Manouria Emys (Schlegel and Müller 1840) – Asian Giant Tortoise, Giant Asian Forest Tortoise

Total Page:16

File Type:pdf, Size:1020Kb

Manouria Emys (Schlegel and Müller 1840) – Asian Giant Tortoise, Giant Asian Forest Tortoise Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project ofTestudinidae the IUCN/SSC Tortoise— Manouria and Freshwater emys Turtle Specialist Group 086.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.086.emys.v1.2015 © 2015 by Chelonian Research Foundation • Published 24 February 2015 Manouria emys (Schlegel and Müller 1840) – Asian Giant Tortoise, Giant Asian Forest Tortoise CRAIG B. STANFORD1, PRATYAPORN WANCHAI2, CHUCK SCHAFFER3, RICK SCHAFFER4, AND KUMTHORN THIRAKHUPT2 1Department of Biological Sciences, University of Southern California, Los Angeles, California 90089 USA [[email protected]]; 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand [[email protected], [email protected]]; 313811 Tortuga Point Drive, Jacksonville, Florida 32225 USA [[email protected]]; 4University of Florida, College of Engineering, Gainesville, Florida 32611 USA [[email protected]] SUMMARY. – The Giant Asian Forest Tortoise, Manouria emys (Family Testudinidae), is the largest tortoise species in mainland Asia, with a straight carapace length (CL) of up to at least 600 mm, and mass up to 37 kg. Two subspecies, M. e. emys and M. e. phayrei, are distinguished by geographic distribution, coloration, plastral scute pattern, and maximum size. Manouria is considered to be among the most primitive of living tortoise genera. The species occurs in hilly wet forest; its diet includes green vegetation, mushrooms, bamboo shoots, and fallen fruits. Unlike most tortoises, which tend to prefer relatively arid habitats, M. emys prefers a mesic habitat and is often found in and around cool flowing streams, sitting for days in water or mud, or foraging in such habitats. Although the species is active all year round, some individuals exhibit an inactive period of up to two months in the cool dry season. The species exhibits unusual nesting activity; females build mound nests of forest floor debris, deposit large annual clutches of up to 60 eggs, and guard the nest for the early portion of incubation. Despite their size, the behavioral ecology of M. emys has been little studied. The species has apparently been extirpated in the westernmost portion of its range and is highly threatened everywhere else. Healthy populations are known to occur in a few protected areas in Thailand and Indonesia, but most remaining habitat is being rapidly degraded and destroyed, and the species continues to be collected for food and smuggled into the pet trade. DISTRIBUTION. – Bangladesh, Brunei (?), India, Indonesia, Malaysia, Myanmar, Singapore (extirpated), Thailand. From Assam in India and eastern Bangladesh in the west, through Myanmar and western Thailand, and south through peninsular Malaysia to Sumatra and Borneo in the east. SYNONYMY. – Testudo emys Schlegel and Müller 1840, Manouria emys, Manouria emys emys, Geochelone emys, Geochelone emys emys, Testudo emys emys, Testudo emydoides Duméril and Bibron in Duméril and Duméril 1851, Manouria emydoides, Manouria fusca Gray 1854, Teleopus luxatus Le Conte 1854, Manouria luxata, Testudo (Scapia) falconeri Gray 1869 (partim, nomen dubium), Testudo falconeri, Scapia falconeri. SUBSPECIES. – Currently two recognized: 1) Manouria emys emys (Asian Brown Giant Tortoise) (distribution: Brunei [?], Indonesia, Malaysia, Singapore [extirpated], Thailand), and 2) Manouria emys phayrei (Burmese Black Giant Tortoise, Burmese Mountain Tortoise) (synonymy: Testudo phayrei Blyth 1853, Scapia phayrei, Manouria emys phayrei, Testudo (Scapia) falconeri Gray 1869 (partim, nomen dubium), Testudo falconeri, Scapia falconeri, Testudo nutapundi Reimann in Nutaphand 1979, Geochelone nutapundi, Manouria emys nutapundi, Geochelone emys nutapundi, Manouria nutapundi) (distribution: Bangladesh, India, Myanmar, Thailand). STATUS. – IUCN 2014 Red List: Endangered (EN A1cd+2cd; assessed 2000); TFTSG Draft Red List: Critically Endangered (CR, assessed 2011); CITES: Appendix II (as Testudinidae spp.). Taxonomy. — Schlegel and Müller originally described and Barbour (1989), means “rare domed one”. The subspecies Testudo emys in 1840; the etymology of the specific epithet Manouria emys phayrei is named for Arthur Purves Phayre, is either from the Greek “emus”, meaning freshwater turtle Commissioner of British Burma, who collected the specimen (Ernst and Barbour 1989), or borrowed from the European Blythe (1853) described as Testudo phayrei. The genus Manouria pond turtle, Emys (Obst 1988). Manouria, according to Ernst was described as separate from Testudo by Gray (1854). 