a secure connection ori- scribe). Typically these things and systems will com- ented client/server communication model is required municate via IP-Networks between each other and to handle the bi-directional communication that al- with cloud based big-data applications. The custom- lows sending control commands to actors. Further- er benefits are created by the combination of these more information must be accompanied by a se- intelligent devices and systems with services that mantic meta-model that describes the data and its operators provide to their customers. purpose to guarantee the best usage of the data. The aggregation of information on many layers adds additional meta-data and therefore it is of critical im- portance to use a single standard. Scalability and the possibility of integration across all layers is required as well as platform and vendor independence. OPC- UA offers a complete solution for all requirements on all vertical layers for remote device access. IoT Industrie 4.0 M2M Remote Device Access (with OPC-UA) as the common intersection of M2M, IoT and Industrie 4.0 6 OPC-UA – pioneer of the 4th industrial (r)evolution CHALLENGE reconfigure and optimize themselves and are ex- In order to maintain the competitiveness of modern pandable (plug-and-produce) without engineering industrial countries it is necessary to meet the chal- intervention or manual installation. Virtual images are lenges of increasing efficiency with ever shorter carried throughout the production, product life time product cycles through more effective use of energy and value creation chain within the produced goods and resources, of reducing time to market by pro- and always represent the current state of the actual ducing more complex products faster with high in- product. Such “smart” products are networked with novative cycles, and of increasing flexibility through each other in the Internet of Things and respond to individualized mass production. internal and external events with learned behavior patterns. VISION The 4th industrial revolution (Industrie 4.0) is driven REQUESTS by advanced information and communication tech- Considerable effort is required for implementing the nologies (ICT), which are becoming increasingly vision of Industrie 4.0 successfully, since demands prevalent in industrial automation. In distributed, in- vary considerably. In order to reduce the complexity, telligent systems physical,
Recommended publications
  • On Ttethernet for Integrated Fault-Tolerant Spacecraft Networks
    On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks Andrew Loveless∗ NASA Johnson Space Center, Houston, TX, 77058 There has recently been a push for adopting integrated modular avionics (IMA) princi- ples in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEther- net can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Ex- ploration Systems (AES) program. Nomenclature A&S = Avionics and Software Project AA2 = Ascent Abort 2 AES = Advanced Exploration Systems Program ANTARES = Advanced NASA Technology Architecture for Exploration Studies API = Application Program Interface ARM = Asteroid Redirect Mission
    [Show full text]
  • Accessing PI System Using OPC Unified Architecture
    Accessing PI System using OPC Unified Architecture Alisher Maksumov OPC Development Group Lead OSIsoft, Inc. Agenda • What is OPC Unified Architecture? • OPC UA Web Services • Information Modeling • Client and Sever Communication • Exposing PI System • Server and Client Demo • OPC UA Roadmap • Summary What is OPC Unified Architecture? • Next generation of OPC technology – Platform independent • Designed with SOA principles – Extensible, discoverable – Well defined message syntax • Mapped into Web Services – WSDL, XML schema, SOAP – Message exchange over HTTP/HTTPS • Supports enhanced security – Certificates, Encryption, Signature • Adopts Information Modeling concepts – Browsable and discoverable Address Space model – Objects, Nodes, Types, Data Variables, Properties OPC UA Specification • Part 1 – Concepts • Part 2 – Security • Part 3 – Address Space Generic Parts • Part 4 – Services • Part 5 – Information Model • Part 6 – Mappings Mapping to Web Services • Part 7 – Profiles Supported features • Part 8 – Data Access • Part 9 – Alarms and Conditions Parts specific to classic • Part 10 – Programs OPC mapping • Part 11 – Historical Access • Part 12 – Discovery OPC Server discovery • Part 13 – Aggregates OPC UA Web Services • Defined in OPC UA Spec (Parts 4, 6) and OPC UA WSDL • Can be group into service sets: – Discovery Service Set • FindServers, GetEndpoints, RegisterServer – Secure Channel Service Set • OpenSecureChannel, CloseSecureChannel – Session Service Set • Create, Activate, Close Session – Node Management Service Set • Add and
