A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications
Total Page:16
File Type:pdf, Size:1020Kb
doi: 10.5028/jatm.2012.04033912 A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications Anahi Pereira da Costa1, Edson Cocchieri Botelho1,*, Michelle Leali Costa2, Nilson Eiji Narita3, José Ricardo Tarpani4 1 Universidade Estadual Paulista Júlio de Mesquita Filho– Guaratinguetá/SP – Brazil 2 Instituto de Aeronáutica e Espaço – São José dos Campos/SP, Brazil 3 EMBRAER– São José dos Campos/SP, Brazil 4 Universidade de São Paulo – São Carlos/SP, Brazil Abstract: Reinforced thermoplastic structural detail parts and assemblies are being developed to be included in current aeronautic programs. Thermoplastic composite technology intends to achieve improved properties and low cost processes. Welding of detail parts permits to obtain assemblies with weight reduction and cost saving. Currently, joining composite materials is a matter of intense research because traditional joining technologies are not directly transfer- able to composite structures. Fusion bonding and the use of thermoplastic as hot melt adhesives offer an alternative to mechanical fastening and thermosetting adhesive bonding. Fusion bonding technology, which originated from the thermoplastic polymer industry, has gained a new interest with the introduction of thermoplastic matrix composites, which are currently regarded as candidate for primary aircraft structures. This paper reviewed the state of the art of the welding technologies devised to aerospace industry, including the ¿elds that Universidade Estadual Paulista -~lio de Mesquita Filho and Universidade de São Paulo are deeply involved. Keywords: Aircraft structural joint, Thermoplastic composite, Welding technology. List of Symbols Tg Glass transition temperature Tm Melting temperature Q Heat generation UNESP Universidade Estadual Paulista Júlio de Mesquita Filho I Electrical current USP Universidade de São Paulo R Ohmic resistance t Time IR Infrared INTRODUCTION ITA Instituto Tecnológico de Aeronáutica LBW Laser Beam Welding &RQWLQXRXV¿EHUUHLQIRUFHGWKHUPRSODVWLFPDWUL[FRPSRVLWH P Pressure laminates have shown great promise as materials for current and PEEK Poly-etheretherketone IXWXUHDLUFUDIWFRPSRQHQWV:KHQFRPSDUHGWRWKHUPRVHW¿EHU PES Poly-ethersulphone reinforced composite laminates, thermoplastic laminates are PPS Poly-phenylenesulphide HDVLHUWRSURFHVVDVWKH\GRQRWUHTXLUHFRPSOH[FKHPLFDOUHDF- PEI Poly-etherimide tion nor lengthy curing process, they are easily recycled and do T Temperature QRWQHHGUHIULJHUDWLRQIRUVWRUDJHGLVSOD\LQJSUDFWLFDOO\LQ¿QLWH VKHOIOLIH7KHUPRSODVWLFFRPSRVLWHVDOVRH[KLELWYHU\ORZOHYHORI Received: 05/07/12 Accepted: 03/08/12 moisture uptake, which means their mechanical properties are less DXWKRUIRUFRUUHVSRQGHQFHHERWHOKR#IHJXQHVSEU degraded under hot/wet conditions, not to mention their higher 'HSDUWDPHQWR GH 0DWHULDLV H 7HFQRORJLD)(*$Y $ULEHUWR GDPDJHWROHUDQFHFKDUDFWHULVWLFVDQGJUHDWHUUHSDUDELOLW\SRWHQWLDO Pereira da Cunha, 333 Bairro Pedregulho / CEP:12.516-410 – DVFRPSDUHGWRWKHUPRVHWWLQJPDWUL[ODPLQDWHV 1LQJet al., 2007; Guaratinguetá/SP – Brazil Sinmazçelik, 2006; Jayamol et al., 1998; Mallick, 1993). J. Aerosp. Technol. Manag., São José dos Campos, Vol.4, No 3, pp. 255-265, Jul.