Ceramic Materials

Total Page:16

File Type:pdf, Size:1020Kb

Ceramic Materials Material Science I Ceramic Materials F. Filser & L.J. Gauckler ETH-Zürich, Departement Materials [email protected] HS 2007 Ceramics: Introduction 1 Material Science I Persons in Charge of this Lecture • Dr. F. Filser, HCI G 529, phone 26435, [email protected] • Prof. Dr. L.J. Gauckler HCI G 535, phone 25646, [email protected] • F. Krauss HCI G 538, phone 3 68 34, [email protected] • Dipl.-Ing. J. Kübler EMPA Dübendorf, phone 044 823 4223, [email protected] Ceramics: Introduction 2 Material Science I Overview & preliminary schedule (HS 2007) Nov 26, 07 Introduction on ceramic materials, technology, applications Dec 03, 07 Crystal structures of ceramic materials Dec 10, 07 Potential well of bonding and physical properties & Examples of Structural ceramic materials Dec 17, 07 Examples of structural ceramic materials Dec 21, 07 term finish Ceramics: Introduction 3 Material Science I Overview & preliminary schedule (FS 2008) Feb 18, 08 term starts (5 x ceramic & 9 x polymer) Feb 19, 08 Glass Feb 26, 08 Toughness (JK) Mar 04, 08 Strength & Weibull statistics (JK) Mar 11, 08 Subcritical crack growth, SPT-Diagrams (JK) Mar 18, 08 Proof-testing, creep, thermical properties (JK) Apr 01, 08 polymer part (Prof. D. Schlüter) May 30, 08 term finish Ceramics: Introduction 4 Material Science I Documentation Visit our homepage @ http://ceramics.ethz.ch -> education -> courses -> Materialwissenschaft I und II Ceramics: Introduction 5 Material Science I Sources of Information - ETH Bib -NEBIS http://www.ethbib.ethz.ch/ http://www.nebis.ch/ Ceramics: Introduction 6 Material Science I Recommended Reading • Askeland & Phulé: Science and Engineering of Materials, 2003 • Barsoum MW: Fundamentals of Ceramics. IoP Publishing, 2003 • diverse CEN ISO Standards (look at slides) • Y. -M. Chiang, D. Birnie, D. Kingery, Physical Ceramics, Principles für Ceramic Science and Engineering, Wiley, 1997. • G. Kostorz (ed), High-Tech Ceramics: Viewpoints and Perspectives. Academic Press, 1989. (Chapter 5, 59-101). Ceramics: Introduction 7 Material Science I Recommended Reading • Munz, D., Fett, T.: Ceramics, Mechanical Properties, Failure Behaviour, Materials Selection, Springer, 1999. • David Richerson, Modern Ceramic Engineering, Ed. 2, Dekker, 1992. • Saito Shinroku, Fine Ceramics, Elsevier, 1988. • Verband der Keramischen Industrie e.V, Brevieral Technical Ceramics, ISBN 3-924158-77-0, Fahner Verlag, 2004. (partly on the internet available) • Ichinose Wataru, Introduction to Fine Ceramics, Wiley, 1987. Ceramics: Introduction 8 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramic Materials • Bevieral Technical Ceramics • Silicon-Based Structural Ceramics (Ceramic Transactions), Stephen C. Danforth (Editor), Brian W. Sheldon, American Ceramic Society, 2003, • Silicon Nitride-1, Shigeyuki Somiya (Editor), M. Mitomo (Editor), M. Yoshimura (Editor), Kluwer Academic Publishers, 1990 • Zirconia and Zirconia Ceramics. Second Edition, Stevens, R, Magnesium Elektron Ltd., 1986, pp. 51, 1986 • Stabilization of the tetragonal structure in zirconia microcrystals, RC Garvie - The Journal of Physical Chemistry, 1978 Ceramics: Introduction 9 Material Science I Recommended Reading Chapter IV: Examples of Structural Ceramics Materials • Phase relationships in the zirconia-yttria system, HGM Scott - Journal of Materials Science, 1975 - Springer • Thommy Ekström and Mats Nygren, SiAION Ceramics J Am Cer Soc Volume 75 Page 259 - February 1992 • "Formation of beta -Si3N4 solid solutions in the system Si, Al, O, N by reaction sintering--sintering of an Si3N4 , AlN, Al2 O3 mixture" Boskovic, L J; Gauckler, L J, La Ceramica (Florence). Vol. 33, no. N-2, pp. 18-22. 