    [Show full text]
  • Ethercat – Ultra-Fast Communication Standard
    EtherCAT – ultra-fast communication standard In 2003, Beckhoff introduces its EtherCAT tech- In 2007, EtherCAT is adopted as an IEC standard, EtherCAT: nology into the market. The EtherCAT Technology underscoring how open the system is. To this Group (ETG) is formed, supported initially by day, the specification remains unchanged; it has global standard 33 founder members. The ETG goes on to stan- only been extended and compatibility has been dardize and maintain the technology. The group is retained. As a result, devices from the early years, the largest fieldbus user organization in the world, even from as far back as 2003, are still interopera- for real-time with more than 5000 members (as of 2019) cur- ble with today’s devices in the same networks. rently. In 2005, the Safety over EtherCAT protocol Another milestone is achieved in 2016 Ethernet from the is rolled out, expanding the EtherCAT specification with EtherCAT P, which introduces the ability to to enable safe transmission of safety-relevant carry power (2 x 24 V) on a standard Cat.5 cable field to the I/Os control data. The low-footprint protocol uses a alongside EtherCAT data. This paves the way for so-called Black Channel, making it completely machines without control cabinets. independent of the communication system used. The launch of EtherCAT G/G10 in 2018 in- How it works The key functional principle of EtherCAT lies in how its nodes process Ethernet frames: each node reads the data addressed to it and writes its data back to Flexible topology the frame all while the frame is An EtherCAT network can sup- moving downstream.
    [Show full text]
  • OPC UA Server App OPC UA Server for Ctrlx CORE
    Application Manual OPC UA Server App OPC UA Server for ctrlX CORE R911403778, Edition 03 Copyright © Bosch Rexroth AG 2021 All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. Liability The specified data is intended for product description purposes only and shall not be deemed to be a guaranteed characteristic unless expressly stipulated in the contract. All rights are reserved with respect to the content of this documentation and the availability of the product. DOK-XCORE*-OPCUA*SERV*-AP03-EN-P DC-IA/EPI5 (TaDo/MePe) f5f200cddfc773880a347e883d356b4f, 3, en_US OPC UA Server App 3 / 31 Table of contents 1 About this documentation 4 2 Important directions on use 5 2.1 Intended use. 5 2.1.1 Introduction. 5 2.1.2 Areas of use and application . 5 2.2 Unintended use. 6 3 Safety instructions 7 4 Introduction into the OPC Unified Architecture 9 4.1 General information. 9 4.2 Overview on specifications . 9 4.3 Information model . 10 4.4 Service-oriented architecture . 10 5 Rexroth ctrlX OPC UA Server 17 5.1 The ctrlX OPC UA Server in the ctrlX AUTOMATION . 17 5.2 Installation on ctrlX CORE. 17 5.3 Properties. 19 5.4 Configuration . 19 5.4.1 Certificate configuration . 20 6 Related documentation 23 6.1 Overview. 23 6.2 ctrlX AUTOMATION. 23 6.3 ctrlX WORKS. 23 6.4 ctrlX CORE. 24 6.5 ctrlX CORE Apps. 24 7 Service and support 27 8 Index 29 R911403778, Edition 03 Bosch Rexroth AG 4 / 31 OPC UA Server App 1 About this documentation Editions of this documentation Edition Release Notes date 01 2020-06 First edition 02 2021-01 Revision ctrlX CORE version UAS-V-0106 03 2021-04 Revision ctrlX CORE version UAS-V-0108 Bosch Rexroth AG R911403778, Edition 03 OPC UA Server App 5 / 31 Intended use 2 Important directions on use 2.1 Intended use 2.1.1 Introduction Rexroth products are developed and manufactured to the state-of-the-art.