086.2 Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 5 Figure 1. Manouria emys phayrei in Kaeng Krachan National Park, Thailand. Photo by Craig Stanford. Although Schlegel and Müller (1840) described Testudo (1980) reassigned the species to Manouria, and Obst (1983) emys as a terrestrial chelonian from Sumatra, throughout its recognized T. nutapundi as M. emys nutapundi, with M. early taxonomic history the species was considered aquatic. emys emys as the nominative subspecies. Bour (1984) There was perhaps some credibility in this belief due to the resurrected the subspecies name M. e. phayrei, recognizing its species’ primitive morphology and riparian habitat. Of the nomenclatural priority over nutapundi. For a more extensive six specimens first collected, four remain in Leiden, and one examination of Manouria taxonomy, see Bour (1998). in Paris, from which Duméril and Bibron in Duméril and Manouria is considered by many authorities (e.g., Duméril (1851) described Testudo emydoides. Gray (1844) Pritchard 1979; Moll 1989) to be the most primitive genus considered T. emys to be synonymous with Geoemyda of living tortoises, based on a lack of many of the derived spinosa, as did Cantor (1847), who collected two specimens morphological features of other tortoises, such as mental from Penang, Malaysia. One of these specimens found its glands (Winokur and Legler 1975), carpal bone alignment way to London and to Gray (1860), who designated it as (Auffenberg 1966), and primitive gular scute structure M. fusca (Gray 1854). Strauch (1862) later examined and (Crumley 1982, 1984; Highfield 1990), and preference for validated Manouria as a separate genus. a wet rather than arid habitat (Crumley 1982). However, Nutaphand (1979) redescribed M. emys phayrei as Heiss et al. (2011) noted that its oropharyngeal anatomy and Testudo nutapundi (Reimann in Nutaphand 1979). Bour tongue were more similar to other derived testudinids. Le et Figure 2. Manouria emys emys in the wild in Tabin Wildlife Reserve, Figure 3. Plastrons of Manouria emys emys (left) and Manouria emys Sabah, East Malaysia (Borneo). Photo by Chuck Schaffer. phayrei (right), showing the typical lack of midline pectoral scute contact in M. e. emys. Photo by Chuck Schaffer. Testudinidae — Manouria emys 086.3 Figure 4. Historic distribution of Manouria emys in Southeast Asia. Purple lines = boundaries delimiting major watersheds (level 3 hydrologic unit compartments – HUCs); red dots = museum and literature occurrence records based on Iverson (1992) plus more recent data, and the authors’ personal data; yellow dots = historic observations where populations have likely been extirpated; broad gray line = approximate boundary between the two subspecies, north of the Thailand–Malaysia border, with M. emys phayrei to the north and M. emys emys to the south and east; green shading = projected historic native distribution based on GIS-defined level 10 HUCs constructed around verified localities and then adding HUCs that connect known point localities in the same watershed or physiographic region, and similar habitats and elevations as verified HUCs (Buhlmann et al. 2009; TTWG 2014), and adjusted based on authors’ subsequent data. al. (2006) examined the phylogenetics of the Testudinidae Thai name for the species, tao hok, and the Sabahan name, and confirmed the basal position of Manouria within the kura-kura anamkaki. The species has a fairly uniform color family, and most closely related to Gopherus, while also as adults; light brown in M. e. emys and darker brown to noting only minor differences in mitochondrial DNA patterns black in M. e. phayrei. Hatchling M. e. emys are light brown, between the two recognized subspecies, M. e. emys and M. while M. e. phayrei are nearly gray. e. phayrei. Manouria emys is Asia’s largest tortoise, with carapace Description. — Compared to most other tortoise taxa, lengths up to 600 mm and mass of up to 37 kg. Manouria M. emys has a low-domed carapace. Prominent spurs are emys phayrei is the larger of the two recognized subspecies. located in the region between the tail and rear legs, making It is distinguished from M. emys emys by somewhat larger the tortoise appear somewhat to have six legs, leading to the average maximum size and its darker color, although whether Figure 5. Manouria emys phayrei female in captive assurance colony. Figure 6. Manouria emys emys from peninsular Malaysia. Photo by Photo by Chuck Schaffer. Mark Auliya. 086.4 Conservation Biology of Freshwater Turtles and Tortoises • Chelonian Research Monographs, No. 5 the maximum recorded size for M. e. phayrei is larger than P.P. van Dijk, pers. comm.). The southern subspecies, M. e. that of M. e. emys is unclear. The two subspecies can usually emys, ranges into Malaysia, Sumatra, and Borneo, and has