1980. • Alumina: Processing, Properties, and Applications, Dorre, E; Hubner, H, SpringerVerlag, 1984, pp. 329, 1984 9. Ceramics: Introduction 10 Material Science I Sources of Information – Journals (in general ) • Journal of the American Ceramic Society (J. Am. Ceram. Soc.) • Bulletin of the American Ceramic Society (Bull. Am. Ceram. Soc.) • Journal of the European Ceramic Society (J. Eur. Ceram. Soc.) • Journal of Materials Science (J. Mat. Sci.) • Journal of Materials Research (J. Mat. Res.) Ceramics: Introduction 11 Material Science I Introduction on ceramic materials, technology, applications Ceramics: Introduction 12 Material Science I History of ceramic materials Nitrides Ferrites Titanates Oxide ceramics Europaen Silicon Carbide Porcelain Steatites Greek Vases Earthenware (Steingut**) Potter’s Fire-proof pottery wheel Porcelain Ceramic pots (7000 BC) Stoneware (Steinzeug*) Earthenware -3000 -2000 -1000 0 1700 2000 **): porous, low firing temp (900 -1200°C) Ceramics: Introduction *): dense, high firing temp (>1200°C) 13 Material Science I Ceramics in the Past Giant beaker, Erle 4 000 BC Closed Furnace Stilt houses in Unteruhldingen, Bodensee Ceramics: Introduction 14 Material Science I Egyptian wall relief Rechmuir (1450 BC) ceramic for metallurgy Ceramics: Introduction 15 Material Science I Greek Vase, red on black decor Ceramics: Introduction 16 Material Science I Chinese Porcelain 14th century 18th century 19th century Porcelain imports of the east indian company from china to europe: 1600 – 1800: > 3 000 000 pieces anual dividends: up to 750% pa on the invested money Ceramics: Introduction 17 Material Science I Europaen imports of chinese porcelain 1600 - 1800 AD , in 1000 pieces Ceramics: Introduction 18 Material Science I European Porcelain August der Starke Ehrenfried Walter (1670 - 1733) von Tschirnhaus (1652 - 1708) Ceramics: Introduction 19 Material Science I Europaen Porcelain Quartz Steingut Steinzeug Dental ceramics techn. porcelain Hard porcelain Feldspar 20 40 60 80 Clay Kaolin Porcelain, Prostethis, Porsche Ceramics: Introduction 20 Material Science I High-performance / high-tech ceramics electrical and nuclear thermical optical chemical & mechanical magnetical technical biological Function elektr. insulation temperature heat translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. hardness ferroelectrical n- absorption - insulator refraction index compatibility wear resistency semiconductor radiation resist. - storage operty r magnetical corrosion resist. P substrates fuel heat exchanger Na-vapor lamp Cat-Carriers Cutting bits sensors shielding heat shields IR-window Filters bearings condenser / capacitor storage contain. insulation Laser material DeNOx-Cat. seals oscillators heat storage Light switch Gas-Sensors Engine igniting elements Elektrods components high-temp. conductor Implantats „low-temp.“ PTC cond. Application superconductors batteries Ceramics: Introduction 21 Material Science I High-performance / high-tech Ceramics electrical & nuclear thermical optical chemical & mechanical magnetical technical biological Function Al2O3 UO2 SiO2 Al2O3 Cordierit SiC AlN PuO2 MgO MgO Al2O3 ZrO2 BeO C Si3N4 Mg Al2O3 ZrO2 B4C BaTiO3 SiC Faser Y2O3 / ThO2 MgO BN SrTiO3 B4C SiC PLZT Mg2SiO4 Al2O3 PZT BN Mg2SiO4 Si3N4 SiC Al2O3 3 Al2O3 2SiO2 ZnO ZnO-Bi2O3 Glass Fe2O3 aterial YBa2Cu3O7 SnO2 M U2O5 MgCr2O4-TiO2 TiO2 NiO Fe2ZnO4 - Al2O3 Fe2NiO4 ZrO2 Titanate Li3N TiB2 Ceramics: Introduction 22 Material Science I High-performance / high-tech ceramics electrical and nuclear thermical optical chemical & mechanical magnetical technical biological Function elektr. insulation temperature heat translucency Surface activity strength (T) piezoelectrical resist. - conductor controllable Corrosionresist. hardness ferroelectrical n- absorption - insulator refraction index compatibility wear resistency semiconductor radiation resist. - storage operty r magnetical corrosion resist. P substrates fuel heat exchanger Na-vapor lamp Cat-Carriers Cutting bits sensors shielding heat shields IR-window Filters bearings condenser / capacitor storage contain. insulation Laser material DeNOx-Cat. seals oscillators heat storage Light switch Gas-Sensors Engine igniting elements Elektrods components high-temp. conductor Implantats „low-temp.