(12) Patent Application Publication (10) Pub. No.: US 2011/0171295 A1 Shafee Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2011/0171295 A1 Shafee Et Al US 2011 0171295A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0171295 A1 Shafee et al. (43) Pub. Date: Jul. 14, 2011 (54) MIMEDIATE RELEASE COMPOSITIONS OF Publication Classification ACD LABLE DRUGS (51) Int. Cl. A6II 3/4439 (2006.01) (75) Inventors: Muneera Mohamed Shafee, A6IR 9/24 (2006.01) Jeddah (SA); Ruckmani A69/48 (2006.01) Kandasamy, Tiruchirapalli (IN); A6IPI/00 (2006.01) Thusleem Omar Abdulgani, A6IPL/04 (2006.01) Jeddah (SA); Saleem Zainuddin (52) U.S. Cl. .......................... 424/452: 514/338; 424/465 Shaikh, Jeddah (SA); Anand Vasantharao Kondaguli, Jeddah (57) ABSTRACT (SA) The present invention provides a method of creating a macro environment in the stomach for immediate release of acid Assignee: labile compounds stable at alkaline or near alkaline pH com (73) Jamjoom Pharmaceuticals, Jeddah prising the step of administering a composition comprising (SA) acid labile compound stable at alkaline or near alkaline pH together with a water soluble buffer, a water insoluble buffer, (21) Appl. No.: 12/987,367 a disintegrant and pharmaceutically acceptable excipients. The present invention also provides a pharmaceutical com (22) Filed: Jan. 10, 2011 position of a multi component system in which one compo nent essentially contains an acid labile drug and the other component comprises a fast releasing buffer composition Related U.S. Application Data along with pharmaceutically acceptable excipients for oral (60) Provisional application No. 61/293,926, filed on Jan. administration and ingestion by a subject, and process for 11, 2010. preparing the same. Patent Application Publication Jul. 14, 2011 Sheet 1 of 4 US 2011/0171295 A1 pH-Time curve of soluble buffers -- Trisodium Phosphate 80 mg g -- Calcium carbonate 280 mg 8 -- Sodium bicarbonate 350 mg 8 -- Trometharine 1000 mg - 5 4 3. 2 1 3 S 8 Tire in ritutes FIGURE 1 a pH-Time curve of insolubie buffers 8 -- yagnesium. Oxide heavy 88 mg s -- Magnesium Hydroxida 250 mg 2 3. S. 6 fo Erie i lites FIGURE 1b. Patent Application Publication Jul. 14, 2011 Sheet 2 of 4 US 2011/0171295 A1 phi-line curve of combined buffers 3. s 6 f{ fine in minutes -- Trisodium phosphate 250 mg+ Magnesium oxide heavy 100 mg -- Trisodium phosphate 250 mgt Magnesium hydroxide 250 ing -- Sodium bicarbonate 350 mg+ Magnesium oxide heavy 100 mg averomethamine 500 ingt Magnesium hydroxide 250 mg FIGURE 1C pH profile of different buffer combinations 1. B1-MgOf Sp B2-MgOhifTSP 83-NahCOMgO : B4-MgOh! TRIS t 2. 30 O Tire in airtates FIGURE 2 Patent Application Publication Jul. 14, 2011 Sheet 3 of 4 US 2011/0171295 A1 Release profile of AP Pantoprazole with and without buffer -0- AP without buffer rter API with fier SO 3. 4. line in ritutes FIGURE 3 Comparative invitro release of Pantoprazole immediate Release & Delayed Release formulations 50 -- Pantoprazole immediate release -- Pantopazole delayed release s i: S$ SO 00 5. 203 Tire if ites FIGURE 4 Patent Application Publication Jul. 14, 2011 Sheet 4 of 4 US 2011/0171295 A1 in-vitro release of Formulation illustrating microenvironment and macroenvironment pH 1) wn Release at macro pH - Release at micro ph 1. go SS 8 70 2 3. ire initites FIGURE 5 FIGURE 6 US 2011/0171295 A1 Jul. 14, 2011 IMMEDIATE RELEASE COMPOSITIONS OF empty stomach with a glass of water. This minimizes expo ACID LABILE DRUGS Sure time to gastric fluid, as it ensure gastric emptying within about 30 minutes or so, and delivery of the dosage form from REFERENCE TO EARLIER FILED the stomach to the duodenum. Once in the duodenum, opti APPLICATION mal conditions exist for the enteric-coating to dissolve and release the drug into the bloodstream where absorption