Recommended publications
  • Competing Generic Concepts for Blanding's, Pacific and European
    Zootaxa 2791: 41–53 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Competing generic concepts for Blanding’s, Pacific and European pond turtles (Emydoidea, Actinemys and Emys)—Which is best? UWE FRITZ1,3, CHRISTIAN SCHMIDT1 & CARL H. ERNST2 1Museum of Zoology, Senckenberg Dresden, A. B. Meyer Building, D-01109 Dresden, Germany 2Division of Amphibians and Reptiles, MRC 162, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20013-7012, USA 3Corresponding author. E-mail: [email protected] Abstract We review competing taxonomic classifications and hypotheses for the phylogeny of emydine turtles. The formerly rec- ognized genus Clemmys sensu lato clearly is paraphyletic. Two of its former species, now Glyptemys insculpta and G. muhlenbergii, constitute a well-supported basal clade within the Emydinae. However, the phylogenetic position of the oth- er two species traditionally placed in Clemmys remains controversial. Mitochondrial data suggest a clade embracing Actinemys (formerly Clemmys) marmorata, Emydoidea and Emys and as its sister either another clade (Clemmys guttata + Terrapene) or Terrapene alone. In contrast, nuclear genomic data yield conflicting results, depending on which genes are used. Either Clemmys guttata is revealed as sister to ((Emydoidea + Emys) + Actinemys) + Terrapene or Clemmys gut- tata is sister to Actinemys marmorata and these two species together are the sister group of (Emydoidea + Emys); Terra- pene appears then as sister to (Actinemys marmorata + Clemmys guttata) + (Emydoidea + Emys). The contradictory branching patterns depending from the selected loci are suggestive of lineage sorting problems. Ignoring the unclear phy- logenetic position of Actinemys marmorata, one recently proposed classification scheme placed Actinemys marmorata, Emydoidea blandingii, Emys orbicularis, and Emys trinacris in one genus (Emys), while another classification scheme treats Actinemys, Emydoidea, and Emys as distinct genera.
    [Show full text]
  • Manual for the Differentiation of Captive-Produced and Wild-Caught Turtles and Tortoises (Testudines)
    Image: Peter Paul van Dijk Image:Henrik Bringsøe Image: Henrik Bringsøe Image: Andrei Daniel Mihalca Image: Beate Pfau MANUAL F O R T H E DIFFERENTIATION OF CAPTIVE-PRODUCED AND WILD-CAUGHT TURTLES AND TORTOISES (TESTUDINES) PREPARED BY SPECIES360 UNDER CONTRACT FOR THE CITES SECRETARIAT Manual for the differentiation of captive-produced and wild-caught turtles and tortoises (Testudines) This document was prepared by Species360 under contract for the CITES Secretariat. Principal Investigators: Prof. Dalia A. Conde, Ph.D. and Johanna Staerk, Ph.D., Species360 Conservation Science Alliance, https://www.species360.orG Authors: Johanna Staerk1,2, A. Rita da Silva1,2, Lionel Jouvet 1,2, Peter Paul van Dijk3,4,5, Beate Pfau5, Ioanna Alexiadou1,2 and Dalia A. Conde 1,2 Affiliations: 1 Species360 Conservation Science Alliance, www.species360.orG,2 Center on Population Dynamics (CPop), Department of Biology, University of Southern Denmark, Denmark, 3 The Turtle Conservancy, www.turtleconservancy.orG , 4 Global Wildlife Conservation, globalwildlife.orG , 5 IUCN SSC Tortoise & Freshwater Turtle Specialist Group, www.iucn-tftsG.org. 6 Deutsche Gesellschaft für HerpetoloGie und Terrarienkunde (DGHT) Images (title page): First row, left: Mixed species shipment (imaGe taken by Peter Paul van Dijk) First row, riGht: Wild Testudo marginata from Greece with damaGe of the plastron (imaGe taken by Henrik BrinGsøe) Second row, left: Wild Testudo marginata from Greece with minor damaGe of the carapace (imaGe taken by Henrik BrinGsøe) Second row, middle: Ticks on tortoise shell (Amblyomma sp. in Geochelone pardalis) (imaGe taken by Andrei Daniel Mihalca) Second row, riGht: Testudo graeca with doG bite marks (imaGe taken by Beate Pfau) Acknowledgements: The development of this manual would not have been possible without the help, support and guidance of many people.