“ PTC cond. Application superconductors batteries Ceramics: Introduction 24 Material Science I Engineering Ceramics Today: electronics Ceramics: Introduction 25 Material Science I Requirements for substrate materials Property Requirement at… … Condition Heat conductivity () < 100 W/mK … …RoomTemperature (RT) Thermal Expansion Coeff. () 3 - 4 x 10-6/K … …RT – 200C Electrical Resistance () > 1014 cm … …RT Rel. permittivity (r) < 4 … …1Mhz Dielectric loss () < 10-3 … …1Mhz Bend strength () > 500 MN/m2 … …3 P bend strength Ceramics: Introduction 26 Material Science I Electrical Condenser: Principle + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - + + + + + + - - - - - - - - -+- - - +- - - - - - - - - - - - - - - - - - - - - - - big distance - small distance - small distance - small area - large area - large area - no dielectric - no dielectric - with dielectric low higher 80’000 x higher storage capacity storage capacity storage capacity Ceramics: Introduction 27 Material Science I Condenser: principle types fixed capacitor trimming capacitor feedthrough capacitor Ceramics: Introduction 28 Material Science I Condenser/Capacitor device: buildup soldering tag nickel layer ceramic dielectric electrode contact Ceramics: Introduction 29 Material Science I Capacitor: Production technology Ceramics: Introduction 30 Material Science I Piezo ceramics as electro-mechanical transformer F mechanical electrical F electrical mechanical Ceramics: Introduction 31
Recommended publications
  • The New York State College of Ceramics
    ALFRED UNIVERSITY PUBLICATION The New York State College of Ceramics Catalogue Number for 1939-40 Announcemel1ts for 1940-41 Vol. XV November, 1939 No.9 Published ten limes a year by AlitOed University: Monthly in January, April, l,me, October} NovemberJ December, and semi-monthly in February and March. Entered as second class matter at Alfred, N. Y., Janl/ary 25, 1902, Imder Act of Congress July 16, 1894. Acceptance for mailing at special rate of postage provided tor in Section 1103, Act of Octobet' 3, 1917/ authorized 011 Jflly 3, 1918. fALFRED UNIVERSITY PUBLICATION Vol. xv Novembct, 1939 No.9 TIle Nevv York: State College of Ceralnics Catalogue N umber for 1939-40 Announcements for 1940·-41 AI,FRED, NEW YORK TABLE OF CONTENTS L Calendar ........................................ ...... , .......... 5,6 2, Personnel of the Administration and Faculty. .. ..................... 7 3. History, Objectives and Policies....... .. .. ,......................... 9 4. General Information ............ ,....... ........ ,.... .... , .. :.... 14 5. Adluission ........................... ,.. ..... :.............. 24 6. Expenses .................... .. .......... .. 28 7. Scholastic Requirements .......... .................................. 31 8. Departments of Instruction ................... .. 33 Ceramic Engineering ........... .............. .................... 33 GJass TechnoJogy ................ , ........... .. 35 Industrial CCHunic Design ....................... .................. 36 I~esearch .. .. ................ 38 9. Description of Courses
    [Show full text]
  • MSE 403: Ceramic Materials
    MSE 403: Ceramic Materials Course description: Processing, characteristics, microstructure and properties of ceramic materials. Number of credits: 3 Course Coordinator: John McCloy Prerequisites by course: MSE 201 Prerequisites by topic: 1. Basic knowledge of thermodynamics. 2. Elementary crystallography and crystal structure. 3. Mechanical behavior of materials. Postrequisites: None Textbooks/other required 1. Carter, C.B. and Norton, M.G. Ceramic Materials Science and Engineering, materials: Springer, 2007. Course objectives: 1. Review of crystallography and crystal structure. 2. Review of structure of atoms, molecules and bonding in ceramics. 