of a 0001. This application claims the benefit under 35 U.S.C. non-acid degraded drug occurs. If food is ingested contem S119(e) of U.S. Provisional Patent Application No. 61/293, poraneously with the administration of an enteric-coated dos 926, filed Jan. 11, 2010, and titled “IMMEDIATE RELEASE age form, gastric emptying may not only be slowed, but there COMPOSITIONS OF ACID LABILE DRUGS, which is is also an increase in the pH of the stomach from about pH 1 incorporated, in its entirety, by this reference. to about 5 over the next several hours, depending on, for example, the general health of the subject and the composi BACKGROUND tion being administered. When the pH begins to approach 5, 0002 1. Technical Field the enteric-coating begins to dissolve away resulting in pre 0003) The present invention relates to method for creating mature release of the drug into the stomach. a macro environment of buffers for delivering acid labile 10007. In geriatric patients the gastric pH is already pharmaceuticals, stable at alkaline or near alkaline pH and elevated as there is a general decline in gastric acid secretion oral pharmaceutical compositions of acid labile drugs, stable in the stomach with aging. In such patients; enteric coated at alkaline or near alkaline pH and process for the preparation acid labile drugs are less effective. Also, when the ingested of the same in pharmaceutically acceptable dosage forms. food contains any fat, gastric emptying can be delayed for up 0004 2. Background Information to 3 to 6 hours or more, as fat in any form combined with bile 0005 Acid labile drugs such as the proton pump inhibitors and pancreatic fluids strongly inhibits gastric emptying. tend to be unstable at acidic pH and therefore have to be Thus, as a general rule, enteric-coated dosage forms should formulated as enteric-coated dosage forms to prevent acid only be ingested on an empty stomach with a glass of water to degradation. Although these drugs are stable at alkaline pH, provide optimal conditions for dissolution and absorption. they are destroyed rapidly as pH falls (for example, by gastric 0008 To overcome the problems of enteric coated tablets: acid). Or, if the enteric-coating of the composition is dis several scientists used compositions comprising large rupted (for example by chewing) resulting in degradation of amounts of buffers (U.S. Pat. No. 6,489,346 B1, 03/2002 the active ingredient by the gastric acid in the stomach. Upon Jeffrey Owen Philips et al.) to prevent the degradation of acid ingestion, an acid-labile pharmaceutical compound must be labile drugs. protected from contact with acidic stomach secretions to I0009 For instance, certain compositions of omeprazole maintain its pharmaceutical activity. Certain acid labile drug contain 1100 mg of sodium bicarbonate (equivalent to 300 compositions with enteric-coating have been designed to dis mg of sodium) and oral suspension contains 1680 mg of solve at basic or near neutral pH to ensure that the drug is Sodium bicarbonate (equivalent to 460 mg of sodium). Such released in the proximal region of the small intestine (duode formulations utilizes the concept of microenvironment pH num), not in the stomach. However, due to their pH-depen and hence a large quantity of alkali is required to neutralize dent attributes and the uncertainty of gastric retention time, the acid in the stomach so as to protect the uncoated PPI from in-vivo performances as well as inter and intra subject vari acid degradation and maintain intragastric pH>4 for a period ability are very high; making it an uncertain method. Never of about 18 hours. The American Heart Association's recom theless at basic/near neutral pH also most acid-labile pharma mended daily intake of sodium is 2,400 mg for a normal ceutical agents are still