    [Show full text]
  • Comtrol IO-Link to OPC UA
    FOR IMMEDIATE RELEASE CONTACT: Jordan DeGidio Marketing Specialist +1 763.957.6000 [email protected] Comtrol Implements OPC-UA connectivity with MultiLink™ on IO-Link Master family MINNEAPOLIS, Minnesota – April 21, 2017 — Comtrol Corporation, a manufacturer of industrial device connectivity products and the official North American IO-Link Competency Center, today announced the availability of OPC-UA support with its MultiLink™ technology on its IO-Link Master family of products. OPC Unified Architecture (OPC-UA) is a machine to machine communication protocol developed for industrial automation. OPC-UA allows customers to communicate with industrial equipment and systems for data connection and control, freely use an open standard, cross-platform, implement service-oriented architecture (SOA) software and utilize robust security. Comtrol’s MultiLink™ technology allows IO-Link Masters to simultaneously provide sensors Process data to PLC platforms, while also sending the sensors ISDU Service and Process data via Modbus TCP or OPC-UA upstream to IIoT/Industry 4.0 Cloud solutions or factory SCADA systems. Comtrol’s IO-Link Masters are available in three industrial Ethernet protocols: EtherNet/IP, Modbus TCP and PROFINET IO, which are all capable of running OPC UA with MultiLink™. “The OPC Foundation is very excited about the great work that Comtrol Corporation has been doing with the OPC UA technology. Their company specializes in quality networking and industrial data communication products, with the addition OPC UA to their portfolio of IO-Link Masters, factory automation users will have a seamless connection from IO-Link sensors and actuators to SCADA/HMI and cloud systems. This will add significant capability allowing seamless interoperability across the multitude of industrial networks and industrial devices says Thomas J Burke, OPC Foundation President & Executive Director.
    [Show full text]
  • Data Exchange in Distributed Mining Systems by OPC Unified Architec- Ture, WLAN and TTE VLF Technology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Technische Universität Bergakademie Freiberg: Qucosa REAL TIME MINING - Conference on Innovation on Raw Material Extraction Amsterdam 2017 Data exchange in distributed mining systems by OPC Unified Architec- ture, WLAN and TTE VLF technology. David Horner1, Friedemann Grafe2, Tobias Krichler1, Helmut Mischo1, Thomas Wilsnack2) 1 TU Bergakademie Freiberg 2 IBeWa Consulting ABSTRACT Mining operations rely on effective extraction policies, which base on concerted manage- ment and technical arrangements. In addition to commodities, mining of data is the in- creasingly matter of subject in mining engineering. The Horizon 2020 project – Real-Time- Mining supports the ongoing paradigm shift of pushing mining activities from discontinuous to continuous operation. In this respect, the partners TU Bergakademie Freiberg (TU BAF) and IBeWa Consulting tackle the issue of physical and logical data acquisition in under- ground mining. The first aspect of the project addresses the ‘logical’ provision of data. Mining technology is increasingly interacting among each other and integrated into globally distributed sys- tems. At the same time, the integration of current mining devices and machineries into su- perordinated systems is still complex and costly. This means only a few number of mining operators is capable to integrate their operation technology into a Supervisory Control and Data Acquisition (SCADA) system. TU BAF presents the middleware OPC Unified Archi- tecture, which is a platform independent middleware for data exchange and technology interconnection among distributed systems. By installing a SCADA demonstrator at the research and education mine Reiche Zeche, TU BAF intends to present the technical fea- sibility of a SCADA system basing on OPC UA even for SME mining operations.
    [Show full text]
  • Standards Published in 2010
    IRISH STANDARDS PUBLISHED BASED ON CEN/CENELEC STANDARDS 1. I.S. ENV 13710:2000 Date published 8 AUGUST 2010 European Ordering Rules - Ordering of characters from the Latin, Greek and Cyrillic scripts 2. I.S. ENV 13801:2000 Date published 8 AUGUST 2010 Plastics piping systems for soil and waste discharge (low and high temperature) within the building structure - Thermoplastics - Recommended practice for installation 3. I.S. CEN TS 13853:2004 Date published 13 FEBRUARY 2010 Swap bodies for combined transport – Stackable swap bodies type C 745-S16 – Dimensions, design requirements and testing 4. I.S. EN 61360-4:2005 Date published 7 JANUARY 2010 Standard data element types with associated classification scheme for electric components -- Part 4: IEC reference collection of standard data element types and component classes (IEC 61360-4:2005 (EQV)) 5. I.S. EN 1990:2002/A1:2006 Date published 29 MARCH 2010 Eurocode - Basis of structural design 6. I.S. EN 1991-4:2006 Date published 31 MARCH 2010 Eurocode 1 - Actions on structures - Part 4: Silos and tanks 7. I.S. EN 60512-13-5:2006/AC:2006 Date published 12 JANUARY 2010 Connectors for electronic equipment - Tests and measurements -- Part 13-5: Mechanical operation tests - Test 13e: Polarizing and keying method (IEC 60512-13 -5:2006 (EQV)) 8. I.S. EN 60034-9:2005/A1:2007 Date published 7 JANUARY 2010 Rotating electrical machines -- Part 9: Noise limits (IEC 60034-9:2003/A1:2007 (EQV)) 9. I.S. EN 548:2004/AC:2007 Date published 8 AUGUST 2010 Resilient floor coverings - Specification for plain and decorative linoleum 10.
