<<

Material I

F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials [email protected]

HS 2007

Ceramics: Introduction 1 Science I Persons in Charge of this Lecture

• Dr. F. Filser, HCI G 529, phone 26435, [email protected]

• Prof. Dr. L.J. Gauckler HCI G 535, phone 25646, [email protected]

• F. Krauss HCI G 538, phone 3 68 34, [email protected]

• Dipl.-Ing. J. Kübler EMPA Dübendorf, phone 044 823 4223, [email protected]

Ceramics: Introduction 2 Material Science I Overview & preliminary schedule (HS 2007)

Nov 26, 07 Introduction on ceramic materials, , applications Dec 03, 07 structures of ceramic materials Dec 10, 07 Potential well of bonding and physical properties & Examples of Structural ceramic materials Dec 17, 07 Examples of structural ceramic materials Dec 21, 07 term finish

Ceramics: Introduction 3 Material Science I Overview & preliminary schedule (FS 2008)

Feb 18, 08 term starts (5 x ceramic & 9 x ) Feb 19, 08 Feb 26, 08 (JK) Mar 04, 08 Strength & Weibull statistics (JK) Mar 11, 08 Subcritical crack growth, SPT-Diagrams (JK) Mar 18, 08 Proof-testing, , thermical properties (JK) Apr 01, 08 polymer part (Prof. D. Schlüter) May 30, 08 term finish

Ceramics: Introduction 4 Material Science I Documentation

Visit our homepage @

http://ceramics.ethz.ch -> -> courses -> Materialwissenschaft I und II

Ceramics: Introduction 5 Material Science I Sources of Information - ETH Bib -NEBIS

http://www.ethbib.ethz.ch/

http://www.nebis.ch/

Ceramics: Introduction 6 Material Science I Recommended Reading

• Askeland & Phulé: Science and of Materials, 2003 • Barsoum MW: Fundamentals of Ceramics. IoP Publishing, 2003 • diverse CEN ISO Standards (look at slides) • Y. -M. Chiang, D. Birnie, D. Kingery, Physical Ceramics, Principles für Ceramic Science and Engineering, Wiley, 1997. • G. Kostorz (ed), High-Tech Ceramics: Viewpoints and Perspectives. Academic Press, 1989. (Chapter 5, 59-101).

Ceramics: Introduction 7 Material Science I Recommended Reading

• Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, Springer, 1999. • David Richerson, Modern , Ed. 2, Dekker, 1992. • Saito Shinroku, Fine Ceramics, Elsevier, 1988. • Verband der Keramischen Industrie e.V, Brevieral Technical Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly on the internet available) • Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987.

Ceramics: Introduction 8 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramic Materials

• Bevieral Technical Ceramics • -Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003, • Silicon -1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 • Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Elektron Ltd., 1986, pp. 51, 1986 • Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie - The Journal of Physical , 1978

Ceramics: Introduction 9 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramics Materials

relationships in the zirconia-yttria system, HGM Scott - Journal of , 1975 - Springer • Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992

• "Formation of beta -Si3N4 solutions in the system Si, Al, O, N by reaction --sintering of an Si3N4 , AlN, Al2 O3 " Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980. • Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9.

Ceramics: Introduction 10 Material Science I Sources of Information – Journals (in general )

• Journal of the American Ceramic Society (J. Am. Ceram. Soc.) • Bulletin of the American Ceramic Society (Bull. Am. Ceram. Soc.) • Journal of the European Ceramic Society (J. Eur. Ceram. Soc.) • Journal of Materials Science (J. Mat. Sci.) • Journal of Materials Research (J. Mat. Res.)