susceptible to degradation depending person and, these amounts should be taken into consideration on the particular pKa of the agent. Further as an acid-labile by anyone on a sodium-restricted diet. Also Sodium bicar compound upon ingestion must be transferred in intact form, bonate is contraindicated in patients with metabolic alkalosis i.e., a non-acid degraded or reacted form, to the duodenum and hypocalcemia. Also such compositions weigh about 1.5- where the pH is near or above its pKa, the enteric-coating 2.0 g making it difficult to Swallow and hence leading to must be resistant to dissolution and disintegration in the stom patient non-compliance. Furthermore, since, the amount of ach, that is, be impermeable to gastric fluids while residing in buffer depends on the pKa of the drug used, the amount of the stomach. Additionally, since the therapeutic onset of an alkali required to make an immediate release composition of enteric-coated dosage form is largely dependent upon gastric Pantoprazole or Rabeprazole, may be more than that required emptying time it varies between subjects. In most subjects, for Omeprazole. Moreover, sodium bicarbonate used in the gastric emptying is generally an all or nothing process, and composition has poor stability properties and decomposes by generally varies from about 30 minutes to several hours after converting to carbonate and such; the decomposition is accel ingestion. Thus, for a period of time following ingestion, an erated by agitation or heat. Hence, such compositions com enteric-coated dosage form resides in the low pH environ prising large amount of buffers are also not suitable for long ment of the stomach before moving into the duodenum. Dur term usage. ing this time, the enteric-coating may begin to dissolve, or 0010 All the compositions of prior art are based on the imperfections or cracks in the coating may develop, allowing concept of micro environmental pH which is also known as gastric acid to penetrate the coating and prematurely release virtual pH. The micro environmental or virtual pH can be said drug into the stomach rather than in the small intestine.
Recommended publications
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Bactericide-Disinfectant
    , r f.~ n,r.~il·'\L H.. ~t.t;I" "" . i ltM)"ft . "' .' .,.,,~: .. ;;:.~ ,.;·~~~t:.:.· ,.J.~ . ... --' "'.~.};" ,",>;"'!:,., ~ " .. ". , ; IlUNGtCIOE' MID RCOfNTlCtOI .. ~.' ".' • ., . <",~. .. ,'. 1 ~Of: ~~Itr. ,<"{}~ _ t EO IJ"OS~A C :J-) l - (BACTERICIDE -DISINFECTANT) DESC Rlt.JllC"N: P''1k'or is a nor-sudsing, chlorinated, perman­ a solution can be recommended for dairy utensils, milking ma­ 4. For home l gana·ed o~tprger.t F'owaE'r for q'Jick, efficient cleaning, disin­ chines and equipment. The same solution can be us~d on dairy water for dis fecting, sani rizing and (JE:odorizir,g. It is designed for use on all farm utensils as well as washing cows' udders and milkr.:rs' utensils. For c11 types of equipment and utensils that are used in the handling hands. surfaces such of food products, milk, meats, beverages, etc. Authorized for ounce per que use under the U. S. Department of Agriculture Consumer and 2. Pinklor can be used very effec1ively in food and beveraqe Marketing Service Inspection Programs for poultry, meat, milk plants as a disinfectant for equipment using a solution of 1 and egg product plants. F oer 40 gallons of water and applying this solution in DANGI c.. i.:,.'r that insures conto(t '/./ith all po "ts and surfaces. OREN. AVOI Specifications 0 STUFFS. HAF Active: Trisodium Phosphate (hydrated) over 91.00 0 3. Where local and state regulations are in effect, consu:t Sodium Hypochlorite over 3.500 0 rules of you" local authorities tor volume of chlorine required SKIN OR IN 0 Sodium Lauryl Sulfate under 0.05 0 in rinse solutil'ns.