3. Discussion on structure of ceramics. 4. Effects of structure on physical properties. 5. Ceramic Phase diagrams. 6. Discussion on defects in ceramics. 7. Introduction to glass. 8. Discussion on processing of ceramics. 9. Introduction to sintering and grain growth. 10. Introduction to mechanical properties of ceramics. 11. Introduction to electrical properties of ceramics. 12. Introduction to bioceramics. 13. Introduction to magnetic ceramics. Topics covered: 1. Introduction to crystal structure and crystallography. 2. Fundamentals of structure of atoms. 3. Structure of ceramics and its influence on properties. 4. Binary and ternary phase diagrams. 5. Point defects in ceramics. 6. Glass and glass-ceramic composites. 7. Ceramics processing and sintering. 8. Mechanical properties of ceramics. 9. Electrical properties of ceramics. 10. Bio-ceramics. 11. Ceramic magnets. Expected student outcomes: 1. Knowledge of crystal structure of ceramics. 2. Knowledge of structure-property relationship in ceramics. 3. Knowledge of the defects in ceramics (Point defects). 4. Knowledge of glass and glass-ceramic composite materials. 5. Introductory knowledge on the processing of bulk ceramics. 6. Applications of ceramic materials in structural, biological and electrical components.
    [Show full text]
  • Materials Science and Engineering 1
    Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program.
    [Show full text]
  • Biological Materials: a Materials Science Approach✩
    JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Review article Biological materials: A materials science approachI Marc A. Meyers∗, Po­Yu Chen, Maria I. Lopez, Yasuaki Seki, Albert Y.M. Lin University of California, San Diego, La Jolla, CA, United States ARTICLEINFO ABSTRACT Article history: The approach used by Materials Science and Engineering is revealing new aspects Received 25 May 2010 in the structure and properties of biological materials. The integration of advanced Received in revised form characterization, mechanical testing, and modeling methods can rationalize heretofore 20 August 2010 unexplained aspects of these structures. As an illustration of the power of this Accepted 22 August 2010 methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3­PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. ⃝c 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction and basic components ............................................................................................................................................. 1 2. Hierarchical nature of biological materials ................................................................................................................................... 3 3. Structural biological materials.....................................................................................................................................................
    [Show full text]
  • Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters
    applied sciences Article Simultaneous PAN Carbonization and Ceramic Sintering for Fabricating Carbon Fiber-Ceramic Composite Heaters Daiqi Li 1,2, Bin Tang 1,2 , Xi Lu 1, Quanxiang Li 1, Wu Chen 2, Xiongwei Dong 2, Jinfeng Wang 1,2,* and Xungai Wang 1,2,* 1 Deakin University, Institute for Frontier Materials, Geelong/Melbourne, Victoria 3216, Australia; [email protected] (D.L.); [email protected] (B.T.); [email protected] (X.L.); [email protected] (Q.L.) 2 Wuhan Textile University, Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan 430073, China; [email protected] (W.C.); [email protected] (X.D.) * Correspondence: [email protected] (X.W.); [email protected] (J.W.); Tel.: +61-3-5227-2012 (J.W.) Received: 15 October 2019; Accepted: 14 November 2019; Published: 17 November 2019 Abstract: In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 °C after 15 s, 204 °C after 90 s, and 292 °C after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.