    [Show full text]
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • EMYDIDAE P Catalogue of American Amphibians and Reptiles
    REPTILIA: TESTUDINES: EMYDIDAE P Catalogue of American Amphibians and Reptiles. Pseudemysj7oridana: Baur, 1893:223 (part). Pseudemys texana: Brimley, 1907:77 (part). Seidel, M.E. and M.J. Dreslik. 1996. Pseudemys concinna. Chrysemysfloridana: Di tmars, 1907:37 (part). Chrysemys texana: Hurter and Strecker, 1909:21 (part). Pseudemys concinna (LeConte) Pseudemys vioscana Brimley, 1928:66. Type-locality, "Lake River Cooter Des Allemands [St. John the Baptist Parrish], La." Holo- type, National Museum of Natural History (USNM) 79632, Testudo concinna Le Conte, 1830: 106. Type-locality, "... rivers dry adult male collected April 1927 by Percy Viosca Jr. of Georgia and Carolina, where the beds are rocky," not (examined by authors). "below Augusta on the Savannah, or Columbia on the Pseudemys elonae Brimley, 1928:67. Type-locality, "... pond Congaree," restricted to "vicinity of Columbia, South Caro- in Guilford County, North Carolina, not far from Elon lina" by Schmidt (1953: 101). Holotype, undesignated, see College, in the Cape Fear drainage ..." Holotype, USNM Comment. 79631, dry adult male collected October 1927 by D.W. Tesrudofloridana Le Conte, 1830: 100 (part). Type-locality, "... Rumbold and F.J. Hall (examined by authors). St. John's river of East Florida ..." Holotype, undesignated, see Comment. Emys (Tesrudo) concinna: Bonaparte, 1831 :355. Terrapene concinna: Bonaparte, 183 1 :370. Emys annulifera Gray, 183 1:32. Qpe-locality, not given, des- ignated as "Columbia [Richland County], South Carolina" by Schmidt (1953: 101). Holotype, undesignated, but Boulenger (1889:84) listed the probable type as a young preserved specimen in the British Museum of Natural His- tory (BMNH) from "North America." Clemmys concinna: Fitzinger, 1835: 124.
    [Show full text]
  • New Mexico Geological Society 2019 Spring Meeting Abstracts
    New Mexico Geological Society 2019 Spring Meeting Abstracts TOWARDS UNDERSTANDING THE have led to a stratigraphic nomenclature that by university and museum geologists is confirma- EFFECTS OF ATMOSPHERIC PRESSURE appears to be applicable over a large area of the tion of the ready recognition and utility of these VARIATIONS ON LONG-PERIOD state, from the Sierra Oscura of Socorro County subdivisions in regional stratigraphy, mapping HORIZONTAL SEISMIC DATA: northward to the Sandia Mountains of Bernalillo and economic geology. A CASE STUDY County, a transect of about 150 km. Thus, Mid- Alexis C. B. Alejandro, Adam T. Ringler, David dle and Upper Pennsylvanian (Atokan-Virgilian) C. Wilson, Robert E. Anthony, marine and marginal-marine strata are assigned AN OVERVIEW OF THE ALBUQUERQUE and Sabrina V. Moore to the Sandia Formation (containing a relative SEISMOLOGICAL LABORATORY AND abundance of siliciclastic deposits), the overlying RECENT ADVANCES IN SEISMIC Incoherent noise generated by seismometer tilt Gray Mesa Formation (dominantly carbonate INSTRUMENTATION caused by atmospheric pressure variations often facies), and the Atrasado Formation (alternating Robert E. Anthony, Adam T. Ringler, limits seismological studies utilizing long-period siliciclastic- and carbonate-dominated intervals). and David C. Wilson (>10 s period), horizontal-component seismic A number of intraformational units (members) records. Several case studies have suggested have been identified, with eight members in the The Albuquerque Seismological Laboratory methodologies for correcting these unwanted Middle-Upper Pennsylvanian Atrasado For- (ASL) was established in 1961 in one of the signals using collocated pressure records. However, mation presently recognized. An uninterrupted seismically quietest regions in the country in it is unclear if these corrections are applicable section of the Pennsylvanian System is exposed in order to test seismometers for what is now the to a variety of different geologic settings and Tijeras Canyon east of Albuquerque, NM, along U.S.