    [Show full text]
  • Safety Data Sheet TSP - TRISODIUM PHOSPHATE
    Safety Data Sheet TSP - TRISODIUM PHOSPHATE Date of Revision: 2/11/2015 Section 1 – Chemical Product and Company Identification Product/Chemical Name: Trisodium Phosphate dodecahydrate Chemical Formula: Na3PO4*12H2O CAS Number: 10101-89-0 Other Designations: TSP; trisodium orthophosphate; tribasic; tertiary sodium phosphate; trisodium phosphate Derivation: Prepared by combining proper proportions of phosphoric acid and soda to form disodium phosphate, then adding a caustic soda Supplied by: PRO Chemical & Dye 126 Shove Street Fall River, MA 02724 Emergency Telephone Numbers: 800-255-3924 ChemTel. (United States) + 1 01 813-248-0585 (Outside the United States) 1. Section 2 - Hazards Identification HMIS ***** Emergency Overview ***** H 3 MAY CAUSE EYE INJURY. CAUSES SKIN IRRITATlON. MAYBE HARMFUL IF SWALLOWED. F 0 Potential Health Effects R 0 PPE Primary Entry Routes: Inhalation, ingestion or skin contact. Sec. 8 Target Organs: Skin, digestive tract. HAZARDS IDENTIFICATION Classification of the substance or mixture GHS Classification in accordance with 29 CFR 1910 (OSHA DCS) Skin corrosion (Category I B). H314 Serious eye damage (Category I). H318 GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H314 Causes severe skin burns and eye damage. Precautionary Statement(s) P260 Do not breathe dust or mist. P264 Wash skin thoroughly after handling. P280 Wear protective gloves protective clothing/ eye protection/ face protection. P301 + P330 + P331 IF SWALLOWED: rinse mouth. DO NOT induce vomiting. P303 + P36l + P353 IF ON SKIN (or hair): Remove. Take off immediately all contaminated clothing. Rinse skin with water / shower. P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
    [Show full text]
  • CX/FA 18/50/5 January 2018 JOINT FAO/WHO FOOD STANDARDS
    E Agenda Item 4 (a) CX/FA 18/50/5 January 2018 JOINT FAO/WHO FOOD STANDARDS PROGRAMME CODEX COMMITTEE ON FOOD ADDITIVES Fiftieth Session ENDORSEMENT AND/OR REVISION OF MAXIMUM LEVELS FOR FOOD ADDITIVES AND PROCESSING AIDS IN CODEX STANDARDS BACKGROUND 1. In accordance with the section concerning Relations between Commodity Committees and General Committees of the Codex Alimentarius Commission Procedural Manual, “All provisions in respect of food additives (including processing aids) contained in Codex commodity standards should be referred to the Committee on Food Additives, preferably before the Standards have been advanced to Step 5 of the Procedure for the Elaboration of Codex Standards or before they are considered by the commodity committee concerned at Step 7, though such referral should not be allowed to delay the progress of the Standard to the subsequent Steps of the Procedure.”. 2. The following food additive and processing aids provisions of Codex standards have been submitted for endorsement since the 49th Session of the Codex Committee on Food Additives and are listed by: (i) Technological function, INS number and food additive name; (ii) Maximum level; (iii) ADI (mg additive/kg body weight per day); and (iv) Notes. 3. The following abbreviations have been used in the preparation of this paper: INS International Numbering System for food additives. The INS (INS) is intended as a harmonised naming system for food additives as an alternative to the use of the specific name, which may be lengthy1. ADI Acceptable Daily Intake. An estimate of the amount of a substance in food or drinking-water, expressed on a body-weight basis, that can be ingested daily over a lifetime without appreciable risk (standard human = 60 kg)2.