Ceramics: Introduction 11 Material Science I

Introduction on ceramic materials, technology, applications

Ceramics: Introduction 12 Material Science I History of ceramic materials

Nitrides Ferrites Titanates ceramics Europaen Silicon Steatites Greek (Steingut**) Potter’s Fire-proof Porcelain Ceramic pots (7000 BC) (Steinzeug*) Earthenware

-3000 -2000 -1000 0 1700 2000

**): porous, low firing temp (900 -1200°C) Ceramics: Introduction *): dense, high firing temp (>1200°C) 13 Material Science I Ceramics in the Past

Giant beaker, Erle 4 000 BC Closed Furnace houses in Unteruhldingen, Bodensee

Ceramics: Introduction 14 Material Science I Egyptian wall relief

Rechmuir (1450 BC) ceramic for

Ceramics: Introduction 15 Material Science I

Greek , red on black decor

Ceramics: Introduction 16 Material Science I Chinese Porcelain

14th century 18th century 19th century

Porcelain imports of the east indian company from china to europe: 1600 – 1800: > 3 000 000 pieces anual dividends: up to 750% pa on the invested money

Ceramics: Introduction 17 Material Science I Europaen imports of chinese porcelain

1600 - 1800 AD , in 1000 pieces

Ceramics: Introduction 18 Material Science I European Porcelain

August der Starke Ehrenfried Walter (1670 - 1733) von Tschirnhaus (1652 - 1708)

Ceramics: Introduction 19 Material Science I Europaen Porcelain

Quartz

Steingut Steinzeug

Dental ceramics techn. porcelain Hard porcelain

Feldspar 20 40 60 80 Kaolin Porcelain, Prostethis, Porsche Ceramics: Introduction 20 Material Science I High-performance / high-tech ceramics

electrical and nuclear thermical optical chemical & mechanical magnetical technical biological

Function

elektr. insulation translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. ferroelectrical n- absorption - index compatibility wear resistency

radiation resist. - storage operty r magnetical resist. P

substrates fuel Na-vapor lamp Cat-Carriers Cutting bits shielding heat shields IR- Filters bearings condenser / storage contain. insulation material DeNOx-Cat. seals oscillators heat storage Gas-Sensors igniting elements Elektrods components high-temp. conductor Implantats „low-temp.“ PTC cond.

Application superconductors batteries

Ceramics: Introduction 21 Material Science I High-performance / high-tech Ceramics

electrical & nuclear thermical optical chemical & mechanical magnetical technical biological

Function

Al2O3 UO2 SiO2 Al2O3 Cordierit SiC AlN PuO2 MgO MgO Al2O3 ZrO2 BeO C Si3N4 Mg Al2O3 ZrO2 B4C BaTiO3 SiC Faser Y2O3 / ThO2 MgO BN SrTiO3 B4C SiC PLZT Mg2SiO4 Al2O3

PZT BN Mg2SiO4 Si3N4 SiC Al2O3 3 Al2O3 2SiO2 ZnO

ZnO-Bi2O3 Glass Fe2O3 aterial

YBa2Cu3O7 SnO2 M U2O5 MgCr2O4-TiO2 TiO2 NiO Fe2ZnO4  - Al2O3 Fe2NiO4 ZrO2 Titanate Li3N TiB2

Ceramics: Introduction 22 Material Science I High-performance / high-tech ceramics

electrical and nuclear thermical optical chemical & mechanical magnetical technical biological

Function

elektr. insulation temperature heat translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. hardness ferroelectrical n- absorption - insulator refraction index compatibility wear resistency

semiconductor radiation resist. - storage operty r magnetical corrosion resist. P

substrates fuel heat exchanger Na-vapor lamp Cat-Carriers Cutting bits

sensors shielding heat shields IR-window Filters bearings condenser / capacitor storage contain. insulation Laser material DeNOx-Cat. seals oscillators heat storage Light switch Gas-Sensors Engine igniting elements Elektrods components high-temp. conductor Implantats „low-temp.“ PTC

cond. Application superconductors batteries

Ceramics: Introduction 24 Material Science I

Engineering Ceramics Today:

Ceramics: Introduction 25 Material Science I

Requirements for substrate materials

Property Requirement at… … Condition

Heat conductivity () < 100 W/mK … …RoomTemperature (RT)