    [Show full text]
  • Vol. 25 No. 1 March, 2000 H a M a D R Y a D V O L 25
    NO.1 25 M M A A H D A H O V D A Y C R R L 0 0 0 2 VOL. 25NO.1 MARCH, 2000 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 2% 3% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% 4% 5% HAMADRYAD Vol. 25. No. 1. March 2000 Date of issue: 31 March 2000 ISSN 0972-205X Contents A. E. GREER & D. G. BROADLEY. Six characters of systematic importance in the scincid lizard genus Mabuya .............................. 1–12 U. MANTHEY & W. DENZER. Description of a new genus, Hypsicalotes gen. nov. (Sauria: Agamidae) from Mt. Kinabalu, North Borneo, with remarks on the generic identity of Gonocephalus schultzewestrumi Urban, 1999 ................13–20 K. VASUDEVAN & S. K. DUTTA. A new species of Rhacophorus (Anura: Rhacophoridae) from the Western Ghats, India .................21–28 O. S. G. PAUWELS, V. WALLACH, O.-A. LAOHAWAT, C. CHIMSUNCHART, P. DAVID & M. J. COX. Ethnozoology of the “ngoo-how-pak-pet” (Serpentes: Typhlopidae) in southern peninsular Thailand ................29–37 S. K. DUTTA & P. RAY. Microhyla sholigari, a new species of microhylid frog (Anura: Microhylidae) from Karnataka, India ....................38–44 Notes R. VYAS. Notes on distribution and breeding ecology of Geckoella collegalensis (Beddome, 1870) ..................................... 45–46 A. M. BAUER. On the identity of Lacerta tjitja Ljungh 1804, a gecko from Java .....46–49 M. F. AHMED & S. K. DUTTA. First record of Polypedates taeniatus (Boulenger, 1906) from Assam, north-eastern India ...................49–50 N. M. ISHWAR. Melanobatrachus indicus Beddome, 1878, resighted at the Anaimalai Hills, southern India .............................
    [Show full text]
  • Blanding's Turtle
    Blanding’s Turtle (Emydoidea blandingii): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project July 20, 2006 Justin D. Congdon, Ph.D.1 and Douglas A. Keinath2 1University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, SC 29802 2Wyoming Natural Diversity Database, University of Wyoming, P. O. Box 3381, Laramie, WY 82071 Peer Review Administered by Society for Conservation Biology Congdon, J.D. and D.A. Keinath. (2006, July 20). Blanding’s Turtle (Emydoidea blandingii): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http://www.fs.fed.us/r2/ projects/scp/assessments/blandingsturtle.pdf [date of access]. ACKNOWLEDGMENTS We thank Dr. Jeff Lang for information about the Blanding’s turtle in Nebraska and Michael Pappas for information on breeding behavior of the Blanding’s turtle. Janet Hostetter, Owen Kinney, and Roy Nagle provided photographs. Nancy Dickson made comments on earlier drafts of the report. AUTHORS’ BIOGRAPHIES Justin Congdon is a Professor Emeritus at the University of Georgia’s Savannah River Ecology Laboratory (SREL) where he was a Senior Research Scientist until 2001. He holds adjunct positions at the University of Michigan and Arizona State University. Research focus at SREL was primarily on toxicology of reptiles, amphibians, and fish related to coal ash disposal. He has conducted long-term research on aspects of aging, ecology, and life histories of three species of turtles (painted turtles, Blanding’s turtles, and snapping turtles) on the University of Michigan’s Edwin S. George Reserve (31 years), the Sonoran mud turtles in the Chiricahua Mountains in southeastern Arizona (16 years), and on hatchling orientation and dispersal from nests and the composition of a seven species turtle community in the Weaver Dunes area in southeastern Minnesota (6 years).