    [Show full text]
  • Simple Chemical Experiments Simple Chemical Experiments
    SIMPLE CHEMICAL EXPERIMENTS SIMPLE CHEMICAL EXPERIMENTS By ALFRED MORGAN Illustrated by THE AUTHOR APPLETON-CENTURY-CROFTS, INC. NEW YORK COPYRIGHT, 1941, BY D. APPLETON-CENTURY COMPANY, INC All rights reserved. This book, or parts thereof, must not be reproduced in any form without permission of the publisher. PRINTED IN THE UNITED STATES OF AMERICA CONTENTS CHAPTER PAGE I. YOUR LABORATORY i II. EXPERIMENTS WITH PRECIPITATES .... 26 III. EXPERIMENTS WITH SULFUR AND SOME OF ITS COMPOUNDS 54 IV. EXPERIMENTS WITH OXYGEN AND OXYGEN COM­ POUNDS 73 V. EXPERIMENTS WITH GASES AND SOME OF THEIR COMPOUNDS 103 VI. CHEMICAL TESTS 123 VII. SAFE "FIREWORKS" 144 VIII. EXPERIMENTS WITH A FEW ORGANIC COMPOUNDS 156 IX. CHEMICAL TRICKS AND MAGIC 170 X. MISCELLANEOUS EXPERIMENTS 186 XI. PRACTICAL USES FOR YOUR CHEMICAL KNOWL­ EDGE 214 XII. THE CHEMICALS YOU WILL NEED . .231 INDEX OF CHEMICALS 259 GENERAL INDEX 263 V SIMPLE CHEMICAL EXPERIMENTS *> CHAPTER I I YOUR LABORATORY I OST of the experiments described in this book can be M performed without elaborate equipment or apparatus. | For them you will need only a few bottles, test-tubes, meas- i uring-spoons, and an alcohol lamp. Jelly glasses, mayonnaise f jars, small enameled saucepans, and thin glass tumblers can | often be substituted for the beakers, flasks, and glassware of I the professional chemist. t A few of the experiments require beakers, flasks, tubing, | funnels, filter paper, crucibles, mortar and pestle, and Bunsen I burner. The small sizes of these are not expensive. Frequently the cost of apparatus and chemicals can be shared by estab­ lishing a "community" laboratory which is used by two or more experimenters.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,815,911 B2 Pettersson Et Al
    US00881.5911B2 (12) United States Patent (10) Patent No.: US 8,815,911 B2 Pettersson et al. (45) Date of Patent: Aug. 26, 2014 (54) ALFENTANIL COMPOSITION FOR THE WO WO-OOf 16751 A1 3, 2000 TREATMENT OF ACUTE PAIN WO WO-OOf 51539 A1 9, 2000 WO WO-01/30288 A1 5, 2001 WO WO-O2/O67903 A2 9, 2002 (71) Applicant: Orexo AB, Uppsala (SE) WO WOO3,OO5944 A1 1, 2003 WO WO-2004/067004 A1 8, 2004 (72) Inventors: Anders Pettersson, Kode (SE); Barbro WO WO-2006/097361 A1 9, 2006 Johansson, Uppsala (SE); Emil WO WO-2006,103418 A1 10, 2006 Schwan, Uppsala (SE) WO WO-2007/081948 A2 7, 2007 s WO WO-2007/081949 A2 7/2007 WO WO-2007/141328 A1 12/2007 (73) Assignee: Orexo AB, Uppsala (SE) WO WO-2008/068471 A1 6, 2008 - WO WO-2008/085765 A2 7, 2008 (*) Notice: Subject to any disclaimer, the term of this WO WO-2008, 106689 A2 9, 2008 patent is extended or adjusted under 35 W. W838887} h A. 5,588 U.S.C. 154(b) by 0 days. WO WO-2010/059504 A1 5, 2010 WO WO-2010, 132605 A1 11, 2010 (21) Appl. No.: 13/874,762 WO WO-2010/141505 A1 12/2010 WO WO-2011/O17484 A2 2, 2011 (22) Filed: May 1, 2013 WO WO-2011/057199 A1 5, 2011 (65) Prior Publication Data OTHER PUBLICATIONS US 2014/OOO5223 A1 Jan. 2, 2014 FDA Guidance for Industry. Orally Disintegrating Tablets; Dec. 2008. (30) Foreign Application Priority Data Mohanachandran et al.
