Population Dynamics – Session 2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PLAGUE STUDIES * 6. Hosts of the Infection R
Bull. Org. mond. Sante 1 Bull. World Hlth Org. 1952, 6, 381-465 PLAGUE STUDIES * 6. Hosts of the Infection R. POLLITZER, M.D. Division of Epidemiology, World Health Organization Manuscript received in April 1952 RODENTS AND LAGOMORPHA Reviewing in 1928 the then rather limited knowledge available concerning the occurrence and importance of plague in rodents other than the common rats and mice, Jorge 129 felt justified in drawing a clear-cut distinction between the pandemic type of plague introduced into human settlements and houses all over the world by the " domestic " rats and mice, and " peste selvatique ", which is dangerous for man only when he invades the remote endemic foci populated by wild rodents. Although Jorge's concept was accepted, some discussion arose regarding the appropriateness of the term " peste selvatique" or, as Stallybrass 282 and Wu Lien-teh 318 translated it, " selvatic plague ". It was pointed out by Meyer 194 that, on etymological grounds, the name " sylvatic plague " would be preferable, and this term was widely used until POzzO 238 and Hoekenga 105 doubted, and Girard 82 denied, its adequacy on the grounds that the word " sylvatic" implied that the rodents concerned lived in forests, whereas that was rarely the case. Girard therefore advocated the reversion to the expression "wild-rodent plague" which was used before the publication of Jorge's study-a proposal it has seemed advisable to accept for the present studies. Much more important than the difficulty of adopting an adequate nomenclature is that of distinguishing between rat and wild-rodent plague- a distinction which is no longer as clear-cut as Jorge was entitled to assume. -
Original Papers Ectoparasites of the Nile Rat, Arvicanthis Niloticus From
Annals of Parasitology 2019, 65(4), 411–416 Copyright© 2019 Polish Parasitological Society doi: 10.17420/ap6504.228 Original papers Ectoparasites of the Nile Rat, Arvicanthis niloticus from Shendi area, Sudan Yassir Sulieman 1, Randa E. El-Tayeb 1, Natchadaporn Srimek 2, Theerakamol Pengsakul 3 1Department of Zoology, Faculty of Science and Technology, University of Shendi, Shendi, Sudan 2Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand 3Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand Corresponding Author: Yassir Sulieman; e-mail: [email protected] ABSTRACT. This study investigated the ectoparasites of the Nile Rat, Arvicanthis niloticus in Shendi area, River Nile State, Sudan. Eighty nine A. niloticus were collected for the first time from the horticultural fields of Shendi, between January to June 2018, and their entire fur was combed thoroughly, using a fine-tooth comb. Any removed ectoparasites were relaxed, mounted and examined under a microscope for morphological identification. Forty two (47.2%) of the collected rats was found infested, with an overall mean intensity of 13.4 (range 2–67) ectoparasites per an infested rat; 10 different species of ectoparasites were identified, including: 2 species of flea – Xenopsylla cheopis , Leptopsylla segnis ; 3 species of louse – Polyplax spinulosa , P. abyssinica , P. serrata ; a species of tick – Rhipicephalus sp.; 4 species of mite – Laelaps agilis , L. nuttalli , Ornitonyssus bacoti , Dermanyssuss gallinae . The most prevalent ectoparasite found was the flea Xenopsylla cheopis , 23.6%, followed by the mite Laelaps nuttalli , 10.1%, while the least was the mite Ornitonyssus bacoti , 1.1%. Significantly higher prevalence and intensity of infestation was found among male rats. -
Quaternary Murid Rodents of Timor Part I: New Material of Coryphomys Buehleri Schaub, 1937, and Description of a Second Species of the Genus
QUATERNARY MURID RODENTS OF TIMOR PART I: NEW MATERIAL OF CORYPHOMYS BUEHLERI SCHAUB, 1937, AND DESCRIPTION OF A SECOND SPECIES OF THE GENUS K. P. APLIN Australian National Wildlife Collection, CSIRO Division of Sustainable Ecosystems, Canberra and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) K. M. HELGEN Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution, Washington and Division of Vertebrate Zoology (Mammalogy) American Museum of Natural History ([email protected]) BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Number 341, 80 pp., 21 figures, 4 tables Issued July 21, 2010 Copyright E American Museum of Natural History 2010 ISSN 0003-0090 CONTENTS Abstract.......................................................... 3 Introduction . ...................................................... 3 The environmental context ........................................... 5 Materialsandmethods.............................................. 7 Systematics....................................................... 11 Coryphomys Schaub, 1937 ........................................... 11 Coryphomys buehleri Schaub, 1937 . ................................... 12 Extended description of Coryphomys buehleri............................ 12 Coryphomys musseri, sp.nov.......................................... 25 Description.................................................... 26 Coryphomys, sp.indet.............................................. 34 Discussion . .................................................... -