Thermal Expansion Coeff. () 3 - 4 x 10-6/K … …RT – 200C

Electrical Resistance () > 1014 cm … …RT

Rel. permittivity (r) < 4 … …1Mhz

Dielectric loss () < 10-3 … …1Mhz

Bend strength () > 500 MN/m2 … …3 P bend strength

Ceramics: Introduction 26 Material Science I

Electrical Condenser: Principle

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + ------+ + + + + + ------+- - - +------

- big distance - small distance - small distance - small area - large area - large area - no - no dielectric - with dielectric low higher 80’000 x higher storage capacity storage capacity storage capacity

Ceramics: Introduction 27 Material Science I

Condenser: principle types

fixed capacitor trimming capacitor feedthrough capacitor

Ceramics: Introduction 28 Material Science I Condenser/Capacitor device: buildup

tag

nickel layer ceramic dielectric

electrode contact Ceramics: Introduction 29 Material Science I

Capacitor: Production technology

Ceramics: Introduction 30 Material Science I

Piezo ceramics as electro-mechanical

F

mechanical  electrical

F

electrical  mechanical

Ceramics: Introduction 31 Material Science I

Piezo ceramics as electro-mechanical transformer

mechanical  electrical

elektrical  mechanical

Ceramics: Introduction 32 Material Science I

Positioning by piezo-ceramics

http://www.physikinstrumente.de/products/index.php

PZT = PbZrTiO3 A B O3

Piezomotor Ceramics: Introduction 33 Material Science I Piezo-ceramics: Applications

Ceramics: Introduction 34 Material Science I Piezo-ceramics: Applications

Charactistics Potentional applications • Scans and Positions Objectives with Sub-nm • Scanning interferometry Resolution • Surface structure analysis • High Linearity and Stability • Disk drive testing • Travel to 460 µm, • Autofocus systems • Fast Response & Settling Time • • Frictionless Precision Guiding System for • Biotechnology Better Focus Stability • Semiconductor test equipment

http://www.physikinstrumente.com Ceramics: Introduction 35 Material Science I Piezo-ceramics: Applications

Potential Applications: Characteristics: • Nanoimprinting • for scanning and positioning in all six • Nanomanufacturing degrees of freedom • Metrology • 800 x 800 x 200 µm linear range • Nanopositioning • up to 10 mrad rotational range • Semiconductor test equipment • parallel-kinematics/metrology • Precision mask and wafer alignment • multi-axis precision • Scanning interferometry • Surface structure analysis http://www.physikinstrumente.com Ceramics: Introduction 36 Material Science I Applications of oxide ceramic materials

OXIDE APPLICATION

Metallic ReO3, RuO, Li2TiO3 electrode, circuits / conductors

Piezo-ceramic Pb (Zr,Ti)O3 , actuator

Pyro-ceramic (Pb,La)(Zr,Ti)O3 sensor

heat element, switch, PTC “low temp.” BaTiO3 + conductors temperature compensator

NTC “high temp.” Fe2O3, NiO, FeCr2O4, La, Sr, temperature sensors conductors CoO3

battery, sensor, IOC Ionic ZrO2(Y2O3), Al2O3 ph-meter, solid oxide fuel conductors

HTC Super YBa2Cu3O4 sensor etc. conductors

Ceramics: Introduction 37 Material Science I

Communication Technology

Piezo - Microphons Optical Fibres

Ceramics: Introduction 38 Material Science I

Sensors & sensor‘s integration

Ceramics: Introduction 39 Material Science I

Nanoscale & Microscale

C-nanotube

field emitter

0.1 1.0 10 100 1,000 10,000 nm ceramic

Ceramics: Introduction 40 Material Science I Filling of Capilaries 5 mm

Si wafer with photo- resist structures

Pouring with PDMS

Cutting edges, plac- ing PDMS on glass substrate and infil- trating capillaries with suspension

Capillary flow of suspension

Removing of PDMS, sintering.

