J. Hattori Bot. Lab. No. 74: 121- 138 (Nov. 1993)

CHEMICAL CONSTITUENTS OF 25 LIVERWORTS

1 1 TOSHIHIRO HASHIMOT0 , YOSHINORI ASAKAWA , KATSUYUK.l NAKASHIMA1 AND MOTOO Toru1

ABSTRACT. Twenty-five liverworts were investigated chemically and 20 new compounds isolated and their structures characterized by spectroscopic evidence, X-ray analysis and chemical correlation. The chemosystematics of each species is discussed.

INTRODUCTION Liverworts are rich sources of terpenoids and lipophilic aromatic compounds; these are very valuable for chemosystematic investigation. Previously, we have reported the chemical constituents of 700 species of liverworts and discussed the chemosystematics at family and level (Asakawa l 982a, b; 1993, Asakawa & Inoue l 984a; l 987a). Here we report the isolation and distribution of the terpenoids and aromatic compounds of 25 liverworts and discuss the chemical markers of each species.

EXPERJMENTALS The liverworts collected in Japan and other countries shown in Table 1, were purified and dried for 1 to 7 days and then ground mechanically and extracted with ether or methanol for 7 to 30 days. Each extract was filtered and the solvent evaporated to give green crude oils, followed by chromatography on silica gel or Sephadex LH-20, using n­ hexane-ethyl acetate (EtOAc) and methanol-chloroform (1 : 1), respectively. Each fraction was further purified by a combination of preparative TLC (n-hexane-EtOAc 4 : 1) and preparative HPLC (µ.porasil; n-hexane-EtOAc 2 : 1). The stereostructures were elucidated by the analysis of spectroscopic data (UV, IR, MS, NMR and CD) and X-ray analysis or chemical correlation. The stereostructures of each compound characterized by the above methods are shown in Chart 1 and the structural elucidation of the new compounds will be reported elsewhere.

RESULTS AND DISCUSSION Asterella sp. (Grimaldiaceae). A small thalloid liverwort collected in Langkawi island, Malaysia was identified as Asterella species. The liverwort emits an extremely unpleasant smell when crushed. This smell betrays to the presence of 20% of skatol (1). This is the first detection of skatol in liverworts so far examined. The major component of the extract is 3,4-dimethoxystyrene (2). These two aromatic compounds are significant chemical markers of this unidentified Asterella species. Blasia pusilla (). As reported earlier, four sterols, brassicasterol, campes­ terol, stigmasterol and sitosterol are widely distributed not only in liverworts but also in

1 Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770, Japan. 122 J. Hattori Bot. Lab. No. 74 I 9 9 3

Table I. Terpenoids and aromatic compounds from Hepaticae.

Species Weight Collected site and date Compounds detected

Asterella sp. 20g Langkawi island, Malaysia, Skatol (1), 3,4-Dimethoxystyrene (2) July 22, 1992, coll. Y. Asakawa, T. Hashimoto, and H. Tanaka Blasia pusilla 365g Sanagouchi-son, Riccardin C (3), Riccardin F (4), Tokushima, Japan, Sep. 22, Orsellinic acid methyl ester (5) 1991, coll. T. Hashimoto Cheilolejeunea 20g Langkawi island, Malaysia, Serpentiphenol (6), serpentina July 24, 1992, coll. Serpentianic acid (7) Y. Asakawa, T. Hashimoto and H. Tanaka Cheilolejeunea 19g Langkawi island, Malaysia, Trifarienol A (8), Trifarienol B (9), trifaria July 24, 1992, coll. Trifarienol C (10), Trifarienol D (11), Y Asakawa, T. Hashimoto Trifarienol E (12) and H. Tanaka Conocephalum 1870g Saarbriicken, Germany, a-Tepinenol (13), Epi-cubenol (14), conicum July 7, 1988, coll. 22-Hydroxyhopane (15), Y. Asakawa 2-Acetoxygermacra-l ( 10),4( 14 )-dien- 6-one (16), Germacra-1(10)£,5£-dien- 4,8-ol (17) Conocephalum 236g Saarbriicken, Germany, Epi-cubenol (14), Germacra-1(10)£,5£- conicum August, 1991, coll. dien-4,8-ol (17), conocephalenol (18), Y. Asakawa ( + )-Cubebol ( 19), (- )-Selin- I I-en- 4a-ol (20) Frullania 192g Arisan, Taiwan, May 8, Nepalensolide A (21), Nepalensolide B nepalensis 1985, coll. Y. Asakawa (22), Nepalensolide C (23), Nepalensolide D (24), Tamariscol (25), 3,3'-Dimethoxy-4,5- methylenedioxybibenzyl (26) Frullania 9lg Kisawa-son, Tokushima, 11a,13-Dihydro-,8-cyclocostunolide (27), tamarisci Japan, Nov. 23, 1991, coll. 4-Epi-arbusculin A (28), Eudesmanal subsp. T. Hashimoto (29), ( + )-5a,7,8(H)-Eudesm-4a,6a-diol obscura (30), Methoxyfrullanolide (31) Frullania 1 49g Venezuela, Apr. 23, a-Cyclocostunolide (32), 3-Methoxy- 1991, coll. M. Tori 3',4'-methylenedioxybibenzyl (33), Rothin A acetate (34), Methyl 3a- hydroxy-l 8-oleanen-28-oate (35) Frullania 2 49g Venezuela, Apr. 23, ( + )-Cyclocolorenone (36), 1991, coll. M. Tori Hurnulenol acetate (37) T. HASHIMaro et al. : Chemical constituents of 25 liverworts 123