    [Show full text]
  • Navy Boiler Water Chemical Tests and Treatments
    Experiment 14D Final 2/2015 NAVY BOILER WATER CHEMICAL TESTS AND TREATMENTS MATERIALS: Automatic zero burets, 100 and 10 mL graduated cylinders, 400 mL beaker, magnetic stir bar, 50-mL buret, evaporating dish, two 100 mL volumetric flasks, 250 mL Erlenmeyer flasks, boiler water, 0.010 M HNO3, 0.050 M HNO3, 0.0050 M Hg(NO3)2, 0.0200 M Na2S2O3, 2.0 M MnSO4, KOH – KI solution, 0.060 M Na2SO3 (must be fresh), 18 M H2SO4, 2% starch solution, phenolphthalein, methyl purple, chloride indicator, pH meter, thermometer, magnetic stirrer; conductivity meter. PURPOSE: The purpose of this experiment is to familiarize the student with the chemical tests used for Navy boiler water systems, and to demonstrate the chemical principles associated with some of the tests and treatments used for these critical systems. These tests are used aboard ships to monitor the quality of the feed water to prevent scale formation and corrosion. LEARNING OBJECTIVES: By the end of this experiment, the student should be able to demonstrate the following proficiencies: 1. Explain the use of buffers in boiler water treatment. 2. Explain the process of an acid/base titration and the use of indicators. 3. Standardize and use a pH meter. 4. Convert concentration units of molarity to ppm (parts per million). 5. Explain the role of chloride ion testing and conductivity monitoring for boiler water. 6. Describe a chemical treatment for removing dissolved oxygen from water. PRE-LAB: Complete the pre-lab prior to lab. DISCUSSION - NAVY BOILER WATER TESTS All Naval vessels use boilers to prepare steam.
    [Show full text]
  • Calcium Chloride
    Electrolytes Livestock 1 2 Identification of Petitioned Substance 3 4 Chemical Names (Compiled from commercial 44 Calcium propionate, propanoic acid, calcium salt 5 electrolyte formulations): 45 Ca(CH3.CH2.COO)2 6 Calcium chloride (10043-52-4) 46 Calcium oxide, lime CaO 7 Calcium borogluconate (5743-34-0) 47 Calcium sulfate, gypsum CaSO4 8 Calcium gluconate (299-28-5) 48 9 Calcium hypophosphite (7789-79-9) 49 Magnesium diborogluconate, Mg[(HO.CH2CH 10 Calcium lactate (814-80-2) 50 (HBO3)CH(CH.OH)2 COO]2 11 Calcium phosphate tribasic (7758-87-4) 51 Magnesium citrate, Mg3(C6H5O7)2 12 Calcium phosphate dibasic (7757-93-9) 52 Magnesium hypophosphite Mg(H2PO2)2 13 Calcium phosphate monobasic (10031-30-8) 53 Magnesium sulfate, Epsom salts MgSO4 14 Calcium propionate (4075-81-4) 54 Potassium chloride KCl 15 Calcium oxide (1305-78-8) 55 Potassium citrate, K3(C6H5O7) 16 Calcium sulfate (7778-18-19) 56 Tripotassium phosphate K3(PO4) 17 Magnesium borogluconate (not available) 57 Dipotassium hydrogen phosphate K2HPO4 18 Magnesium citrate, tribasic (3344-18-1) 58 Potassium dihydrogen phosphate KH2PO4 19 Magnesium hypophosphite (10377-57-8) 59 Sodium acetate Na(CH3COO) 20 Magnesium sulfate (7487-88-9) 60 Sodium bicarbonate, baking soda NaHCO3 21 Potassium chloride (7447-40-7) 61 Sodium chloride, table salt, NaCl 22 Potassium citrate (866-84-2) 62 Sodium citrate, trisodium citrate Na3(C6H5O7) 23 Potassium phosphate, tribasic (7778-53-2) 63 Trisodium phosphate Na3(PO4) 24 Potassium phosphate, dibasic (7758-11-4) 64 Disodium hydrogen phosphate Na2HPO4 25 Potassium phosphate, monobasic (7778-77-0) 65 Sodium dihydrogen phosphate NaH2PO4 26 Sodium acetate (127-09-3) 66 27 Sodium bicarbonate (144-55-8) 67 Trade Names: 28 Sodium chloride (7647-14-5) 68 These individual electrolyte salts are not sold 29 Sodium citrate (68-04-2) 69 with Trade Names.