Ceramics: Introduction 41 Material Science I

Multi–walled Oxide Nanotubes

F. Krumeich, H.-J. Muhr, M. Niederberger, F. Bieri, B. Schnyder, and R. Nesper, J. Am. Chem. Soc., 121 [36] 8324–8331 (1999)

20 nm 50 nm

Ceramics: Introduction 42 Material Science I

Aligned Vanadium Oxide Nanotubes

1.5 mm

15 mm

Ceramics: Introduction 43 Material Science I Sensor

„smart“ mikrosensor-array „nano“-structures on

with doted CeO2 CeO2ss Co/Fe/NiO 1-2 nm

CeO2 [Co] [Cu]

detection of: • hydrocarbons storage media • COx • NOx ...

Ceramics: Introduction 45 Material Science I

SnO2-4-Point Contact

10mm

Ceramics: Introduction 46 Material Science I

H2 Sensor Response

Ceramics: Introduction 47 Material Science I

Fuel Cell Principle

Luft

Cathode Electrolyte Anode

H2 + CO H2O + CO2

Ceramics: Introduction 48 Material Science I

Fuel Cell

Ceramics: Introduction 49 Material Science I

Fuel Cell: Sulzer HEXIS

HEXIS = Heat EXchanger Integrated Stack

air cell cell stack

natural gas

water

heating storage Speicher

Ceramics: Introduction 50 Material Science I HTc- Superconductor: Current Limiter Device

Protection of distributions and transmission systems against overcurrents and -voltages. Fault current Limited current Normal current

Prototype

Ceramics: Introduction 51 Material Science I Bi-2212 Superconductor on Ag substrate

Ceramics: Introduction 52 Material Science I High-performance / high-tech ceramics

electrical and nuclear thermical optical chemical & mechanical magnetical technical biological

Function

elektr. insulation temperature heat translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. hardness ferroelectrical n- absorption - insulator refraction index compatibility wear

semiconductor radiation resist. - storage resistency operty r magnetical corrosion resist. P

substrates

sensors fuel heat exchanger Na-vapor lamp Cat-Carriers Cutting bits condenser / capacitor shielding heat shields IR-window Filters bearings oscillators storage contain. insulation Laser material DeNOx-Cat. seals igniting elements heat storage Light switch Gas-Sensors Engine high-temp. conductor Elektrods components „low-temp.“ PTC cond. Implantats superconductors Application batteries

Ceramics: Introduction 54 Material Science I

Porous Structure: Foamed Ceramic

Ceramics: Introduction 55 Material Science I

Hightech Ceramics - Chemical Application: catalysts & filters

loadedclean

Ceramics: Introduction 56 Material Science I

Hightech Ceramics: medical application

Ceramics: Introduction 57 Material Science I Hip Joint Implants Polymer Abrasion

20 000x http://www.swri.org/3pubs/ttoday/fall/implant.htm

Ceramics: Introduction 58 Material Science I

Hip Joints Implants K-K: Ceramic-Ceramic M-P: -PE M-M: Metal-Metal

M-M M-P 0.2 2 M-P M-M 0.1 C-C 1 natural joint C-C

0 0 frictioncoefficient

operating time unitsarbitray in wear operating time

Bioceramics Materials-Properties-Applications A. Ravioglioli, A. Krajewski (ed.) chapman & Hall, London, 1992

Ceramics: Introduction 59 Material Science I

Hüftgelenk-Implantate

acetabulum: polyethylen (socket) or ceramic material ball: metall or ceramic mat. (head) shaft: metall (coated)

bone cement: polymethylmethacrylate (PMMA)