    [Show full text]
  • The Role of CAN in the Age of Ethernet and IOT
    iCC 2017 CAN in Automation The role of CAN in the age of Ethernet and IOT Christian Schlegel, HMS Industrial Networks CAN technology was developed in the 1980s and became available in 1987, just as other industrial fieldbus systems like PROFIBUS or INTERBUS entered the stage of industrial communication. Beside the fact that CAN is a success in the automotive industry and used in all types of cars today, it has also made its way in many other industrial areas. About 15 years ago, new technologies based on Ethernet started to emerge, with ap- pealing and sometimes outstanding features. Some six years ago Ethernet also started to find its way into automobiles. Today, other new communication technologies are showing up on the horizon driven by the omnipresent Industrial Internet of Things. But even now, 30 years after their introduction, these “classic” fieldbus technologies are still alive – with varying success. Since CAN was initially developed with a focus for use in automobiles, CAN has certain features that still make it the best choice for many applications in automobiles and industrial areas – even when compared to the newer technologies. This paper discusses why CAN is still a valid or even better choice for certain applica- tion areas than Ethernet-based technologies, not just focusing on the advanced fea- tures provided by the enhanced capabilities of CAN FD but also highlighting how these applications benefit from the features of “classic” CAN. Looking back into history … the requirement to transmit data between … when CAN was born these ECUs but also to connect sensors and actuators to them.
    [Show full text]
  • The Future of CAN / Canopen and the Industrial Ethernet Challenge by Wilfried Voss, President Esd Electronics, Inc USA
    The Future of CAN / CANopen and the Industrial Ethernet Challenge by Wilfried Voss, President esd electronics, Inc USA Industrial Ethernet technologies are a formidable challenge to CANopen as the low-cost industrial networking technology of choice. Ethernet technologies will eventually replace the majority of CANopen applications, at least in regards to new developments. For many years, Controller Area Network (CAN) and CANopen, a higher-layer protocol based on CAN, represented the best choice for low-cost industrial embedded networking. However, since the official introduction of CAN in 1986, there has been a quest to replace CAN and CANopen to overcome the most obvious shortcomings such as limited baud rate and limited network length. Industrial Ethernet technologies are currently the most formidable challenge to CANopen as the low-cost industrial networking technology of choice. Ethernet technologies will eventually replace the majority of CANopen applications, at least in regards to new developments, starting at this very moment in certain areas such as industrial control including motion control and, especially, robotics. Ironically, CAN - the underlying hardware layer of CANopen - has a far greater lifetime expectancy in the North American market than CANopen as a higher layer protocol. However, there can be too much of a good thing, and that is definitely the case when it comes to Ethernet-based fieldbus technologies. There are currently more than 20 different industrial Ethernet solutions available, all with their distinctive advantages and disadvantages, making a pro/contra decision difficult. The major question, besides the technical aspect, is which of these technologies will survive in the market, and how do they support the current need for control components.