-Sep., 2012 255 Costa, A.P. et al. 8QOLNH WKHUPRVHWWLQJ UHVLQV WKHUPRSODVWLFV PD\ EH VSRLOHUVVSHHGEUDNHVVODWVWRFLWHDIHZDSSOLFDWLRQV 'H)DULD UHPHOWHG DIWHU WKH\ DUH IRUPHG 7KH\ PD\ DOVR EH MRLQHG et al., 2011; Rezende et al., 2011; Chevali et al., 2010; Bates XVLQJVHYHUDOGLIIHUHQWDVVHPEOLQJSURFHVVHV-RLQLQJSOD\V et al., 2009; Arici, 2007; Espert et al., 2004; Lee et al., 1993). an important role in manufacturing of composite structures A wide range of high performance thermoplastic matrices in marine, automotive and aerospace industry. Mechanical LVDYDLODEOHQRZDGD\VZLWK3((.DQG336WKHPRVWZLGHO\ IDVWHQLQJDQGDGKHVLYHERQGLQJDUHZLGHO\XVHGWRDVVHPEOH studied and reported. Both of them are semi-crystalline poly- metals or composite components. However, there are mers, and crystallinity in high-performance polymers is quite disadvantages associated with these methods such as stress LPSRUWDQWDVLWKDVDVWURQJLQÀXHQFHRQWKHLUFKHPLFDODQG FRQFHQWUDWLRQLQGXFHGE\GULOOLQJKROHVLQPHFKDQLFDOIDVWHQ- mechanical properties. Crystallinity tends to increase stiffness LQJRUH[WHQVLYHVXUIDFHSUHSDUDWLRQGXULQJDGKHVLYHERQGLQJ and tensile strength while amorphous areas are more effective 1RZDGD\VMRLQLQJFDQEHDFKLHYHGXVLQJYDULRXVZHOGLQJ LQDEVRUELQJLPSDFWHQHUJ\7KHGHJUHHRIFU\VWDOOLQLW\LVGHWHU- PHWKRGVVXFKDVHOHFWULFUHVLVWDQFHXOWUDVRQLFYLEUDWLRQKRW PLQHGE\PDQ\IDFWRUVLQFOXGLQJWKHW\SHRISRO\PHUDQGWKH plate, electromagnetic induction, dielectric/microwave and IR SURFHVVLQJFRQGLWLRQV 1LQRet al., 2009; Mazur et al. 2008). ZHOGLQJ 0RX]DNLVet al., 2008; Botelho and Rezende, 2007; Today, joining thermoplastic composite structures Wang and Hahn, 2007; Jones, 1994; Loos et al., 1981). LV EHFRPLQJ LQFUHDVLQJO\ LPSRUWDQW VLQFH WKHUPRSODVWLF Researches involving welding in composites in Brazil were composite usage is rapidly replacing metallic and thermoset LQLWLDWHGLQE\)DFXOGDGHGH(QJHQKDULDGH*XDUDWLQJXHWi FRPSRVLWHFRXQWHUSDUWVWREHWWHUZLWKVWDQGW\SLFDOVWDWLFDQG RI81(63,7$DQG(VFRODGH(QJHQKDULDGH6mR&DUORVRI fatigue loads applied to aerospace vehicles. Many welding USP. The work started in these universities with cooperation WHFKQLTXHVKDYHEHHQGHYHORSHGWRMRLQWXQUHLQIRUFHGDQG RI(PSUHVD%UDVLOHLUDGH$HURQiXWLFD (0%5$(5DFURP\Q UHLQIRUFHGWKHUPRSODVWLFSRO\PHUVEXWHDFKWHFKQLTXHKDVLWV in Portuguese) focused on the mechanical and thermal own advantages and pitfalls. FKDUDFWHUL]DWLRQRIZHOGHGODPLQDWHVRI336 VHPLFU\VWDOOLQH PPS thermoplastic polymer) reinforced with continuous KLJKSHUIRUPDQFH¿EHUV1RZDGD\V81(63LVGHYHORSLQJ WELDING PROCESSES resistance welding technology whereas USP is advancing in IR lamp welding methodology. In choosing a structural engineered material for aerospace 7KLVSDSHUDLPHGWRH[DPLQHGLIIHUHQWZHOGLQJWHFK- application, an important consideration is how easy is to manu- niques for thermoplastic composite laminates devised facture, join, inspect, repair and replace it in service. One of the to structural aerospace applications, focusing on recent many advantages of thermoplastic over thermoset composites developments in this area. LQWKHVHFDVHVLVWKDWWKHUPRSODVWLFPDWULFHVFDQEHPHOWHGDQG reformed. In theory, using adequate temperature and P levels, a