A NEW RAT from ABYSSINIA. by Dr
A NEW RAT FROM ABYSSINIA. By Dr. Augusto Toschi. Professor in the Bologna University. NEANTHOMYS, gen novo TYPE : N eanthomys giaquintoi. A Rat (Murinae) distinguished by its rather slender, not very thick skull with nasals narrow and long, supraorbital region of skull normal, crests very slightly marked, brain-case medium, anteorbital width reduced, orbital plate about half the height of the muzzle and with anterior border not concave, incisive foramina long reaching the tooth-row, bullae rather large. Ungrooved incisors lightly pro• odont showing a subapical notch, teeth-row short, teeth generally small and reduced especially third molar. First molar longer than broad, second molar about as broad as long: M1 longer than M2 + M3, anterior lamina of M1 not reduced. Limbs and hind feet very short. Tail short (shorter than body without head). Fur thick, but not very harsh or bristly, not showing any body stripe in the known species. Neanthomys shares with the Aethomys Group the character of the 5th digit of the anterior feet reaching the base of the 4th and the 5th digit of the hind feet longer than the great toe. Neanthomys differs; from Zelotomys Osgood (the genus of the Aethomys group showing pro-odont incisors) by its shorter tail, its less soft fur, its skull without considerable interorbital constriction, its cheek-teeth not so strongly cuspidate and broad, its narrower nasals and lower orbital plate; from Dasymys Peters, StenocePhalemys Frick, Oenomys Thomas, Rattus Fischer, Aethomys Thomas, Mastomys Thomas, Praomys Thomas, Sylvaenus -
Diversification of Muroid Rodents Driven by the Late Miocene Global Cooling Nelish Pradhan University of Vermont
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2018 Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling Nelish Pradhan University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biochemistry, Biophysics, and Structural Biology Commons, Evolution Commons, and the Zoology Commons Recommended Citation Pradhan, Nelish, "Diversification Of Muroid Rodents Driven By The Late Miocene Global Cooling" (2018). Graduate College Dissertations and Theses. 907. https://scholarworks.uvm.edu/graddis/907 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. DIVERSIFICATION OF MUROID RODENTS DRIVEN BY THE LATE MIOCENE GLOBAL COOLING A Dissertation Presented by Nelish Pradhan to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Specializing in Biology May, 2018 Defense Date: January 8, 2018 Dissertation Examination Committee: C. William Kilpatrick, Ph.D., Advisor David S. Barrington, Ph.D., Chairperson Ingi Agnarsson, Ph.D. Lori Stevens, Ph.D. Sara I. Helms Cahan, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT Late Miocene, 8 to 6 million years ago (Ma), climatic changes brought about dramatic floral and faunal changes. Cooler and drier climates that prevailed in the Late Miocene led to expansion of grasslands and retreat of forests at a global scale. -
Chapter 15 the Mammals of Angola
Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E. -
Hystrx It. J. Mamm. (Ns) Supp. (2007) V European Congress of Mammalogy
Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy RODENTS AND LAGOMORPHS 51 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy 52 Hystrx It. J. Mamm . (n.s.) Supp. (2007) V European Congress of Mammalogy A COMPARATIVE GEOMETRIC MORPHOMETRIC ANALYSIS OF NON-GEOGRAPHIC VARIATION IN TWO SPECIES OF MURID RODENTS, AETHOMYS INEPTUS FROM SOUTH AFRICA AND ARVICANTHIS NILOTICUS FROM SUDAN EITIMAD H. ABDEL-RAHMAN 1, CHRISTIAN T. CHIMIMBA, PETER J. TAYLOR, GIANCARLO CONTRAFATTO, JENNIFER M. LAMB 1 Sudan Natural History Museum, Faculty of Science, University of Khartoum P. O. Box 321 Khartoum, Sudan Non-geographic morphometric variation particularly at the level of sexual dimorphism and age variation has been extensively documented in many organisms including rodents, and is useful for establishing whether to analyse sexes separately or together and for selecting adult specimens to consider for subsequent data recording and analysis. However, such studies have largely been based on linear measurement-based traditional morphometric analyses that mainly focus on the partitioning of overall size- rather than shape-related morphological variation. Nevertheless, recent advances in unit-free, landmark/outline-based geometric morphometric analyses offer a new tool to assess shape-related morphological variation. In the present study, we used geometric morphometric analysis to comparatively evaluate non-geographic variation in two geographically disparate murid rodent species, Aethmoys ineptus from South Africa and Arvicanthis niloticus from Sudan , the results of which are also compared with previously published results based on traditional morphometric data. Our results show that while the results of the traditional morphometric analyses of both species were congruent, they were not sensitive enough to detect some signals of non-geographic morphological variation. -
Mandibles and Molars of the Wood Mouse, Apodemus Sylvaticus (L.)