    [Show full text]
  • Ceramic Carbides: the Tough Guys of the Materials World
    Ceramic Carbides: The Tough Guys of the Materials World by Paul Everitt and Ian Doggett, Technical Specialists, Goodfellow Ceramic and Glass Division c/o Goodfellow Corporation, Coraopolis, Pa. Silicon carbide (SiC) and boron carbide (B4C) are among the world’s hardest known materials and are used in a variety of demanding industrial applications, from blasting-equipment nozzles to space-based mirrors. But there is more to these “tough guys” of the materials world than hardness alone—these two ceramic carbides have a profile of properties that are valued in a wide range of applications and are worthy of consideration for new research and product design projects. Silicon Carbide Use of this high-density, high-strength material has evolved from mainly high-temperature applications to a host of engineering applications. Silicon carbide is characterized by: • High thermal conductivity • Low thermal expansion coefficient • Outstanding thermal shock resistance • Extreme hardness FIGURE 1: • Semiconductor properties Typical properties of silicon carbide • A refractive index greater than diamond (hot-pressed sheet) Chemical Resistance Although many people are familiar with the Acids, concentrated Good Acids, dilute Good general attributes of this advanced ceramic Alkalis Good-Poor (see Figure 1), an important and frequently Halogens Good-Poor overlooked consideration is that the properties Metals Fair of silicon carbide can be altered by varying the Electrical Properties final compaction method. These alterations can Dielectric constant 40 provide knowledgeable engineers with small Volume resistivity at 25°C (Ohm-cm) 103-105 adjustments in performance that can potentially make a significant difference in the functionality Mechanical Properties of a finished component.
    [Show full text]
  • Introduction to Metal-Ceramic Technology Third Edition
    Introduction to Metal-Ceramic Technology Third Edition Naylor_FM.indd 1 10/20/17 8:57 AM IntroductionMetal-Ceramic to Technology Third Edition W. Patrick Naylor, DDS, MPH, MS Adjunct Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California With contributions by Charles J. Goodacre, DDS, MSD Distinguished Professor of Restorative Dentistry Loma Linda University School of Dentistry Loma Linda, California Satoshi Sakamoto, MDT Master Dental Technician Loma Linda University School of Dentistry Loma Linda, California Berlin, Barcelona, Chicago, Istanbul, London, Milan, Moscow, New Delhi, Paris, Prague, Sao Paulo, Seoul, Singapore, Tokyo, Warsaw Naylor_FM.indd 3 10/20/17 8:58 AM Dedications To my dear wife, Penelope, for her skillful reviewing and patience over the many months devoted to the production of this third edition. And to the memory of my mentor, teacher, and friend, Dr Ralph W. Phillips. As an expert of international renown, his contributions to dental materials science and dentistry in general are immeasurable. This is a small tribute to a man who left an indelible mark on the dental profession. Library of Congress Cataloging-in-Publication Data Names: Naylor, W. Patrick, author. Title: Introduction to metal-ceramic technology / W. Patrick Naylor. Description: Third edition. | Hanover Park, IL : Quintessence Publishing Co, Inc, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2017031693 (print) | LCCN 2017034109 (ebook) | ISBN 9780867157536 (ebook) | ISBN 9780867157529 (hardcover) Subjects: | MESH: Metal Ceramic Alloys | Dental Porcelain | Technology, Dental--methods Classification: LCC RK653.5 (ebook) | LCC RK653.5 (print) | NLM WU 180 |DDC 617.6/95--dc23 LC record available at https://lccn.loc.gov/2017031693 97% © 2018 Quintessence Publishing Co, Inc Quintessence Publishing Co, Inc 4350 Chandler Drive Hanover Park, IL 60133 www.quintpub.com 5 4 3 2 1 All rights reserved.