    [Show full text]
  • Circular of the Bureau of Standards No. 369: United
    U. S. Gov’t: Master Specification No. 558 DEPARTMENT OF COMMERCE BUREAU OF STANDARDS George K. Burgess, Director iv V CIRCULAR OF THE BUREAU OF STANDARDS No. 369 [Issued November 6, 1928] UNITED STATES GOVERNMENT MASTER SPECIFICATION FOR TRISODIUM PHOSPHATE, TECHNICAL (PHOSPHATE CLEANER) FEDERAL SPECIFICATIONS BOARD SPECIFICATION No. 558 This specification was officially promulgated by the Federal Specifications Board on May 22, 1928, for the use of the departments and independent establishments of the Government in the purchase of technical trisodium phosphate (phosphate cleaner). [The latest date on which the technical requirements of this specification shall become mandatory for all departments and independent establishments of the Government is August 22, 1928. They may be put into effect, however, at any earlier date after promulgation] CONTENTS I. General specifications 1 II. Grade 1 III. Material 2 IV. General requirements 2 V. Detail requirements 2 VI. Methods of sampling, testing, and basis of purchase 2 1. Sampling 2 2. Testing 3 3. Reagents 4 4. Basis of purchase 5 VII. Packing 5 VIII. Notes 5 I. GENERAL SPECIFICATIONS There are no general specifications applicable to this specification. II. GRADE Phosphate cleaner shall be of one grade only, as hereinafter described. Additional copies of this publication may be procured from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C., at 5 cents per copy. 11299°—28 : 2 CIRCULAR OP THE BUREAU OF STANDARDS III. MATERIAL Serf General requirements, Section IV. IV, GENERAL REQUIREMENTS Phosphate cleaner shall be a white, uniform product in finely granulated form, and shall contain not less than 95 per cent of crystalline trisodium phosphate (Na3 P0 4 .12H2 0).
    [Show full text]
  • Manufacturing of Quick Release Pharmaceutical
    (19) TZZ___T (11) EP 1 916 994 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/00 (2006.01) A61K 9/20 (2006.01) 11.12.2013 Bulletin 2013/50 A61K 31/542 (2006.01) (21) Application number: 05753592.4 (86) International application number: PCT/DK2005/000435 (22) Date of filing: 28.06.2005 (87) International publication number: WO 2006/000228 (05.01.2006 Gazette 2006/01) (54) MANUFACTURING OF QUICK RELEASE PHARMACEUTICAL COMPOSITION OF WATER INSOLUBLE DRUGS AND PHARMACEUTICAL COMPOSITIONS OBTAINED BY THE PROCESS OF THE INVENTION HERSTELLUNG EINER PHARMAZEUTISCHEN ZUSAMMENSETZUNG MIT SCHNELLER FREISETZUNG AUS WASSERUNLÖSLICHEN ARZNEIMITTELN UND MIT DEM ERFINDUNGSGEMÄSSEN VERFAHREN ERHALTENE PHARMAZEUTISCHE ZUSAMMENSETZUNGEN PREPARATION DE COMPOSITIONS PHARMACEUTIQUES DE MEDICAMENTS INSOLUBLES A L’EAU A DIFFUSION RAPIDE ET COMPOSITIONS PHARMACEUTIQUES AINSI PREPAREES (84) Designated Contracting States: (56) References cited: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR EP-A- 1 352 660 WO-A-00/15195 HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR WO-A-01/41536 WO-A-99/09988 Designated Extension States: WO-A-99/12524 WO-A1-2004/047824 AL BA HR LV MK YU US-A- 4 689 218 (30) Priority: 29.06.2004 DK 200401021 • MURA P ET AL: "Solid- state characterization and dissolution properties of Naproxen-Arginine- (43) Date of publication of application: Hydroxypropyl-beta-cyclo dextrin ternary 07.05.2008 Bulletin 2008/19 system" EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, (73) Proprietor: Takeda Pharma A/S ELSEVIER SCIENCE PUBLISHERS B.V., 4000 Roskilde (DK) AMSTERDAM, NL, vol.
