Fieldwork the BANGLADESH PYTHON PROJECT GOOGLE EARTH COORDINATES HERE

Total Page:16

File Type:pdf, Size:1020Kb

Fieldwork the BANGLADESH PYTHON PROJECT GOOGLE EARTH COORDINATES HERE 70 Fieldwork THE BANGLADESH PYTHON PROJECT GOOGLE EARTH COORDINATES HERE INSIDEINSIDE THETHE WILDSWILDS OFOF LAWACHARALAWACHARA Volunteers from all over the world join in a yearly field workshop to help conserve the extraordinary biodiversity of a National Park. And you can be one of them 71 The Asian Forest Tortoise Manouria emys phayrei is one of 25 species of freshwater turtles and tortoises found in Bangladesh - almost 10% of the global diversity of chelonians. Unfortunately, 18 of these, including this M. emys, are threatened with extinction. On the title page, a juvenile Burmese Python Python molurus bivittatus. 72 TEXT AND PHOTOS BY SCOTT TRAGESER eep inside the Indo-Burma India, and Bangladesh, these dedicated Dbiodiversity hotspot lays a hidden jewel volunteers came for ten days to lend a with a unique and diverse confluence of hand surveying the area and to learn wildlife: Lawachara National Park. This about the research and techniques incredible region is still relatively involved with the Project. unexplored by researchers, meaning that many of its cryptic denizens still In July of 2013, Caesar and I implanted remain to be acknowledged by science. radio-transmitters into three Burmese In a recent exploration of the Park under Pythons Python bivitattus to track this the purview of the Bangladesh Python locally endangered species’ movements Project, an independent research effort, and to learn how they are utilizing the some new light was shed on a few of human-altered landscape of Lawachara these rare and novel creatures. As one National Park. Many of the pythons could expect, during these surveys many have home ranges that occur in healthy other charismatic creatures were forest but also overlap with tea encountered and subsequently plantations and even villagers’ photographed; all in an effort to backyards. This poses a problem if we showcase the importance of maintaining are going to help increase their numbers the protection that the park offers to its in the park. Villagers don’t respond well many endangered hosts. to pythons eating their chickens and ducks, and won’t hesitate to elevate the Caesar Rahman, a Dhaka resident and value of their livelihoods over that of the rising conservationist, is the head snakes’. It also poses an interesting herpetological researcher working in question for the project: how exactly are Lawachara. With the help of CARINAM, the pythons utilizing this ever-changing he has become a hero for its scaly, oft- and ever-diminishing landscape? The overlooked residents. As with all most important data we hope to acquire research though, time and money is is their day-to-day and seasonal needed to make progress, and securing movement patterns. This is what we these necessities can be the most need to know in order to determine what challenging part. This is where the environmental factors the pythons participants of the “Bangladesh Python require so that one day the villagers can Project Workshop” come to the rescue. peacefully co-exist with these apex Heralding from Australia, America, predators. A beautiful juvenile Bengal Monitor Lizard Varanus bengalensis - continued on page 75 a common lizard, yet seldom seen due to its quick and alert nature. › 73 A portrait of what is possibly one of the rarest inhabitants of the Sundarbans, the Northern River Terrapin Batagur baska. None have been observed in the wild for several years but during our surveys in the coming summers, hopefully this will change. Notice the mosquito coming in for a landing! 74 One of Bangladesh’s most adorable creatures: the beautifully marked Phayre’s Leaf-monkey Trachypithecus phayrei, a denizen of the forest canopy. 