Table 1. (Continued)

Species Weight Collected site and date Compounds detected

Heteroscyphus 567g Bizan, Tokushima, Japan, 13-Epi-neoverrucosan-5/3-ol (38), pianus Dec. 20, 1990, coll. 13-Epi-neoverrucosane-5/3, 20-diol (39), T. Hashimoto, I. Nakamura, Heteroscyphone A ( 40), Heteroscyphone T. Nakayama, M. Horie, B (41), Heteroscyphone C (42), and A. Yasuda Heteroscyphone D ( 43), Heteroscyphol (44), Plagiochiline C (45), Plagiochiline L ( 46), Plagiochiline M ( 47), ( + )-7-Hydroxycalamenene ( 48), ( + )-5, 8-Dihydroxycalamenene ( 49) Lunularia 62g Tokushima-city, Tokushima, Perrottetin F (50), cruciata Japan, Dec. 8, coll . 7',8'-Dehydroperrottetin F (51), T. Hashimoto, A. Yasuda, 7',8'-Dehydroperrottetin F dimer (52) and Y. Yamaoka Marchantia 199g Ecuador, 1988, coll. Lunularin (53), Marchantin C (54) chenopoda S. R. Gradstein, R. Mues and J.-P. Frahm Marchantia 6670g Icyu-son, Tokushima, Marchantin C (54), Marchantin A (55), paleacea Japan, Nov. 25 , 1991, Marchantin B (56), Marchantin D (57), var. diptera coll. T. Hashimoto Marchantin E (58), Paleatin A (59), Paleatin B (60) Marchantia 360g Oohara-cho, Okayama, Marchantin C (54), Marchantin A (55), polymorpha Japan, Aug. I, 1991, coll. Marchantin B (56), Isoriccardin C (61) T. Hashimoto, T. Nagai and A. Yasuda Omphalanthus 54g Colombia, July, 1991 , ( + )-/3-Chamigrene (63), (+)-Methyl filiformis coll. S. R. Gradstein chamigrenate (64), Methyl omphalate (65), 5-Heptadeca-8(Z),1 l(Z),14(Z)- trienylresorcinol monomethyl ether (66) Pallavicinia 146g Sanagouchi-son, Japan, Sacculatal (67), Pallavicinol (68) levieri Oct. 10, 1990, coll. T. Hashimoto Pellia 570g Icyu-son, Tokushima, Perrottetin E (69), Perrottetin E endiviifolia Japan, Apr. 29, 1987, I !'-methyl ether (70), 14-Hydroxy- (female) coll. T. Hashimoto perrottetin E 11 '-methyl ether (71) Pellia 10170 g Nakamura-city, Kouchi, Sacculatal (67), Isosacculatal (72) endiviifolia Japan, Jan. 2, 1987. coll. 1/3-Hydroxyisosacculatal (73), (male) T. Hashimoto Sacculatanolide (74), 1/3-Hydroxy- sacculatanolide (75), 1/3,11 a- Dihydroxysacculatanolide (76), I /3, 11 a -Dihyroxysacculatenolide (77), 12-Deoxo-1/3,l la-dihyroxy- sacculatanolide (78) 124 J. Hattori Bot. Lab. No. 74 l 9 9 3

Table 1. (Continued)