    [Show full text]
  • COMMISSION REGULATION (EU) No 231/2012
    22.3.2012 EN Official Journal of the European Union L 83/1 II (Non-legislative acts) REGULATIONS COMMISSION REGULATION (EU) No 231/2012 of 9 March 2012 laying down specifications for food additives listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council (Text with EEA relevance) THE EUROPEAN COMMISSION, (4) The European Food Safety Authority (hereinafter ‘the Authority’) expressed its opinion on the safety of basic methacrylate copolymer ( 6 ) as a glazing agent. That food Having regard to the Treaty on the Functioning of the European additive has subsequently been authorised on the basis of Union, specific uses and has been allocated the number E 1205. Therefore specifications should be adopted for that food Having regard to Regulation (EC) No 1333/2008 of the additive. European Parliament and of the Council of 16 December 2008 on food additives ( 1 ), and in particular Articles 14 and 30(4) thereof, and Regulation (EC) No 1331/2008 of the (5) Food colours ethyl ester of beta-apo-8'-carotenic acid (E European Parliament and of the Council of 16 December 160 f), and brown FK (E 154), as well as the aluminium 2008 establishing a common authorisation procedure for containing carrier bentonite (E 558) are not used any 2 food additives, food enzymes and food flavourings ( ), and in more according to information submitted by food manu­ particular Article 7(5) thereof, facturers. Therefore, current specifications for those food additives should not be taken over to this Regulation. Whereas: (6) On 10 February 2010 the Authority expressed an (1) Specifications relating to origin, purity criteria and any opinion on the safety of sucrose esters of fatty acids other necessary information should be adopted for food (E 473) prepared from vinyl esters of fatty acids ( 7 ).
    [Show full text]
  • The Poisons Regulations of 1973 Queensland Reprint Reprinted As At
    Warning “Queensland Statute Reprints” QUT Digital Collections This copy is not an authorised reprint within the meaning of the Reprints Act 1992 (Qld). This digitized copy of a Queensland legislation pamphlet reprint is made available for non-commercial educational and research purposes only. It may not be reproduced for commercial gain. ©State of Queensland QUEENSLAND The Poisons Regulations of 1973 Published in Queensland Government Gazette dated lOth August, 1973, Vol. CCXLIII, No. 114, pages 2505-2621; as amended by Regulations published in Gazettes dated- 25th May, 1974, Vol. CCXLVI, No. 20, pages 581-86; 22nd February, 1975, Vol. CCXLVIII, No. 28, page 646; 15th March, 1975, Vol. CCXLVIII, No. 44, page 974; 2nd August, 1975, Vol. CCXLIX, No. 87, page 1606; 23rd August, 1975, Vol. CCXLIX, No. 98, page 1874; 15th November, 1975, Vol. CCL, No. 55, page 1101; 24th January, 1976, Vol. CCLI, No. 9, pages 213-28; 5th June, 1976, Vol. CCLII, No. 60, pages 777-84; 20th August, 1977, Vol. CCLV, No. 105, pages 2075-81; 26th November, 1977, Vol. CCL VI, No. 64, pages 1201; 24th December, 1977, Vol. CCLVI, No. 81, pages 1713-14; 15th July, 1978, Vol. CCLVIII, No. 86, page 1317; 9th September, 1978, Vol. CCLIX, No. 4, page 123; 21st July, 1979, Vol. CCLXI, No. 86, page 1628; 15th September, 1979, Vol. CCLXII, No. 13, page 281; 20th October, 1979, Vol. CCLXII, No. 35, page 786; lOth May, 1980, Vol. CCLXIV, No. 11, pages 143-67; 9th August, 1980, Vol. CCLXIV, No. 103, page 2282; 20th September, 1980, Vol. CCLXV, No. 17, page 331; 20th December, 1980, Vol.
    [Show full text]