75 A similar question also applies to the upon a new python whilst routinely Elongated Tortoise Indotestudo elongata, tracking one of our transmittered which the project has recently expanded individuals. Unfortunately we to include. Very few of these tortoises still discovered that this python had been exist in the park and, like the python, are relocated by the forest department a still considered a delicacy for many few months prior after rescuing it from a villagers. Though, thanks to the property some distance away. With a educational outreach efforts of Caesar’s limited number of transmitters available team, the locals in the surrounding to use, we have to be picky about which villages are slowing beginning to snakes we track. In this case Caesar understand the importance of coexisting decided to only insert a less costly PIT with these animals. The word was tag, as her habits would not be the quickly spread that we were looking for same as a resident python’s and thusly tortoises and with a little bit of luck, not as useful to the python study. If we Caesar got a call that a child in the encounter her again though, the PIT tag village of Baghmara had found one right will tell us exactly who she is and data before our team was to arrive. Two other can still be taken. tortoises from a nearby forest were also saved from the soup pots of a rural Ten days in the jungle can take its toll on market in order to test the feasibility of a you so we end the workshop with a translocation effort. Mortality rates can leisurely boat ride down the legendary be high when relocating reptiles but Sundarbans: the world’s largest fortunately, our introductions have gone mangrove system. Three days of better than anticipated with every normally cost-prohibitive birding, individual surviving, sans one poaching mammaling, and herping accompanied victim. Health of the animals was by good food and good company. obviously a concern, thus the introduced tortoises were thoroughly checked to As the workshop is an annual event, ensure no diseases were being brought every summer there are several in. Along with radio-tracking, daily opportunities for enthusiastic individuals forest surveys were conducted to to lend their hand at helping to save the discover what treasures the forest had in herpetofauna of Bangladesh. If this store for us. interests you, spots for June are still available so please don’t hesitate to Towards the end of our expedition, one contact Scott Trageser at of the locally hired trackers stumbled [email protected]. Finding Elongated tortoises Indotestudo elongata in the forest is near- impossible without the aid of dogs or a radio transmitter such as this one. 76 One of the great classic tales of mimicry in nature belongs to Gray’s leaf insect Phyllium bioculatum. 77 Red-tailed Bamboo Pitviper Trimeresurus erythrurus are one of the more common snakes in most Asian rainforests. Normally found crossing the road after a heavy rain. 78 Smith's Leaf-litter Frogs Leptobatrachium smithi in amplexus, off to find a suitable site to deposit their eggs. 79 An Orange Blister Beetle Mylabris pustulata taking flight. Participants inserting a PIT tag in a Burmese Python Python molurus bivittatus. This Micryletta was one of two potentially new species discovered during 2014. 80 Red-tailed Bamboo Pitviper Trimeresurus erythrurus. This child in the village of Bagmara saved this tortoise from certain death. 81 Day and night, throughout the forests of Southeast Asia, one can hear Tokay Geckos Gekko gecko from hundreds of meters away calling “Tow-Kay, Tow-Kay!” 82 Ganges River Dolphins Platanista gangetica and Irrawaddy Dolphins were encountered several times during our three days in the Sundarbans. A fierce persona masks this arboreal, rear-fanged Gray Cat Snake’s Boiga siamensis Assam Snail Eaters Pareas monticola, like all Pareas, specialize on rather benign bite. eating snails and exhibit jaw adaptations to assist with the shucking. 83 The sexually dimorphic and endangered Western Hoolock Gibbon Hoolock hoolock is one of five species of primate that we see every trip. 84 Elongated Tortoises Indotestudo elongata were once very common colonists of the forest leaf-litter, but decades of unsustainable hunting has decimated their populations. .
