USFWS National Wildlife Refuge Lands and Fish Hatcheries

Total Page:16

File Type:pdf, Size:1020Kb

USFWS National Wildlife Refuge Lands and Fish Hatcheries Final Environmental Assessment Rangeland Grasshopper and Mormon Cricket Suppression Program Churchill, Humboldt, Pershing, and Washoe Counties, Nevada EA Number: NV-01-20 Prepared by: Animal and Plant Health Inspection Service Plant Protection and Quarantine 8775 Technology Way Reno, NV 89521 May 27, 2020 1 Table of Contents I. Need for Proposed Action ...................................................................................................... 5 A. Purpose and Need Statement .............................................................................................. 5 B. Background Discussion ...................................................................................................... 6 C. About This Process ............................................................................................................. 8 II. Alternatives ............................................................................................................................ 8 A. No Action Alternative ....................................................................................................... 10 B. Insecticide Applications at Conventional Rates or Reduced Agent Area Treatments with Adaptive Management Strategy (Preferred Alternative) ........................................................ 10 III. Affected Environment .......................................................................................................... 12 A. Description of Affected Environment ............................................................................... 12 B. Site-Specific Considerations ............................................................................................. 13 1. Human Health ................................................................................................................ 13 2. Non-target Species ......................................................................................................... 13 a) Migratory Birds ....................................................................................................... 13 b) Endangered Species ................................................................................................ 13 c) Bald and Golden Eagles .......................................................................................... 14 d) Additional Species of Concern ............................................................................... 14 3. Socioeconomic Issues .................................................................................................... 14 4. Cultural Resources and Events ...................................................................................... 16 5. Special Considerations for Certain Populations ............................................................ 17 a) Executive Order No. 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations ........................................................ 17 b) Executive Order No. 13045, Protection of Children from Environmental Health Risks and Safety Risks ...................................................................................................... 17 IV. Environmental Consequences .............................................................................................. 18 A. Environmental Consequences of the Alternatives ............................................................ 18 1. No Action Alternative .................................................................................................... 18 2. Insecticide Applications at Conventional Rates or Reduced Agent Area Treatments with Adaptive Management Strategy .................................................................................... 19 a) Carbaryl................................................................................................................... 20 b) Diflubenzuron ......................................................................................................... 22 c) Malathion ................................................................................................................ 25 d) Reduced Area Agent Treatments (RAATs) ............................................................ 28 B. Other Environmental Considerations ................................................................................ 29 1. Cumulative Impacts ....................................................................................................... 29 2. Executive Order No. 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations ............................................................ 31 3. Executive Order No. 13045, Protection of Children from Environmental Health Risks and Safety Risks .................................................................................................................... 32 4. Tribal Consultation ........................................................................................................ 33 2 5. Executive Order 13186, Responsibilities of Federal Agencies to Protect Migratory Birds ...................................................................................................................................... 33 6. Endangered Species Act ................................................................................................ 34 7. Bald and Golden Eagle Protection Act .......................................................................... 36 8. Additional Species of Concern ...................................................................................... 36 9. Fires and Human Health Hazards .................................................................................. 37 10. Cultural and Historical Resources ................................................................................. 38 V. Literature Cited .................................................................................................................... 38 VI. Listing of Agencies and Persons Consulted (Past & Present) ............................................. 48 Appendix A ................................................................................................................................... 49 APHIS Rangeland Grasshopper and Mormon Cricket Suppression Program ........................ 49 General Guidelines for Grasshopper / Mormon Cricket Treatments ...................................... 49 Operational Procedures ........................................................................................................... 