    [Show full text]
  • Materials Science
    Materials Science Materials Science is an interdisciplinary field combining physics (fundamental laws of nature), chemistry (interactions of atoms) and biology (how life interacts with materials) to elucidate the inherent properties of basic and complex systems. This includes optical (interaction with light), electrical (interaction with charge), magnetic and structural properties of everyday electronics, clothing and architecture. The Materials Science central dogma follows the sequence: Structure—Properties—Design—Performance. This involves relating the nanostructure of a material to its macroscale physical and chemical properties. By understanding and then changing the structure, material scientists can create custom materials with unique properties. The goal of the materials science minor is to create a cross-disciplinary approach to fundamental topics in basic and applied physical sciences. Students will gain experience and perspectives from the disciplines of chemistry, physics and biology. The minor places a strong emphasis on current nanoscale research methods in addition to the basics of electronic, optical and mechanical properties of materials. Any student with an interest in pursuing the cross-disciplinary minor in materials science should consult with the coordinator of the minor. Students are encouraged to declare their participation in their sophomore year but no later than the end of the junior year. Students also should seek an adviser from participating faculty. Degree Requirements for the Minor General College requirements
    [Show full text]
  • Ceramic Engineering Building
    CERAMIC ENGINEERING BUILDING UNIVERSITY OF ILLINOIS URBANA CHAMPAIGN, ILLINOIS Description of the Building and Program of Dedication, December 6 unci 7, 1916 THE TRUSTEES THE PRESIDENT AND THE FACULTY OF THIS UNIVERSITY OF ILLINOIS CORDIALLY INVITE YOU TO ATTEND THE DEDICATION OF THE CERAMIC ENGINEERING BUDUDING ON WEDNESDAY AND THURSDAY DECEMBER SIXTH AND SEVENTH NINETEEN HUNDRED SIXTEEN URBANA. ILLINOIS CERAMIC ENGINEERING BUILDING UNIVERSITY OF ILLINOIS URBANA - - CHAMPAIGN ILLINOIS DESCRIPTION OF BUILDING AND PROGRAM OF DEDICATION DECEMBER 6 AND 7, 1916 PROGRAM FOR THE DEDICATION OP THE CERAMIC ENGINEERING BUILDING OF THE UNIVERSITY OF ILLINOIS December 6 and 7> 1916 WEDNESDAY, DECEMBER 6 1.30 p. M. In the office of the Department of Ceramic Engineering, Room 203 Ceramic Engineering Building Meeting of the Advisory Board of the Department of Ceramic Engineering: F. W. BUTTERWORTH, Chairman, Danville A. W. GATES Monmouth W. D. GATES Chicago J. W. STIPES Champaign EBEN RODGERS Alton 2.30-4.30 p, M. At the Ceramic Engineering Building Opportunity will be given to all friends of the University to inspect the new building and its laboratories. INTRODUCTORY SESSION 8 P.M. At the University Auditorium DR. EDMUND J. JAMBS, President of the University, presiding. Brief Organ Recital: Guilnant, Grand Chorus in D Lemare, Andantino in D-Flat Faulkes, Nocturne in A-Flat Erb, Triumphal March in D-Flat J. LAWRENCE ERB, Director of the Uni­ versity School of Music and University Organist. PROGRAM —CONTINUED Address: The Ceramic Resources of America. DR. S. W. STRATTON, Director of the Na­ tional Bureau of Standards, Washington, D. C. I Address: Science as an Agency in the Develop­ ment of the Portland Cement Industries, MR.