Species Weight Collected site and date Compounds detected

Plagiochila 27g Venezuela, Apr. 23, Fusicogigantone A (79), Spathulenol, corrugata 1991, coll. M. Tori (80), 8-epi-sclareol (81), PC-1 (82) Plagiochila 1086g Todoroki-Falls, Plagiochiline C (45), Plagiochilide (83), fruticosa Kainan-cho, Tokushima, Plagiochiline A (84), 3a,l l-Diacetoxy- Japan, March 8, 1992, coll. 2a-hydroxybicyclogermacrene (85), T. Hashimoto lsoplagiochin A (86), lsoplagiochin B (87) Plagiochila l 170g Kajigamori, Kouchi, Spathulenol (80), Bicyclogermacrene ovalifolia Japan, May 4, 1985, coll. (88), Maalian-5-ol (89), Plagiochiline Y. Asakawa, and N (90) T. Hashimoto Pore/la 466g Marys Pk., Oregon, U.S.A, Polygodial (91), Cinnamolide (92), roellii Feb. 6, 1984, coll. Confertifoline (93), lsodrimenol (94), T. Hashimoto 6a-Hydroxyisodrimenol (95), 6,7- Dehydroisodrimenin (96), Aristolone (97), Dehydroabietic acid (98) Porella 120g Hiwasa-cho,Tokushima, Caespitenone (99), Santalene-type subobtusa Japan, Dec. 31 , 1991 , coll. alcohol (100) T. Hashimoto Porella 300g Colombia, May 28, 1991, Caespitenone (99), Swartzianin A (101), swartziana coll. S. R. Gradstein Swartzianin B (102), Swartzianin C (103), Swartzianin D (104), Seco- swartzianin A (105), Secoswartzianin B (106), Germacra-4-en-1 ,6-dione (107), Guai-3-en-1-ol-6-one (108), Guai-4(14)-en-1-ol-6-one (109) Ptychanthus 283 g Kisawa-son, Ptychanthin A (110), Ptychanthin striatus Tokushima, Japan, B (111), Ptychanthin C (112), Nov. 23, 1991 , coll. Ptychanthin D (113), Ptychanthin T. Hashimoto E (114), Ptychanthin F (115), Ptychanthin G (116), Ptychanthin H (117), Deoxypinguisone (118), Pinguisanene (119), Ptychanolide, (120), Ptychanolactone (121) Reboulia 1127 g Kisawa-son, Riccardin C (3), Marchaotin C (54), hemisphaerica Tokushima, Japan Marchantin C 13-methyl ether (122), Apr. 29, 1992, coll. 6,11 ,22-Hopanetriol (123), RH-I T. Hashimoto (124), RH-2 (125) T. HASHIMOTO et al. : Chemical constituents of25 liverworts 125 higher . These have been found in B. pusilla (Asakawa 1982a). Further fractionation of the methanol extract resulted in the isolation of two macrocyclic aromatic compounds, riccardin C (3) and riccardin F (4), along with orsellinic acid methyl ester (5). B. pusilla is chemically very close to Riccardia multifida (Riccardiaceae) because both species produce the same macrocyclic compounds (3) as the major component (Asakawa 1982a; 1993, Asakawa et al. 1983). Cheilo/ejeunea serpentina (Lejeuneaceae). Two new sesquiterpenoids, serpentiphenol (6) and serpentianic acid (7) have been isolated from C. serpentina. The latter compound belongs to the striatane-type sesquiterpenoids which have been found in many species in the Lejeuneaceae and thus are considered to be one of the significant chemical markers of the Lejeuneaceae. Compound 6 is also the important chemical marker of C. serpentina since it has not been detected in any other liverworts so far examined. Cheilolejeunea trifaria (Lejeuneaceae). C. trifaria produces newly discovered sesquiterpenoids named trifarienols A- E (8- 12), which are very significant chemical mark­ ers. There is no chemical affinity between C. trifaria and C. serpentina because the former species produces phenolic sesquiterpenoid as the major component which has not been de­ tected in the crude extract of the latter species even by GC-MS. Conocephalum conicum (Conocephalaceae). There are at least two chemo-types of European C. conicum. Chemo-type I produces a unique sesquiterpene tertiary alcohol, conocephalenol (18) and the chemo-type II lacks this compound. In Japan, there are three chemo-types of C. conicum: Type-I (a-thujene-type), Type II (bomyl acetate-type) and Type III (methyl cinnamate-type) (Toyota 1992). Fru/lania nepalensis (Frullaniaceae). The previous report lists 5 chemo-types of Frul­ lania species (Asakawa et al. 1981 ). The major components of F. nepalensis are the newly reported eudesmane-type sesquiterpene lactones (21- 24) which have been isolated from F. serrata (Asakawa et al. l 99la). This also produces very distinct pasifigorgian sesquiter­ pene alcohol, tamariscol (25) as a minor component. Tamariscol is the significant chemical marker of F. tamarisci subsp. tamarisci, F. tamarisci subsp. obscura and F. asagrayana (Asakawa et al. 1991 b ). F. nepalensis belongs to the chemo-type-11 (sesquiterpene lactone­ bibenzyl type) of Frullaniaceae. Frullania tamarisci subsp. obscura (Frullaniaceae). The maj.or component of F. tamarisci subsp. obscura is 4-epi-arbusculin A (28) (Asakawa et al. 1982a). A methoxylat­ ed hemiacetal (31) is newly isolated from the methanol extract. Frullania sp. (1) (Frullaniaceae ). An unidentified Frullania species collected in Venezuela produces not only sesquiterpene lactones (32, 34) but also bibenzyl (33) as well as a new triterpenoid, methyl 3a-hydroxy-18-oleanen-28-oate which has not been found previously in . This species belongs to the chemo-type II (sesquiterpene lactone­ bibenzyl-type) (Asakawa et al. 1981). Frullania sp. (2) (Frullaniaceae). This unidentified Frullania is chemically very close to Japanese F. diversitexta (Asakawa et al. 1981) because the major component of both species is cyclocolorenone (36). It is also noteworthy that a new humulene type sesquiter­ penoid, humulenol acetate (37) has been isolated from the ether extract of the present species. 126 J. Hattori Bot. Lab. No. 74 I 9 9 3