50 GENERAL PROCEDURES FOR ALL AERIAL AND GROUND APPLICATIONS ...... 50 SPECIFIC PROCEDURES FOR AERIAL APPLICATIONS............................................. 51 Appendix B ................................................................................................................................... 53 2019 Grasshopper Survey Cumulative ................................................................................... 53 2019 Mormon Cricket Survey Cumulative ............................................................................. 54 Appendix C Table 1 ...................................................................................................................... 55 Endangered Species Act Species ............................................................................................ 57 Mammals............................................................................................................................... 57 Amphibians ........................................................................................................................... 57 Fishes .................................................................................................................................... 58 Insects ................................................................................................................................... 58 Flowering Plants ................................................................................................................... 58 Conifers and Cycads ............................................................................................................. 58 Critical habitats ....................................................................................................................... 59 USFWS National Wildlife Refuge Lands And Fish Hatcheries .............................................. 60 Migratory Birds ....................................................................................................................... 62 Appendix C Table 2 ...................................................................................................................... 66 A. Part 1 ................................................................................................................................. 66 B. Part two ............................................................................................................................. 81 Appendix C Table 3 ...................................................................................................................... 83 Appendix D ................................................................................................................................... 86 APHIS response to public comments on the Nevada Draft EAs ............................................ 86 3 Appendices Appendix A: FY 2020 Guidelines for Treatment of Rangeland for the Suppression
Recommended publications
  • December 2012 Number 1
    Calochortiana December 2012 Number 1 December 2012 Number 1 CONTENTS Proceedings of the Fifth South- western Rare and Endangered Plant Conference Calochortiana, a new publication of the Utah Native Plant Society . 3 The Fifth Southwestern Rare and En- dangered Plant Conference, Salt Lake City, Utah, March 2009 . 3 Abstracts of presentations and posters not submitted for the proceedings . 4 Southwestern cienegas: Rare habitats for endangered wetland plants. Robert Sivinski . 17 A new look at ranking plant rarity for conservation purposes, with an em- phasis on the flora of the American Southwest. John R. Spence . 25 The contribution of Cedar Breaks Na- tional Monument to the conservation of vascular plant diversity in Utah. Walter Fertig and Douglas N. Rey- nolds . 35 Studying the seed bank dynamics of rare plants. Susan Meyer . 46 East meets west: Rare desert Alliums in Arizona. John L. Anderson . 56 Calochortus nuttallii (Sego lily), Spatial patterns of endemic plant spe- state flower of Utah. By Kaye cies of the Colorado Plateau. Crystal Thorne. Krause . 63 Continued on page 2 Copyright 2012 Utah Native Plant Society. All Rights Reserved. Utah Native Plant Society Utah Native Plant Society, PO Box 520041, Salt Lake Copyright 2012 Utah Native Plant Society. All Rights City, Utah, 84152-0041. www.unps.org Reserved. Calochortiana is a publication of the Utah Native Plant Society, a 501(c)(3) not-for-profit organi- Editor: Walter Fertig ([email protected]), zation dedicated to conserving and promoting steward- Editorial Committee: Walter Fertig, Mindy Wheeler, ship of our native plants. Leila Shultz, and Susan Meyer CONTENTS, continued Biogeography of rare plants of the Ash Meadows National Wildlife Refuge, Nevada.
    [Show full text]
  • Table of Contents 2
    Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) List of Freshwater Macroinvertebrate Taxa from California and Adjacent States including Standard Taxonomic Effort Levels 1 March 2011 Austin Brady Richards and D. Christopher Rogers Table of Contents 2 1.0 Introduction 4 1.1 Acknowledgments 5 2.0 Standard Taxonomic Effort 5 2.1 Rules for Developing a Standard Taxonomic Effort Document 5 2.2 Changes from the Previous Version 6 2.3 The SAFIT Standard Taxonomic List 6 3.0 Methods and Materials 7 3.1 Habitat information 7 3.2 Geographic Scope 7 3.3 Abbreviations used in the STE List 8 3.4 Life Stage Terminology 8 4.0 Rare, Threatened and Endangered Species 8 5.0 Literature Cited 9 Appendix I. The SAFIT Standard Taxonomic Effort List 10 Phylum Silicea 11 Phylum Cnidaria 12 Phylum Platyhelminthes 14 Phylum Nemertea 15 Phylum Nemata 16 Phylum Nematomorpha 17 Phylum Entoprocta 18 Phylum Ectoprocta 19 Phylum Mollusca 20 Phylum Annelida 32 Class Hirudinea Class Branchiobdella Class Polychaeta Class Oligochaeta Phylum Arthropoda Subphylum Chelicerata, Subclass Acari 35 Subphylum Crustacea 47 Subphylum Hexapoda Class Collembola 69 Class Insecta Order Ephemeroptera 71 Order Odonata 95 Order Plecoptera 112 Order Hemiptera 126 Order Megaloptera 139 Order Neuroptera 141 Order Trichoptera 143 Order Lepidoptera 165 2 Order Coleoptera 167 Order Diptera 219 3 1.0 Introduction The Southwest Association of Freshwater Invertebrate Taxonomists (SAFIT) is charged through its charter to develop standardized levels for the taxonomic identification of aquatic macroinvertebrates in support of bioassessment. This document defines the standard levels of taxonomic effort (STE) for bioassessment data compatible with the Surface Water Ambient Monitoring Program (SWAMP) bioassessment protocols (Ode, 2007) or similar procedures.