    [Show full text]
  • Combining Automationml and OPC UA
    Combining AutomationML and OPC UA Dr.-Ing. Miriam Schleipen © Fraunhofer IOSB 1 Agenda • Motivation • Plug-and-work principles • Goals • Mapping of AutomationML and OPC UA • Access to the AutomationML model in OPC UA • Examples • Conclusion and Outlook © Fraunhofer IOSB 2 Motivation - Changes • Continuous changes of production systems reconfiguration of hardware and software components • Objects to change within a manufacturing enterprise • Products • Technological or logistical processes • Parts of the manufacturing facilities • Software systems • Company’s organization • interoperability and seamless semantic integration necessary © Fraunhofer IOSB 3 Initial situation - ‚Babylon‘ on the shopfloor Visualization / SCADA Production Monitoring & Control ? ? ? ? Ωασχηµοδυ Τροχκενµοδυλ Abc_23-xy_Vors. Τεµπερατυρ Bbc_24-xy_T ist Γεσχηωινδιγκειτ Image sources: MOC Danner, KUKA, MAG, Schunk © Fraunhofer IOSB 4 Plug-and-work • Term definition: • setting up, modification or termination of interoperation between two or more involved parties with minimal effort • Note 1: The interoperability of those involved is assumed. • Note 2: The minimum effort can vary depending on the state of the art. • Note 3: Plug & play and plug & produce are synonyms or similar terms. Source: I4.0 Glossary of the VDI GMA technical committee 7.21 »Industrie 4.0« © Fraunhofer IOSB 5 Unique Datamodels (yesterday-Level 1, today-Level 2, tomorrow-Industrie 4.0) Visualisation/ Evaluation New Application Control Function Knowhow/Meaning Semantic Models („Industry
    [Show full text]
  • Profinet Vs Profibus
    Profinet vs Profibus Pouya Aminaie1 and Poorya Aminaie2 1Department of ECE, Shiraz University, Shiraz, Iran 2 Department of ECE, Shahid Beheshti University, Tehran, Iran E-mail: [email protected] Abstract We present a step by step definition of Profinet and Profibus. We introduced different types of each of the two communication protocols. We then described the topology and performance of each one individually. Finally, the properties of them have been compared to show that which one has better performance in the industry. Keywords: Profinet, Profibus, Industrial Ethernet and Communication Networks 1. Introduction 1.1. Profinet Profinet is the abbreviation for Process Field Net, which refers to technical standards for data communication through Ethernet in the industry. These types of standards are used for gathering data and controlling industrial equipment. As can be seen from Fig.1, Profinet satisfies all the needs of industrial technologies. Fig.1 Requirement of automation technology [1] 1 The need for Profinet is felt in production automation and processing automation sections, where its use can resolve many of these needs. Profinet can be divided into two main categories, as follows: • Profinet IO • Profinet CBA 1.2. Profibus The word Profibus is taken from the phrase Process Field Bus. The scope of this protocol covers from the field level to the control level. The advantages of Profibus are as follows: 1. Low noise acceptance due to twisted pair cable being the transmission interface. 2. Appropriate bandwidth due to the use of an appropriate transmission method such as RS485. 3. Secure and non-interfering data exchange for using the token pass access method.
    [Show full text]
  • ETHERNET Powerlink Real-Time Industrial ETHERNET Servo Drives & Controllers
    aerospace climate control electromechanical filtration fluid & gas handling hydraulics pneumatics process control sealing & shielding ETHERNET Powerlink Real-Time Industrial ETHERNET Servo Drives & Controllers Parker Hannifin Corporation • Electromechanical Automation Division • 800-358-9070 • www.parkermotion.com 1 ETHERNET Powerlink MotionBus Systems from the Global Leader in Motion Control Parker understands the challenges facing OEMs in high- tech industries. To help meet their challenges, Parker’s team of highly experienced motion system designers use a systematic project management process to deliver the most advanced linear motion technologies available. For all industrial automation solutions, Parker Automation combines speed, accuracy and high-load capability to give machine builders and OEMs a competitive edge. Medical device manufacturers Parker is the only supplier that utilize Parker’s integrated can provide complete technical automation solutions specifically and engineered solutions designed to reduce time-to- to OEMs for any packaging market and engineering costs requirement. Parker’s innovative while improving compliance with engineering, breadth of line, today’s stringent government worldwide distribution, and regulations. outstanding customer service set the standard for the industrial For semiconductor manufacturers, motion market in all these areas: our extensive expertise in vacuum preparation, cleanroom • Application analysis facilities and large-format • Engineering assistance systems enable us to design and •
    [Show full text]