    [Show full text]
  • Assessment for the Western Pond Turtle Final Report
    Assessment for the Western Pond Turtle Final Report Client: United States Fish and Wildlife Service Primary Advisor: Brad Shaffer Secondary Advisor: Peter Scott Team Members: Zachary Devereux Hogan Fenster Stephanie Manzo Thomas Morgan Griffin Nicholson Delacey Rodriguez Bianca Sanchez University of California, Los Angeles Executive Summary Western Pond Turtle Report June 2019 The western pond turtle (WPT), recently separated into two species, is a candidate for listing under the Endangered Species Act. To assess the current status of both species, we conducted a risk assessment and analysis of historical, current, and future conditions. Background This assessment for the WPT compiles the best available literature, scientific information, museum data, and population viability analyses to characterize the biological status of the two species: Emys (Actinemys) pallida and Emys (Actinemys) marmorata. The goal of this assessment is to inform the listing decision for the two species under the federal Endangered Species Act, and to act as a source of information for future conservation efforts. Species Biology and Needs The WPT occurs in a variety of semi-aquatic habitats ranging from lakes, rivers, and streams to man-made channels, agricultural ponds, and sewage treatment ponds. Emys pallida can be found from northern Baja California, Mexico to the southern San Francisco Bay area along the coast and inland deserts. It can be found along the Southern Coast Ranges and the western parts of the San Joaquin Valley. Emys marmorata can be found from the San Francisco bay area north to Washington state and south along the eastern side of the San Joaquin Valley. The WPT is a medium sized pond turtle that has a maximum life span of about 45 years (Holland 1994, p.
    [Show full text]
  • Notes Potential Injury and Mortality in Actinemys
    Western Wildlife 4:81–85 • 2017 Submitted: 6 March 2017; Accepted: 19 October 2017. NOTES POTENTIAL INJURY AND MORTALITY IN ACTINEMYS (EMYS) PALLIDA DURING RESTORATION AND MAINTENANCE ACTIVITIES JEFF A. ALVAREZ1,5, GARY A. KITTLESON2, KELLY DAVIDSON3, AND LOUISA M. ASSEO4 1The Wildlife Project, P.O. Box 188888, Sacramento, California 95818 2Kittleson Environmental Consulting, 3284 Malibu Drive, Santa Cruz, California 95062 3Mt. View Sanitary District, P.O. Box 2757, Martinez, California 94553 4Oasis Veterinary Hospital, 6635 Alhambra Avenue, Suite 100, Martinez, California 94553 5Corresponding author, email: [email protected] Abstract.—Losses of uncommon or declining species are frequently mitigated through habitat restoration, enhancement, management, and/or replacement. These actions require maintenance that is seldom considered a concern for the species being managed. On two sites in central California, both of which were undergoing habitat management activities in support of southwestern pond turtle populations, maintenance activities, especially mowing, appeared to have an unanticipated negative impact on two life stages of this at-risk species. At both sites, turtles were either killed or seriously injured when mowing occurred in uplands occupied by turtle nests or adults turtles. Minor adjustments to equipment may reduce or eliminate turtle injury or mortality on sites where maintenance is required. Key Words.—conservation; declining; management; mowing; risk; Southwestern Pond Turtle The Western Pond Turtle (Actinemys marmorata) is compliance with the California Environmental Quality a species of special concern in California, a critically Act of 1970. While conducting restoration and habitat sensitive species in Oregon, and an endangered species maintenance work on two sites in coastal California, in Washington State (Washington Department of Fish we documented two instances in which Southwestern and Wildlife 1993; Oregon Department of Fish and Pond Turtles were either killed or injured by tow-behind Wildlife 2008; Thompson et al.