Recommended publications
  • On Further Specimens of the Pit Viper Trimeresurus Erythrurus
    Journal of Animal Diversity Online ISSN 2676-685X Volume 3, Issue 1 (2021) Research Article http://dx.doi.org/10.52547/JAD.2021.3.1.7 On further specimens of the Pit viper Trimeresurus erythrurus (Cantor, 1839) (Squamata: Viperidae), with description of a topotype and range extension to the Godavari Basin, peninsular India Kaushik Deutiˡ, Ramaswamy Aengals², Sujoy Rahaˡ, Sudipta Debnathˡ, Ponnusamy Sathiyaselvam3 and Sumaithangi Rajagopalan Ganesh4* 1Zoological Survey of India, Herpetology Division, 27 JL Nehru Road, Kolkata 700016, West Bengal, India ²Zoological Survey of India, Sunderbans Field Research Center, Canning 743329, West Bengal, India 3Bombay Natural History Society, Hornbill House, Shaheed Bhagat Singh Marg, Mumbai 400023, India 4Chennai Snake Park, Rajbhavan post, Chennai 600022, Tamil Nadu, India *Corresponding author : [email protected] Abstract We report on a topotypical specimen of the spot-tailed pit viper Trimeresurus erythrurus recorded from Sunderbans in India and a distant, southerly, range extension from Kakinada mangroves, based on preserved (n= 1, seen in 2019) and live uncollected (n= 2; seen in 2014) specimens, respectively. The specimens Received: 26 December 2020 (n= 3) share the following characteristics: verdant green dorsum, yellow iris, Accepted: 27 January 2021 white ventrolateral stripes in males, 23 midbody scale rows, 161–172 ventrals, Published online: 17 July 2021 61–76 subcaudals, and reddish tail tip. Drawing on the published records, its apparent rarity within its type locality and lack of records from the Circar Coast of India, our study significantly adds to the knowledge of the distribution and morphology of this species. Being a medically important venomous snake, its presence in the Godavari mangrove basin calls for wider dissemination of this information among medical practitioners, in addition to fundamental researchers like academics and herpetologists.
    [Show full text]
  • WHO Guidance on Management of Snakebites
    GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Venom Protein of the Haematotoxic Snakes Cryptelytrops Albolabris
    S HORT REPORT ScienceAsia 37 (2011): 377–381 doi: 10.2306/scienceasia1513-1874.2011.37.377 Venom protein of the haematotoxic snakes Cryptelytrops albolabris, Calloselasma rhodostoma, and Daboia russelii siamensis Orawan Khow, Pannipa Chulasugandha∗, Narumol Pakmanee Research and Development Department, Queen Saovabha Memorial Institute, Patumwan, Bangkok 10330 Thailand ∗Corresponding author, e-mail: pannipa [email protected] Received 1 Dec 2010 Accepted 6 Sep 2011 ABSTRACT: The protein concentration and protein pattern of crude venoms of three major haematotoxic snakes of Thailand, Cryptelytrops albolabris (green pit viper), Calloselasma rhodostoma (Malayan pit viper), and Daboia russelii siamensis (Russell’s viper), were studied. The protein concentrations of all lots of venoms studied were comparable. The chromatograms, from reversed phase high performance liquid chromatography, of C. albolabris venom and C. rhodostoma venom were similar but they were different from the chromatogram of D. r. siamensis venom. C. rhodostoma venom showed the highest number of protein spots on 2-dimensional gel electrophoresis (pH gradient 3–10), followed by C. albolabris venom and D. r. siamensis venom, respectively. The protein spots of C. rhodostoma venom were used as reference proteins in matching for similar proteins of haematotoxic snakes. C. albolabris venom showed more similar protein spots to C. rhodostoma venom than D. r. siamensis venom. The minimum coagulant dose could not be determined in D. r. siamensis venom. KEYWORDS: 2-dimensional gel electrophoresis, reverse phase high performance liquid chromatography, minimum coag- ulant dose INTRODUCTION inducing defibrination 5–7. The venom of D. r. sia- mensis directly affects factor X and factor V of the In Thailand there are 163 snake species, 48 of which haemostatic system 8,9 .