    [Show full text]
  • The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
    The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon­ omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges­ tions; J. T. Polhemus, for advising on taxonomic prob­ lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com­ ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi­ ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only.
    [Show full text]
  • OCHTEROIDEA La Superfamilia Ochteroidea, Incluida En El Infraorden Nepomorpha, Comprende Las Familias Ochteridae Y Gelastocoridae
    | 341 Resumen OCHTEROIDEA La superfamilia Ochteroidea, incluida en el infraorden Nepomorpha, comprende las familias Ochteridae y Gelastocoridae. Ambas familias están presentes en todas las regiones biogeográficas del mundo, aunque tienen mayor diversidad y abundancia en las regiones tropicales. Hasta el momento para la Argentina se han citado tres géneros y 10 especies de Gelastocoridae, y una especie de Ochteridae. Se actualiza el estado de conocimiento de sus características morfológicas, bio- logía e historia taxonómica. Se presentan claves para la identificación de las subfamilias de Gelastocoridae y los géneros de Ochteridae, diagnosis de los géneros, la lista de especies y su distribución geográfica en la Argentina. Abstract The superfamily Ochteroidea, included in the in- fraorder Nepomorpha, is comprised of the families Ochteridae and Gelastocoridae. Both of them are present in all biogeographic regions, although they are more abundant and diverse in the tropics. Up to now, three genera and 10 species of Gelastocoridae and a single one of Ochteridae have been recorded from Argentina. I provide an account of the state of knowledge of the morphology, biology and taxonomic history of both families. I present a key to the subfa- María Cecilia MELO milies of Gelastocoridae and genera of Ochteridae, diagnoses of all genera mentioned, and a list of the División Entomología, Museo de La Plata. CONICET. species recorded in Argentina with their geographic Paseo del Bosque, 1900 La Plata, Argentina distribution. [email protected] Introducción La superfamilia Ochteroidea (Hemiptera, Heteroptera, Nepomorpha) se encuentra conformada por las familias de “orilleros” Ochteridae y Gelastocoridae, típicas habitantes de las riberas de cuerpos de agua dulce (Hebsgaard et al., 2004).
    [Show full text]
  • The Scientific Publications of Dr László Gozmány (1921 2006) on Lepidoptera with a Revised Bibliography and an Annotated List of Taxon Names He Proposed
    ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Volume 103 Budapest, 2011 pp. 373–428 The scientific publications of Dr László Gozmány (1921 2006) on Lepidoptera with a revised bibliography and an annotated list of taxon names he proposed ZS. BÁLINT1, G. KATONA1 & A. KUN2 1 Department of Zoology, Hungarian Natural History Museum H-1088 Budapest, Baross utca 13, Hungary. E-mails: [email protected], [email protected] 2 H-2089 Telki, Berkenye u. 46, Hungary. E-mail: [email protected] – The complete bibliographic list of 141 scientific works on Lepidoptera written by Dr LÁSZLÓ GOZMÁNY, former curator of Lepidoptera in the Hungarian Natural History Museum, is presented with reference to 800 names he proposed. The bibliography is supp- lemented by the catalogue of the names arranged according to family-group (13), genus- group (150) and species-group (637) names and listed in alphabetical order with reference to original description, type status, sex, country of origin, type locality and depositor. With 6 figures. –LÁSZLÓ GOZMÁNY, bibliography, list of taxon names, Microlepidoptera, Hungarian Natural History Museum. INTRODUCTION Five years elapsed since the curator emeritus of the Lepidoptera col- lection, the renowned Microlepidoptera specialist of the Hungarian Natu- ral History Museum, Dr LÁSZLÓ GOZMÁNY passed away. The festive volume of the journal Acta zoologica Academiae scientiarum hungaricae for his 85th anniversary was only posthumously published (BÁLINT 2007), which actually included the funeral oration (MATSKÁSI 2007). In the same year two commemorations were published in the journals of the two lepi- dopterists’ societies, where he had been elected as honorary member (BÁLINT et al.
    [Show full text]
  • Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2.