    [Show full text]
  • CERAMICS I and II GRADES 9-12 EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: August 29, 2016 M
    CERAMICS I AND II GRADES 9-12 EWING PUBLIC SCHOOLS 2099 Pennington Road Ewing, NJ 08618 Board Approval Date: August 29, 2016 Michael Nitti Produced by: James Woidill, Supervisor Superintendent In accordance with The Ewing Public Schools’ Policy 2230, Course Guides, this curriculum has been reviewed and found to be in compliance with all policies and all affirmative action criteria. Table of Contents Page Course Description and Rationale 1 Scope and Sequence of Essential Learning: Ceramics I: Unit 1: Introduction to Ceramics/History 2 Unit 2: Procedures, Properties and Vocabulary of Clay 5 Unit 3: Hand-Building Techniques and Glazing 8 Unit 4: Refining, Finishing and Glazing 11 Unit 5: The Firing Process 14 Ceramics II: Unit 6: Hand-Building/Throwing Techniques 17 Unit 7: Exploring the Creative Process 20 Unit 8: Art in a Historical and Cultural Context 23 Unit 9: Contemporary Ceramists/Careers in Ceramics 26 Ceramics I and II Worksheet 29 Ceramic Critique Form 30 Art Criticism Scoring Guide 31 Glossary of Ceramic Terms 33 1 Course Description and Rationale Ceramics I: Ceramics I is an introduction to working with clay and understanding the ceramic process from start to finish. The relationship between form and function will be critically examined as students learn basic hand building and techniques. The direction of their work will evolve as they reflect on their changing definitions of art. Ceramics I is designed for students who have never had ceramics at the high school level. Students are taught how to build pottery by use of pinch, coil and slab methods of construction.
    [Show full text]
  • UMR MSE News
    September 2005 Vol. 1, No. 1 UMR MSE News A Newsletter for the Alumni of the Metallurgical, Ceramic, and Materials Engineering programs of the Missouri School of Mines/University of Missouri-Rolla Chairman’s Letter here beyond what it has been in many years, and that is Greetings from Rolla! You are now holding the first beginning to garner some widespread attention. For edition of our MSE Newsletter a new venture from the example, a 2004 survey of MSE departments by the faculty, students, and staff of the Metallurgical University Materials Council indicates that the UMR Engineering and Ceramic Engineering programs at the MSE undergrad program is one of the five largest in the University of Missouri-Rolla. Since July 2004, these US. The 2004 US News & World Report listed our pro- st two venerable programs have formed the core of gram as the 41 ranked graduate MSE program in the UMR’s new Materials Science and Engineering US the first time that UMR has been included in these Department. This newsletter will review some of the rankings. highlights of our first year and give you an idea about some plans for the future. We had several changes in departmental personnel this year. Associate Prof. Chris Ramsay, a fixture in the It is worth noting at the outset that the formation of the metallurgical engineering program since 1989, took a MSE department does not signal the end of independ- leave of absence last May to develop his consulting ent ceramic engineering and metallurgical engineering business. Priscilla Winner, the Metallurgy and MSE programs.
    [Show full text]
  • Silicon Carbide: Synthesis and Properties 16
    Silicon Carbide: Synthesis and Properties 361 16X Silicon Carbide: Synthesis and Properties Houyem Abderrazak1 and Emna Selmane Bel Hadj Hmida2 1 Institut National de Recherche et d’Analyse Physico-Chimique, Pole Technologique Sidi Thabet, 2020, Tunisia 2 Institut Préparatoire Aux Etudes d’Ingénieurs El Manar 2092, Tunisia 1. Introduction Silicon carbide is an important non-oxide ceramic which has diverse industrial applications. In fact, it has exclusive properties such as high hardness and strength, chemical and thermal stability, high melting point, oxidation resistance, high erosion resistance, etc. All of these qualities make SiC a perfect candidate for high power, high temperature electronic devices as well as abrasion and cutting applications. Quite a lot of works were reported on SiC synthesis since the manufacturing process initiated by Acheson in 1892. In this chapter, a brief summary is given for the different SiC crystal structures and the most common encountered polytypes will be cited. We focus then on the various fabrication routes of SiC starting from the traditional Acheson process which led to a large extent into commercialization of silicon carbide. This process is based on a conventional carbothermal reduction method for the synthesis of SiC powders. Nevertheless, this process involves numerous steps, has an excessive demand for energy and provides rather poor quality materials. Several alternative methods have been previously reported for the SiC production. An overview of the most common used methods for SiC elaboration such as physical vapour deposition (PVT), chemical vapour deposition (CVD), sol-gel, liquid phase sintering (LPS) or mechanical alloying (MA) will be detailed. The resulting mechanical, structural and electrical properties of the fabricated SiC will be discussed as a function of the synthesis methods.
    [Show full text]