Ceramics: Introduction 60 Material Science I

Hip Joint Implant metal / polymer ceramic / polymer

ceramic / ceramic

Bioceramic Ceramics: Introduction 61 Material Science I Knee Implants

http://www.totaljoint.com/kneerplc.html

Ceramics: Introduction 62 Material Science I

Tooth Crowns and Bridges

metal framework and ceramic veneer

Ceramics: Introduction 63 Material Science I

Tooth Crowns and Bridges

ceramic framework and ceramic veneer

Ceramics: Introduction 64 Load Capacity of Bridges

z p y x elastic

elastic

B B B B

A A Material Science I Dental ceramics

Zirconia 10 High-Tech

] Keramik

1/2 8 Glass-infiltrated

A2O3 m

6 In-Ceram Glass Ceramic mit 30% MPa ZrO In2-Ceram Porcelain (Vita-Celay) 4 Alumina Empress2

Dicor MGC In-Ceram 2 MK II IPS Empress

Toughness [ Toughness Omega 0 0 200 400 600 800 1000 Bend Strength [MPa]

Ceramics: Introduction 66 Material Science I Clinical Evaluation

(Courtesy of University of Zurich) Ceramics: Introduction 67 Material Science I Clinical Evaluation

(Courtesy of University of Zurich) Ceramics: Introduction 68 Material Science I High-performance / high-tech ceramics

electrical and nuclear thermical optical chemical & Mech- magnetical technical biological

anical Function

elektr. insulation temperature heat translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. hardness ferroelectrical n- absorption - insulator refraction index compatibility wear

semiconductor radiation resist. - storage resistency operty r magnetical corrosion resist. P

substrates

sensors fuel heat exchanger Na-vapor lamp Cat-Carriers cutting bits condenser / capacitor shielding heat shields IR-window Filters bearings oscillators storage contain. insulation Laser material DeNOx-Cat. seals igniting elements heat storage Light switch Gas-Sensors Engine high-temp. conductor Elektrods components „low-temp.“ PTC cond. Implantats superconductors Application batteries

Ceramics: Introduction 70 Material Science I

Strength of Ceramic Components

3 High Speed hardmetal

2 ZrO2

Si3N4 1 SiC

Strength (GPa) Strength Al2O3 composite earthenware/ porcelain glass ceramic 0

1850 1900 1950 1960 1970 1980 1990 2000 Year Ceramics: Introduction 71 Material Science I

Hightech Ceramics: Structural Applications

Ceramics: Introduction 73 Material Science I

Fibre Composite Materials Failure in monolithischem and fibre-reinforced SiC

) Fibre-

2 10 000 reinfored 7 500 SiC

5 000 failure F 2 500 sintered SiC

Failure Energy (J/m Failure 0

0 1 2 3 4 5 6 Crack length (mm)

Ceramics: Introduction 77 Material Science I

Fabrication of SiC – fibres from

Si C Si N Si Si n Polycarbosilazane s N Si B Si N C N Si C N n

C Monomeric Units “Single Si C Si N Si B Source B Precursors“ n

Compounds Polyborocarbosilazanes with Desired Elements after J.Bill, F.Aldinger, Z.Metallk., 87, 1996, 827

Ceramics: Introduction 78 Material Science I

SiC : high strength at high

Rupture strength behavior for various high-performance SiC fibers at 1400 °C in air. SA, Tyranno SA fiber from UBE Industries (polycrystaline SiC fiber with small amount of ); Hi-Nic. S, Hi-Nicalon Type S fiber from Nippon .

Ceramics: Introduction 79 Material Science I

Ceramic Materials

• high melting temperature • high hardness • high strength

• electrical, magnetical properties • ferroelektrical properties • optical properties • catalytical properties • biological properties

Ceramics: Introduction 80 Material Science I

Ceramic materials: their future

technology

• electronic application

• medical application

• machining technology

Ceramics: Introduction 81 Material Science I

Ceramics: Introduction 82 Material Science I Ersatz

Ceramics: Introduction 83 Material Science I Classification of Ceramic Materials

Ceramics: Introduction 84 Material Science I Working principle of Me-Oxide Semiconductor - Sensors

Model of inter-grain potential Model of inter-grain potential barrier barrier (in the absence of gases) (in the presence of gases)

Ceramics: Introduction 85