    [Show full text]
  • Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace
    American Fisheries Society Symposium 17:350-359, 1995 © Copyright by the American Fisheries Society 1995 Desert Aquatic Ecosystems and the Genetic and Morphological Diversity of Death Valley System Speckled Dace DONALD W. SADA Environmental Studies Program, University of Nevada-Las Vegas 2689 Highland Drive, Bishop, California 93514, USA HUGH B. BRITTEN AND PETER F. BRUSSARD Biodiversity Research Center, Department of Biology, University of Nevada Reno, Nevada 89557-0015, USA Abstract.—The morphological and genetic diversities of fishes in North American deserts have been examined to estimate evolutionary rates, to create models of interbasin pluvial connectivity, and to justify protection of aquatic ecosystems throughout the region. Morphological and genetic studies comparing 13 populations of speckled dace Rhinichthys osculus from the Death Valley system, Lahontan basin, and lower Colorado River were conducted to quantify differences among populations. Differences in meristic and mensural characteristics among populations were highly significant, but differences in body shape were slight and best explained as representing two forms, one deep-bodied and short, the other elongate and slender. Starch gel electrophoretic assays of 23 loci showed isolated populations to be genetically unique. Fifty-nine taxa are identified as endemic to wetland and aquatic habitats in the Death Valley system: 16 forms of fish, 1 amphibian, 22 mollusks, 7 aquatic insects, 3 mammals, and 10 forms of flowering plants. Genetic and morphological differentiation of isolated speckled dace populations and the diversity and number of endemic forms associated with wetlands and aquatic habitats in the Death Valley system suggest that each desert wetland community functions as an evolutionarily significant unit.
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • This BA Was Written in Accordance with The
    BIOLOGICAL ASSESSMENT, JOSEPH CREEK FOREST HEALTH PROJECT PROPOSED ACTION The Proposed Action involves the implementation of forest health improvement and fuels reduction activities on approximately 2,870 acres within the Joseph Creek Forest Health Project analysis area through the use of standard forest harvesting operations and prescribed burning treatments. The project is located approximately 11.5 miles northeast of the town of Alturas, California in Modoc County, California and occurs along the Warner Mountains on lands administered by the MDF Warner Mountain Ranger District (RD). The proposed treatments will occur in portions of Township 43 North, Range 14 East (T43N, R14E); T43N, R15E; T44N, R15E; and T45N, R14E, Mount Diablo Base and Meridian (treatment area). CE Name Acres Primary Objective Joseph Creek Forest Health 2870 acres Fuels Project Reduction CURRENT MANAGEMENT DIRECTION Managment for the Forest is detailed in the Modoc National Forest Land and Resource Management Plan (LRMP), Lost River and Shortnose Sucker Recovery Plan (1993), and other documents, which are referenced in the LRMP. THREATENED AND ENDANGERED SPECIES Three endangered species, Lost River sucker (Deltistes luxatus), shortnose sucker (Chasmistes brevirostris) and Shasta crayfish (Pacifastacus fortis), and one threatened species, the Warner sucker (Catostomus warnerensis) occur on or downstream of the Modoc National Forest. Lost River sucker and shortnose sucker – The Lost River sucker and shortnose sucker are endemic to the upper Klamath Basin which includes the Upper Klamath River, Oregon/California and the Lost River system in north-central California and south/central Oregon. These species are found within the Lost River drainage on Devil's Garden and Doublehead Districts; these fish are known to be widespread in Willow, Boles, and Fletcher Creeks as well as in pools and wetlands.
    [Show full text]
  • Pacifastacus Leniusculus Dana, 1852
    Pacifastacus leniusculus Dana, 1852 Pacifastacus leniusculus is a large, hardy The signal crayfish cool-temperate freshwater crayfish that occupies a wide range of habitats from small streams to large rivers and natural lakes, including sub-alpine lakes. It also grows well in culture ponds and is tolerant of brackish water and high temperatures. The signal crayfish is endemic to the northwestern United States and southwestern Canada, from where it was introduced into the more southerly states. It has also been introduced to Europe and Japan as part of the livefood trade and for aquaculture purposes. The signal crayfish is an aggressive competitor and has been responsiblePacifastacus for displacing nigrescens indigenous crayfish species wherever it has been introduced. The ‘Critically Endangered (CR)’ SootyP. leniusculuscrayfish ( ) native to the western USA has become extinct partly due to interspecific competition with ; the signal crayfishPacifastacus has also fortis been implicated in causing P.a reductionleniusculus in the range of the endemic ‘Critically Endangered (CR)’ Shasta crayfish ( ) (Taylor, 2002).Cambaroides Photo credit: Wikimedia Commons (User: White Knight) japonicus was introduced into Japan from Portland, Oregon, where it has reduced the range of the endemic Aphanomyces astaci on the island of Hokkaido (Kawai & Hiruta, 1999). In AustropotamobiusEurope, it has extirpated pallipes populations of the indigenous crayfish to which all non-North American crayfish are species, particularly the Vulnerable (VU) white-clawed crayfish susceptible, but to which it is relatively immune. Crayfish plague (Holdich, 1999). has caused large-scale mortalities amongst indigenous European Its main impact has been as a vector of the crayfish plague fungus, References:crayfish populations, particularly in England (Alderman, 1996).