Journal of Biogeography (J. Biogeogr.) (2007) 34, 339–355 ORIGINAL Mandibles and molars of the wood ARTICLE mouse, Apodemus sylvaticus (L.): integrated latitudinal pattern and mosaic insular evolution Sabrina Renaud1* and Johan R. Michaux2,3 1Pale´oenvironnements et Pale´obiosphe`re, UMR ABSTRACT 5125 CNRS - Universite´ Lyon 1, Campus de la Aim The distinct nature of island populations has traditionally been attributed Doua, 69622 Villeurbanne, France, 2Unite´ de Recherches en Zooge´ographie, Institut de either to adaptation to particular insular conditions or to random genetic effects. Zoologie, Quai Van Beneden 22, 4020 Lie`ge, In order to assess the relative importance of these two disparate processes, insular Belgique and 3Centre de Biologie et de Gestion effects were addressed in the European wood mouse, Apodemus sylvaticus des Populations (CBGP), UMR 1062, Campus (Linnaeus, 1758). International de Baillarguet, CS 30016, 34988, Location Wood mice from 33 localities on both mainland and various Atlantic Montferrier/Lez (Montpellier) Cedex, France and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. -
Wildlife Act, 2019 -Gazetted Version.Pdf
ACTS SUPPLEMENT No. 10 27th September, 2019. ACTS SUPPLEMENT to The Uganda Gazette No. 49, Volume CXII, dated 27th September, 2019. Printed by UPPC, Entebbe, by Order of the Government. Act 17 Uganda Wildlife Act 2019 THE UGANDA WILDLIFE ACT, 2019. ARRANGEMENT OF SECTIONS. Section. PART I—PRELIMINARY. 1. Interpretation. 2. Purpose of the Act. 3. Ownership of wildlife. PART II—INSTITUTIONAL ARRANGEMENT. 4. Role of the ministry. 5. Continuation of the Authority. 6. Functions of the Authority. 7. Delegation and coordination of functions and duties. 8. The Board. 9. Functions of the Board. 10. Composition of the Board. 11. Remuneration of the Board. 12. Tenure. 13. Termination of appointment. 14. Filling of vacancy on the Board. 15. Committees of the Board. 16. Meetings of the Board. 17. The Executive Director. 18. Other staff of the Authority. 19. Honorary wildlife officer. 20. Community wildlife committee. PART III—GENERAL MANAGEMENT MEASURES. 21. Management plans. 1 Act 17 Uganda Wildlife Act 2019 Section. 22. Commercial arrangement to manage conservation areas and species. 23. Environmental impact assessment. 24. Environmental audit and monitoring. PART IV—WILDLIFE CONSERVATION AREAS. 25. Procedure for the declaration of wildlife conservation area. 26. Description of wildlife conservation area. 27. Purpose of wildlife protected area. 28. Temporary management measures. 29. General offences in wildlife conservation areas. 30. Entering wildlife protected area without permission. 31. Use of wildlife resources. 32. Historic rights of communities around conservation areas. 33. Regulations governing wildlife conservation areas. PART V—WILDLIFE SPECIES. 34. Declaration of protected species. PART VI—WILDLIFE USE RIGHTS. 35. Types of wildlife use rights. -
Observ Ations on the Life Histories and Behaviour of Some Small Rodents from Tanzania
OBSERV ATIONS ON THE LIFE HISTORIES AND BEHAVIOUR OF SOME SMALL RODENTS FROM TANZANIA C. ANDRESEN HUBBARD Malaria Institute, Amoni, Tanzania· Published February,1973 Although almost all Mrica's mice have probably been collected, typed, measured and their embryos noted, very little is known of their habits. This study is therefore an attempt to fill the gap in our knowledge and was carried out between September 1961 and January 1966 while concurrently studying plague-bearing fleas in Tanzania. Part of the results, that on Beamys and Tatera, was published in 1970 (Hubbard), and since the present paper was written, a study on the South Mrican Mystromys albicaudatus has also appeared (Hallett and Meester 1971). Total observations covered about 4 sao animals which were captured in small 5 x 5 in. box traps built about a common snap mouse trap. The traps were baited with quick-cooking rolled oats as common rolled oats will not attract wild mice. Each mouse was lightly anaes thetised with chloroform, as ether is not suitable for flea collection, before removing the ectoparasites and taking body measurements. The animals were then either freed to collect more ectoparasites or turned into study skins. Pregnant females were retained in captivity and allowed to reproduce. ) Most of the 500 skins involved in this study have been deposited in the Transvaal 0 1 0 Museum, Pretoria. About 100 were deposited in the Zoological Museum, University of 2 d Puget Sound, Tacoma, Washington and the writer's live colonies of Tatera and Beamys are e t a being maintained (1967) at the University of Utah, Laboratory Mouse Research Center, d ( Dugway, Utah. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2883, pp. 1-36, figs. 1-13, tables 1-3 June 26, 1987 The Occurrence of Hadromys (Rodentia: Muridae) in Early Pleistocene Siwalik Strata in Northern Pakistan and Its Bearing on Biogeographic Affinities Between Indian and Northeaster African Murine Faunas GUY G. MUSSER' ABSTRACT Three upper molars collected from an early lunda, another Indian native, and because that Pleistocene site in the Soan Formation of the Up- genus has also been identified in Pliocene sedi- per Siwaliks outcropping in the Pabbi Hills of ments of Ethiopia, morphologies of specimens in northern Pakistan are described as a new species samples of Recent and fossil Golunda are con- of Hadromys. That genus was known only by the trasted. Golunda remains an Indian region endem- living H. humei, which is found in northeastern ic; the Ethiopian species is not a member of that India. Compositions of the murine faunas of genus and is known only from northeastem Africa. northeastem India, northern Pakistan, and Pleis- Biogeographical relationships between the Indian tocene Pakistan are compared. Because the new subcontinent and northeastern Africa as indicated Hadromys is associated with fossil species of Go- by Recent and fossil murine faunas are discussed. INTRODUCTION With the publication in 1978 of a report posits in northern Pakistan, Dr. Louis L. Ja- on fossil Muridae from Neogene Siwalik de- cobs opened a window on past species di- ' Archbold Curator, Department of Mammalogy, American Museum of Natural History. -
Collection Number and References of the Extant and Extinct Rodent Used in This Work
Collection number and references of the extant and extinct rodent used in this work. *indicates the specimens for which we take the photograph in the Museum collections (Musée National d’Histoire Naturelle, Paris; American Museum of Natural History, New York; National Museum of Natural History, Washington DC). Extant/ Family Subfamily Species References Fossil site Specimen ID Extinct Musser & Headley Muridae Murinae Abditomys sp. USNM 357244 Extant 1992 Muridae Murinae Abelomelomys sevia Musser & Lunde 2009 AMNH 192119 Extant Muridae Murinae Acomys dimidiatus * 2001 3 Extant Muridae Murinae Aethomys hindei * MNHN 1999 177 Extant Muridae Murinae Aethomys namanquesis * MNHN 1964 57 Extant Muridae Murinae Aethomys nigeriae * MNHN 1996 2239 Extant Muridae Murinae Anisomys imitator Missonne 1969 BMNH 471310 Extant Muridae Murinae Anonymomys mindorensis Musser 1981 FMNH 87597 Extant Musser & Headley Muridae Murinae Anonymomys sp. FMNH 87598 Extant 1992 Muridae Murinae Apodemus agrarius * MNHN BL6 1134 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 2667 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 2668 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 2671 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 2679 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 2681 Extant Muridae Murinae Apodemus sylvaticus * MNHN 1994 945 Extant Musser & Headley Muridae Murinae Apomys sp. 12971 CLM1-3 Extant 1992 Gomez Cano et al. Supplementary Information 1 Collection number and references of the extant and extinct rodent used in this work. *indicates the specimens for which we take the photograph in the Museum collections (Musée National d’Histoire Naturelle, Paris; American Museum of Natural History, New York; National Museum of Natural History, Washington DC). Extant/ Family Subfamily Species References Fossil site Specimen ID Extinct Musser & Headley Muridae Murinae Archboldomys sp.