    [Show full text]
  • New Mexico Geological Society 2019 Spring Meeting Abstracts
    New Mexico Geological Society 2019 Spring Meeting Abstracts TOWARDS UNDERSTANDING THE have led to a stratigraphic nomenclature that by university and museum geologists is confirma- EFFECTS OF ATMOSPHERIC PRESSURE appears to be applicable over a large area of the tion of the ready recognition and utility of these VARIATIONS ON LONG-PERIOD state, from the Sierra Oscura of Socorro County subdivisions in regional stratigraphy, mapping HORIZONTAL SEISMIC DATA: northward to the Sandia Mountains of Bernalillo and economic geology. A CASE STUDY County, a transect of about 150 km. Thus, Mid- Alexis C. B. Alejandro, Adam T. Ringler, David dle and Upper Pennsylvanian (Atokan-Virgilian) C. Wilson, Robert E. Anthony, marine and marginal-marine strata are assigned AN OVERVIEW OF THE ALBUQUERQUE and Sabrina V. Moore to the Sandia Formation (containing a relative SEISMOLOGICAL LABORATORY AND abundance of siliciclastic deposits), the overlying RECENT ADVANCES IN SEISMIC Incoherent noise generated by seismometer tilt Gray Mesa Formation (dominantly carbonate INSTRUMENTATION caused by atmospheric pressure variations often facies), and the Atrasado Formation (alternating Robert E. Anthony, Adam T. Ringler, limits seismological studies utilizing long-period siliciclastic- and carbonate-dominated intervals). and David C. Wilson (>10 s period), horizontal-component seismic A number of intraformational units (members) records. Several case studies have suggested have been identified, with eight members in the The Albuquerque Seismological Laboratory methodologies for correcting these unwanted Middle-Upper Pennsylvanian Atrasado For- (ASL) was established in 1961 in one of the signals using collocated pressure records. However, mation presently recognized. An uninterrupted seismically quietest regions in the country in it is unclear if these corrections are applicable section of the Pennsylvanian System is exposed in order to test seismometers for what is now the to a variety of different geologic settings and Tijeras Canyon east of Albuquerque, NM, along U.S.
    [Show full text]
  • NHBSS 061 1G Hikida Fieldg
    Book Review N$7+IST. BULL. S,$0 SOC. 61(1): 41–51, 2015 A Field Guide to the Reptiles of Thailand by Tanya Chan-ard, John W. K. Parr and Jarujin Nabhitabhata. Oxford University Press, New York, 2015. 344 pp. paper. ISBN: 9780199736492. 7KDLUHSWLOHVZHUHÀUVWH[WHQVLYHO\VWXGLHGE\WZRJUHDWKHUSHWRORJLVWV0DOFROP$UWKXU 6PLWKDQG(GZDUG+DUULVRQ7D\ORU7KHLUFRQWULEXWLRQVZHUHSXEOLVKHGDV6MITH (1931, 1935, 1943) and TAYLOR 5HFHQWO\RWKHUERRNVDERXWUHSWLOHVDQGDPSKLELDQV LQ7KDLODQGZHUHSXEOLVKHG HJ&HAN-ARD ET AL., 1999: COX ET AL DVZHOODVPDQ\ SDSHUV+RZHYHUWKHVHERRNVZHUHWD[RQRPLFVWXGLHVDQGQRWJXLGHVIRURUGLQDU\SHRSOH7ZR DGGLWLRQDOÀHOGJXLGHERRNVRQUHSWLOHVRUDPSKLELDQVDQGUHSWLOHVKDYHDOVREHHQSXEOLVKHG 0ANTHEY & GROSSMANN, 1997; DAS EXWWKHVHERRNVFRYHURQO\DSDUWRIWKHIDXQD The book under review is very well prepared and will help us know Thai reptiles better. 2QHRIWKHDXWKRUV-DUXMLQ1DEKLWDEKDWDZDVP\ROGIULHQGIRUPHUO\WKH'LUHFWRURI1DWXUDO +LVWRU\0XVHXPWKH1DWLRQDO6FLHQFH0XVHXP7KDLODQG+HZDVDQH[FHOOHQWQDWXUDOLVW DQGKDGH[WHQVLYHNQRZOHGJHDERXW7KDLDQLPDOVHVSHFLDOO\DPSKLELDQVDQGUHSWLOHV,Q ZHYLVLWHG.KDR6RL'DR:LOGOLIH6DQFWXDU\WRVXUYH\KHUSHWRIDXQD+HDGYLVHGXV WRGLJTXLFNO\DURXQGWKHUH:HFROOHFWHGIRXUVSHFLPHQVRIDibamusZKLFKZHGHVFULEHG DVDQHZVSHFLHVDibamus somsaki +ONDA ET AL 1RZ,DPYHU\JODGWRNQRZWKDW WKLVERRNZDVSXEOLVKHGE\KLPDQGKLVFROOHDJXHV8QIRUWXQDWHO\KHSDVVHGDZD\LQ +LVXQWLPHO\GHDWKPD\KDYHGHOD\HGWKHSXEOLFDWLRQRIWKLVERRN7KHERRNLQFOXGHVQHDUO\ DOOQDWLYHUHSWLOHV PRUHWKDQVSHFLHV LQ7KDLODQGDQGPRVWSLFWXUHVZHUHGUDZQZLWK H[FHOOHQWGHWDLO,WLVDYHU\JRRGÀHOGJXLGHIRULGHQWLÀFDWLRQRI7KDLUHSWLOHVIRUVWXGHQWV