    [Show full text]
  • A Preliminary Survey of the Aquatic and Semiaquatic Hemiptera
    Polhemus and Polhemus: Aquatic Hemiptera of Desert Hot Springs 1 A preliminary survey of the aquatic and semiaquatic Hemiptera occurring in the springs of the Railroad Valley, White River, and Amargosa River drainage systems, Nevada and California, with special reference to thermal relicts Dan A. Polhemus Dept. of Entomology, Bishop Museum, P. 0. Box 19000-A, Honolulu, HI 96817 ard John T. Polhemus Univ. of Colorado Museum, 3115 S. York St., Englewood, CO 80110 INTRODUCTION One of the most remarkable concentrations of disjunct and endemic aquatic Hemiptera in North America is found in the thermal refugia of the Railroad Valley, White River, and Amargosa River drainages of Nevada and California. These drainages represent former tributaries to the Colorado system that were continuous systems in the Pliocene and Pleistocene, but have been subsequently dessicated and reduced to discontinous spring fed aquatic refugia. The thermal springs of these three systems contain a large number of endemic aquatic Hemiptera species, as well as many highly disjunct populations of other taxa. The current report details the distributions of these species, addresses certain taxonomic problems relating to them, and considers the biogeographic significance of this thermally relictual fauna. LOCALITIES SAMPLED The information upon which this report is based has been collected by the authors over a period of thirty years, and in many cases the passage of several decades has seen a serious degredation of the aquatic habita~s listed below. For this reason an attempt has been made in the last three years to revisit many of the most critical habitats and &scertain the status of their aquatic Hemiptera faunas.
    [Show full text]
  • The Signal Crayfish Is Not a Single Species: Cryptic Diversity and Invasions in the Pacific Northwest Range of Pacifastacus Leni
    Freshwater Biology (2012) 57, 1823–1838 doi:10.1111/j.1365-2427.2012.02841.x The signal crayfish is not a single species: cryptic diversity and invasions in the Pacific Northwest range of Pacifastacus leniusculus ERIC R. LARSON*, CATHRYN L. ABBOTT†,NISIKAWAUSIO‡, § ,NORIKOAZUMA– , KIMBERLY A. WOOD*, LEIF-MATTHIAS HERBORG** AND JULIAN D. OLDEN* *School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, U.S.A. †Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada ‡Center for Transdisciplinary Research, Niigata University, Nishi-ku, Niigata, Japan §Center for Toki and Ecological Restoration, Niigata University, Niibokatagami, Sado, Japan –Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City, Ibaraki, Japan **BC Ministry of the Environment, Victoria, BC, Canada SUMMARY 1. We used historical sources, morphology-based taxonomy and mtDNA sequence data to address questions about the signal crayfish Pacifastacus leniusculus. These included evaluating unrecogn- ised cryptic diversity and investigating the extent to which P. leniusculus may have been introduced within its presumed native range in the Pacific Northwest region of North America. Our study builds and expands on Pacific Northwest phylogeographic knowledge, particularly related to patterns of glacial refugia for freshwater species. 2. Extensive collections (824 specimens) from British Columbia (Canada), Idaho, Nevada, Oregon and Washington (United States) were used to characterise P. leniusculus at the mitochondrial 16S rRNA gene. Genetic groups within the species were elucidated by phylogenetics and AMOVAAMOVA; evolutionary relationships within the most common and diverse group were investigated using a statistical parsimony haplotype network, a nested AMOVA, and tests of isolation by distance.
    [Show full text]