FRPSRVLWHODPLQDWHFDQEHUHVKDSHGLQGH¿QLWHO\ HIGH PERFORMANCE THERMOPLASTIC 0DQ\ QRYHO MRLQLQJ WHFKQLTXHV KDYH EHHQ SURSRVHG COMPOSITES FOR AEROSPACE APPLICATIONS developed and evaluated for thermoplastic applications in the ODVW\HDUV,QUHJDUGWRIXVLRQERQGLQJPHWKRGRORJLHVWKH\ The automotive industry has traditionally produced a wide FDQEHVXPPDUL]HGDVIROORZVLQ)LJ range of thermoplastic parts with the advantage of shorter SURFHVVLQJWLPHVDQGIXOO\DXWRPDWHGHTXLSPHQWV 5D\ Fusion bonding Botelho et al., 2005; Botelho et al., 2002; Botelho et al., 2001; Todo et al., 2000). FƌiĐƟonĂů ŚĞĂƟng ůĞĐƚƌoŵĂgnĞƟĐ ŚĞĂƟng uůŬ ŚĞĂƟng dŚĞƌŵĂů ƚĞĐŚniƋuĞs ,QWKHODWHVJODVVDQGFDUERQUHLQIRUFHGWKHUPRSODVWLF ^Ɖin ǁĞůding /nduĐƟon ǁĞůding ,oƚ ŵĞůƚ ĂdŚĞsiǀĞs ,oƚ ƉůĂƚĞ ǁĞůding 3(,ODPLQDWHVZHUH¿UVWXVHGLQ)RNNHUMHWSODQH*XOIVWUHDP sibƌĂƟon ǁĞůding DiĐƌoǁĂǀĞ ǁĞůding uĂů ƌĞsin bonding ,oƚ gĂs ǁĞůding hůƚƌĂsoniĐ ǁĞůding iĞůĞĐƚƌiĐ ǁĞůding ZĂdiĂnƚ ǁĞůding * DQG * EXVLQHVV MHWV DQG$LUEXV %HOXJD WUDQVSRUW ZĞsisƚĂnĐĞ ǁĞůding DLUFUDIWDVWKHUPRIRUPHGÀRRULQJSDQHOV &RVWDet al., 2010; /nĨƌĂƌĞd ǁĞůding Vieille et al., 2009; Young and Ye, 2005; Botelho et al., 2003). >ĂsĞƌ ǁĞůding More recently, thermoplastic composites have found utiliza- )LJXUH&ODVVL¿FDWLRQRISRWHQWLDOIXVLRQZHOGLQJWHFKQLTXHVIRU WLRQLQODQGLQJJHDUGRRUVZLQJOHWVHOHYDWRUVDLOHURQVÀDSV WKHUPRSODVWLFFRPSRVLWHV $JHRUJHVet al., 2001). 256 J. Aerosp. Technol. Manag., São José dos Campos, Vol.4, No 3, pp. 255-265, Jul.-Sep., 2012 A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications 6HYHQPDLQZHOGLQJWHFKQLTXHVDUHGHVFULEHGEHORZDFFRUG- automotive, aerospace, energy, medical and packaging. In ing the order they appear in the schematic provided in Fig. 1. particular, aerospace industry employs this methodology to MRLQWOLJKWZHLJKWWKHUPRSODVWLFPDWUL[FRPSRVLWHPDWHULDOV Ultrasonic welding DQGDQXPEHURIVWXGLHVKDYHEHHQFRQGXFWHGWR¿QGRSWLPXP parameters and process windows to produce high quality Ultrasonic welding is a process in which high frequen- ZHOGV 6LGGLTDQG*KDVVHPLHK.UJHUet al., 2004). FLHVDUHXVHG W\SLFDOIUHTXHQFLHVUDQJHIURPWRN+] /DSMRLQWVKHDUVWUHQJWKVRIRUGHURI03DKDYHEHHQ in order to induce molecular motion, thus creating friction, LQIRUPHG IRU 336FDUERQ ¿EHU ODPLQDWHV ERQGHG XOWUDVRQL- ZKLFKLVFRQYHUWHGWRKHDW7KHDELOLW\WRZHOGWZRRUPRUH FDOO\ .DJDQDQG1LFKROV 7KLVPHWKRGZDVDOVRXVHGE\ components using ultrasonic welding depends on material Lockheed-Georgia to weld together thermoplastic/graphite tape physical properties, frequency and amplitude of ultrasonic PDWHULDOIRUWKH&+HUFXOHVDLUFUDIW /HY\et al., 2008). ZDYHDQGMRLQWGHVLJQ7KLVMRLQLQJSURFHVVFDQEHDSSOLHG LQGLVWLQFWO\WRDPRUSKRXV ZHOGLQJWHPSHUDWXUHEHWZHHQWKH Induction welding Tg and Tm DQGVHPLFU\VWDOOLQHSRO\PHUV ZHOGLQJRFFXUVDW WKHPHOWLQJSRLQW /HY\et al., 2008; Siddiq and Ghassemieh, Induction welding utilizes inductive heating for melting .UJHUet al. 2004; Ageorges and Ye, 2002). GRZQSRO\PHUPDWUL[LQWKHMRLQLQJ]RQH7KHFRPSRQHQWV Figure 2 presents a schematic of an ultrasonic welding WR EH ZHOGHG DUH VXEPLWWHG WR DQ DOWHUQDWLQJ HOHFWURPDJ- PDFKLQHXVLQJDSLH]RHOHFWULFWUDQVGXFHUE\ZKLFKWKHRVFLO- QHWLF¿HOG:KHQWKHUHDUHHOHFWULFDOO\FRQGXFWLYHORRSVLQ ODWLRQVDUHJHQHUDWHGE\DSSO\LQJHOHFWULFDOSRZHUDWKLJK WKHFRPSRQHQWHJGXHWRFDUERQ¿EHUUHLQIRUFHPHQWHGG\