    [Show full text]
  • Vol. 25 No. 1 March, 2000 H a M a D R Y a D V O L 25
    NO.1 25 M M A A H D A H O V D A Y C R R L 0 0 0 2 VOL. 25NO.1 MARCH, 2000 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% HAMADRYAD Vol. 25. No. 1. March 2000 Date of issue: 31 March 2000 ISSN 0972-205X Contents A. E. GREER & D. G. BROADLEY. Six characters of systematic importance in the scincid lizard genus Mabuya .............................. 1–12 U. MANTHEY & W. DENZER. Description of a new genus, Hypsicalotes gen. nov. (Sauria: Agamidae) from Mt. Kinabalu, North Borneo, with remarks on the generic identity of Gonocephalus schultzewestrumi Urban, 1999 ................13–20 K. VASUDEVAN & S. K. DUTTA. A new species of Rhacophorus (Anura: Rhacophoridae) from the Western Ghats, India .................21–28 O. S. G. PAUWELS, V. WALLACH, O.-A. LAOHAWAT, C. CHIMSUNCHART, P. DAVID & M. J. COX. Ethnozoology of the “ngoo-how-pak-pet” (Serpentes: Typhlopidae) in southern peninsular Thailand ................29–37 S. K. DUTTA & P. RAY. Microhyla sholigari, a new species of microhylid frog (Anura: Microhylidae) from Karnataka, India ....................38–44 Notes R. VYAS. Notes on distribution and breeding ecology of Geckoella collegalensis (Beddome, 1870) ..................................... 45–46 A. M. BAUER. On the identity of Lacerta tjitja Ljungh 1804, a gecko from Java .....46–49 M. F. AHMED & S. K. DUTTA. First record of Polypedates taeniatus (Boulenger, 1906) from Assam, north-eastern India ...................49–50 N. M. ISHWAR. Melanobatrachus indicus Beddome, 1878, resighted at the Anaimalai Hills, southern India .............................
    [Show full text]
  • 2019 Fry Trimeresurus Genus.Pdf
    Toxicology Letters 316 (2019) 35–48 Contents lists available at ScienceDirect Toxicology Letters journal homepage: www.elsevier.com/locate/toxlet Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal T viperid snake genus Trimeresurus ⁎ Jordan Debonoa, Mettine H.A. Bosb, Nathaniel Frankc, Bryan Frya, a Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD, 4072, Australia b Division of Thrombosis and Hemostasis, Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands c Mtoxins, 1111 Washington Ave, Oshkosh, WI, 54901, USA ARTICLE INFO ABSTRACT Keywords: Snake envenomation globally is attributed to an ever-increasing human population encroaching into snake Venom territories. Responsible for many bites in Asia is the widespread genus Trimeresurus. While bites lead to hae- Coagulopathy morrhage, only a few species have had their venoms examined in detail. We found that Trimeresurus venom Fibrinogen causes haemorrhaging by cleaving fibrinogen in a pseudo-procoagulation manner to produce weak, unstable, Antivenom short-lived fibrin clots ultimately resulting in an overall anticoagulant effect due to fibrinogen depletion. The Phylogeny monovalent antivenom ‘Thai Red Cross Green Pit Viper antivenin’, varied in efficacy ranging from excellent neutralisation of T. albolabris venom through to T. gumprechti and T. mcgregori being poorly neutralised and T. hageni being unrecognised by the antivenom. While the results showing excellent neutralisation of some non-T. albolabris venoms (such as T. flavomaculaturs, T. fucatus, and T. macrops) needs to be confirmed with in vivo tests, conversely the antivenom failure T.