    [Show full text]
  • Sequence-Based Molecular Phylogenetics and Phylogeography of the American Box Turtles (Terrapene Spp.) with Support from DNA Barcoding ⇑ Bradley T
    Molecular Phylogenetics and Evolution 68 (2013) 119–134 Contents lists available at SciVerse ScienceDirect Molec ular Phylo genetics and Evolution journal homepage: www.elsevier.com/locate/ympev Sequence-based molecular phylogenetics and phylogeography of the American box turtles (Terrapene spp.) with support from DNA barcoding ⇑ Bradley T. Martin a, , Neil P. Bernstein b, Roger D. Birkhead c, Jim F. Koukl a, Steven M. Mussmann d, John S. Placyk Jr. a a Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA b Deptartment of Natural and Applied Sciences, Mount Mercy University, Cedar Rapids, IA 52402, USA c Alabama Science in Motion, Auburn University, Auburn, AL 36849, USA d Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA article info abstract Article history: The classification of the American box turtles (Terrapene spp.) has remained enigmatic to systematis ts. Received 31 December 2012 Previous comp rehensive phylogenetic studies focused primarily on morphology. The goal of this study Accepted 8 March 2013 was to re-assess the classification of Terrapene spp. by obtaining DNA sequence data from a broad geo- Available online 20 March 2013 graphic range and from all four recogni zed species and 11subspecies within the genus. Tissue samples were obtained for all taxa except for Terrapene nelsoni klauberi . DNA was extracted, and the mitochondrial Keywords: DNA (mtDNA) cytochrome b (Cytb) and nuclear DNA (nucDNA) glyceraldehyde-3-phosph ate-dehydrogenase Box turtle (GAPD) genes were amplified via polymera sechain reaction and sequenced. In addition, the mtDNA gene DNA barcoding commonly used for DNA barcoding (cytochrome oxidase c subunit I; COI) was amplified and sequenced to Molecular phylogenetics Phylogeography calculate pairwise percent DNA sequence divergen cecompariso nsfor each Terrapene taxon.
    [Show full text]
  • MAHS Care Sheet Master List *By Eric Roscoe Care Sheets Are Often An
    MAHS Care Sheet Master List *By Eric Roscoe Care sheets are often an excellent starting point for learning more about the biology and husbandry of a given species, including their housing/enclosure requirements, temperament and handling, diet , and other aspects of care. MAHS itself has created many such care sheets for a wide range of reptiles, amphibians, and invertebrates we believe to have straightforward care requirements, and thus make suitable family and beginner’s to intermediate level pets. Some species with much more complex, difficult to meet, or impracticable care requirements than what can be adequately explained in a one page care sheet may be multiple pages. We can also provide additional links, resources, and information on these species we feel are reliable and trustworthy if requested. If you would like to request a copy of a care sheet for any of the species listed below, or have a suggestion for an animal you don’t see on our list, contact us to let us know! Unfortunately, for liability reasons, MAHS is unable to create or publish care sheets for medically significant venomous species. This includes species in the families Crotilidae, Viperidae, and Elapidae, as well as the Helodermatidae (the Gila Monsters and Mexican Beaded Lizards) and some medically significant rear fanged Colubridae. Those that are serious about wishing to learn more about venomous reptile husbandry that cannot be adequately covered in one to three page care sheets should take the time to utilize all available resources by reading books and literature, consulting with, and working with an experienced and knowledgeable mentor in order to learn the ropes hands on.
    [Show full text]
  • (Manouria Emys) and a Malaysian Giant Turtle
    WWW.IRCF.ORG/REPTILESANDAMPHIBIANSJOURNALTABLE OF CONTENTS IRCF REPTILES & AMPHIBIANSIRCF REPTILES • VOL15, &NO AMPHIBIANS 4 • DEC 2008 189 • 27(1):89–90 • APR 2020 IRCF REPTILES & AMPHIBIANS CONSERVATION AND NATURAL HISTORY TABLE OF CONTENTS FEATURE ARTICLES Only. Chasing in Bullsnakes Captivity? (Pituophis catenifer sayi) in Wisconsin: An Interaction between On the Road to Understanding the Ecology and Conservation of the Midwest’s Giant Serpent ...................... Joshua M. Kapfer 190 Two Threatened. The Shared History of Treeboas (Corallus grenadensis Chelonians,) and Humans on Grenada: an Asian Giant A Hypothetical Excursion ............................................................................................................................Robert W. Henderson 198 TortoiseRESEARCH ARTICLES (Manouria emys) and a Malaysian . The Texas Horned Lizard in Central and Western Texas ....................... Emily Henry, Jason Brewer, Krista Mougey, and Gad Perry 204 . The Knight Anole (Anolis equestris) in Florida Giant ............................................. TurtleBrian J. Camposano, Kenneth (Orlitia L. Krysko, Kevin M. Enge, Ellenborneensis M. Donlan, and Michael Granatosky )212 CONSERVATION ALERT Matthew Mo . World’s Mammals in Crisis ............................................................................................................................................................. 220 . More Than MammalsP.O. ...............................................................................................................................Box
    [Show full text]