    [Show full text]
  • MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
    MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on.
    [Show full text]
  • Status and Diversity of Snakes (Reptilia: Squamata: Serpentes) at the Chittagong University Campus in Chittagong
    Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2015 | 7(14): 8159–8166 Status and diversity of snakes (Reptilia: Squamata: Serpentes) at the Chittagong University Campus in Chittagong, Bangladesh ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) Communication Short M.F. Ahsan 1, I.K.A. Haidar 2 & M.M. Rahman 3 OPEN ACCESS 1 Professor, 2,3 Student, Department of Zoology, University of Chittagong, Chittagong 4331, Bangladesh 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected] Abstract: A study was conducted on the status and diversity of snakes Most of the snakes are harmless and even beneficial of the Chittagong University Campus (CUC) between September 2013 to humans and to the natural ecosystem. They are good and December 2014, and on preserved snake specimens of museums of CUC (Department of Zoology, University of Chittagong; Institute of friends of farmers and help in maintaining the ecological Marine Sciences and Fisheries, University of Chittagong; and Institute balance. Snakes are found all over the world except the of Forestry and Environmental Sciences, University of Chittagong). Thirty-six species of snakes belonging to 22 genera and five families Arctic Region, New Zealand and Ireland (Goin & Goin (Typhlopidae, Pythonidae, Colubridae, Elapidae and Viperidae) were 1971). There are about 3,496 species of snakes under recorded from CUC during the study period. Colubridae comprised the 26 families around the world (Uetz & Hošek 2015). highest (24 species i.e., 66.67%) number of species and Pythonidae the lowest (1 species). Checkered Keelback Xenochrophis piscator Snakes of Bangladesh are still poorly known.
    [Show full text]
  • List Reptiles Recorded from Sundarbans Aquatic Species: Order: Chelonia Sl
    List Reptiles Recorded From Sundarbans Aquatic species: Order: Chelonia Sl. Species Scientific Name No. 1 Northern river Terrapin Batagur baska 2 Flap shell turtle Lissemys punctata 3 Chitra Turtle Chitra indica 4 Indian roofed turtle Kachuga tecta 5 Olive Ridley Turtle Lepidochelys olivacea 6 Green Turtle Chelonia mydas 7 Hawksbill Turtle Eretmochelys imbricata Order : Squamata Sl. No. Species Scientfic Name 1 Common Checkered Xenochrophis piscator Keelback 2 Common smooth Enhydris enhydris water snake 3 Dog faced Water Cerberus rhynchops Snake 4 Wart Snake or file Acrochordus granulatus snake 5 Glossy Marsh snake Gerarda prevostiana 6 Sea-snake Enhylrina schistose 7 Estuarine Sea-snake Hydrophis obscurus 8 Black banded Sea- Hydrophis nigrocintus snake 9 Blue Sea-snake Hydrophis caerulescens 10 Sea-snake Microcephalophis gracilis 11 Sea-snake Microcephalophis cantoris 12 Estuarine Crocodile Crocodylus porosus 13 Tokay gecko Gekko gecko 14 Mouse Gecko Hemidactylus frinatas 15 House Gecko Hemidactylus flaviridis 16 Brook’s House Hemidactylus brookii Gecko 17 Indian Garden Lizard Calotes versicolor 18 Indian Chameleon Chamaeleon zeylanicus 19 Riopa punctata 20 Water Monitor Varanus salavator 21 Monitor Lizard Varanus flavescens 22 Ornate Flying Snake Chrysopelea ornata or Gliding Snake 23 Blind Snake Typhlops porrectus 24 Common Blind Typhlops braminus snake 25 Indian Rock Python Python molurus 26 Common Sand Boa Gongylophis conicus 27 Trinket Snake Elaphe helena 28 Indian Rat Snake Ptyas mucosa 29 Banded kukri Snake Oligodon arnensis 30 Common vine snake Ahaetulla nasuta 31 Common wolf snake Lycodon aulicus 32 Striped Keelback Amphiesma stolatum 33 Olivaceous Keelback Atretium schistosum 34 Bronze-back Derdreluphis ahactulla 35 Common Indian Dendrelaphis tristis Bronzeback 36 Common Indian Bungarus caeruleus Krait 37 Banded Krait Bungarus fasciatus 38 Indian Cobra Naja naja 39 King Cobra Ophiophagus hannah 40 Rusell’s viper Daboia russelli 41 Spot tailed Pit Viper Trimeresurus erythrurus .
    [Show full text]
  • How Is the COVID-19 Outbreak Affecting Wildlife Around the World?
    Open Journal of Ecology, 2020, 10, 497-517 https://www.scirp.org/journal/oje ISSN Online: 2162-1993 ISSN Print: 2162-1985 How Is the COVID-19 Outbreak Affecting Wildlife around the World? Abdel Fattah N. Abd Rabou Department of Biology, Faculty of Science, Islamic University of Gaza, Gaza Strip, Palestine How to cite this paper: Abd Rabou, A.N. Abstract (2020) How Is the COVID-19 Outbreak Affecting Wildlife around the World? Open The COVID-19 is the infectious disease caused by the most recently discov- Journal of Ecology, 10, 497-517. ered coronavirus at an animal market in Wuhan, China. Many wildlife spe- https://doi.org/10.4236/oje.2020.108032 cies have been suggested as possible intermediate sources for the transmission Received: June 2, 2020 of COVID-19 virus from bats to humans. The quick transmission of COVID-19 Accepted: August 1, 2020 outbreak has imposed quarantine measures across the world, and as a result, Published: August 4, 2020 most of the world’s towns and cities fell silent under lockdowns. The current Copyright © 2020 by author(s) and study comes to investigate the ways by which the COVID-19 outbreak affects Scientific Research Publishing Inc. wildlife globally. Hundreds of internet sites and scientific reports have been This work is licensed under the Creative reviewed to satisfy the needs of the study. Stories of seeing wild animals Commons Attribution International roaming the quiet, deserted streets and cities during the COVID-19 outbreak License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ have been posted in the media and social media.
    [Show full text]
  • Reproductive Biology and Natural History of the White-Lipped Pit Viper (Trimeresurus Albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island
    University of Rhode Island DigitalCommons@URI Natural Resources Science Faculty Publications Natural Resources Science 2017 Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong Anne Devan-Song University of Rhode Island Paolo Martelli See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs Citation/Publisher Attribution Devan-Song, A., Martelli, P., & Karraker, N. E. (2017). Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray, 1842) in Hong Kong. Herpetological Conservation and Biology, 12(1), 41-55. Retrieved from http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf Available at: http://www.herpconbio.org/Volume_12/Issue_1/Devan-Song_etal_2017.pdf This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Anne Devan-Song, Paolo Martelli, and Nancy E. Karraker This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nrs_facpubs/115 Herpetological Conservation and Biology 12:41–55. Submitted: 30 September 2015; Accepted: 18 January 2017; Published: 30 April 2017. Reproductive Biology and Natural History of the White-lipped Pit Viper (Trimeresurus albolabris Gray,
    [Show full text]