OH oiN H 1

~

OMe 6OMe HO 3 4 2

Me OH .• . . I HODJI~ HO vM•~ . HO ~ y,:Y"' H COOH HORS" OH 5 6 7 8

•'' ...... '' H01 . H AcO 11 12

"foHAcO~

0 2OH iR 1 3 14 15 16 Fig. 1(1) T. H ASHIMOTO et al.: Chemical constituents of 25 liverworts 127

17 18 19 20

~~ ... ~~ 21 ° 22 ° 23 ° 24 °

rnY~'C-{ ..... m,1}'C-{:=

25 OMe 27 ° 28 °

~H~~ - ~,OMo 29 30 31 OH 32

Fig. 1(2) 128 J. Hattori Bot. Lab. No. 74 I 9 9 3

0 > 0 ytQ:' 0 HO''. . OMe 33 34 35

.... -;;\-, ~ HOW .@-OH 36 37 38 39

HO.£ HO.£ HO.£

Aco,,. ._ }-0 Aco,,._ }-0 O~OH o~OH O~OH H''~ ~ ·· ·· 1 0H

40 41 42 43

?~ H~ 0 .

::::::,... : A ··.J MeOOC© (' AcO~ (' w44 45 47 Fig. 1(3) T. HASHIMOTO et al.: Chemical constituents of25 liverworts 129

HOY'A ~ 48 49 50

OH

51

OH

OH 53 54 55

OH 56 57 Fig. 1(4) 130 J. Hattori Bot. Lab. No. 74 I 9 9 3

60 6 1

~ )l) )\ 62 63 65

CHO

-,~ HO ~

66 67 68

OH 0

OMe OMe 69 70 71 Fig. 1(5) T. HASHIMOTO et al.: Chemical constituents of 25 liverworts 131 QSCHO

~ 72 73 74 75

76 78 79

HO'~H '1' OH~

80 81 82 83

OH OH

Awc~Hf'O 0 ' Hq~OAc'•. ~

~ =' ,, :-. AcO ,,~· ....,..__ : H '•r AcO /-- OH 84 85 86 Fig. 1(6) 132 J. Hattori Bot. Lab. No. 74 I 9 9 3

OH OH

p~ ~,... ,, ,, OH 87 88 89 90

CHO ~ ~ ;;:vO Q:JCHO XJ 0 0 OXJ

91 92 93 94

~o ~ 95 96 97

99 100 101 102 Fig. 1(7) T. HASHIMOlD et al. : Chemical constituents of25 liverworts 133

103 104 105 106

A 0 A ~ ,, ~

, OAc OAc 107 108 109 110

AcO A 0 o A ~,,, A ~,,~ A ~ ,, ~

OH OH @OH "'1 OAc , ,, OAc OAc OH 111 112 113 114

AcO AcO

AcO'' .. OAc 115 116 117 118 Fig. 1(8) 134 J. Hattori Bot. Lab. No. 74 I 9 9 3

119 120 121 122

"fo"YQ /f' OH 125 123 124 Fig. 1(9)

Fig. l. Terpenoids (6-25, 27- 32, 34--49, 62- 65, 67, 68, 72- 85, 88- 121, 123- 125) and aromatic compounds (1 - 5, 26, 33, 50--61, 66, 69- 71, 86, 87, 122) isolated from or de­ tected in the Hepaticae.

Heteroscyphus planus (Lophocoleaceae). H. planus is chemically very interesting liv­ erwort because it produces various types of terpenoids; highly oxygenated clerodane-type diterpenoids (40-43), a simple cledrane-type diterpene alcohol (44), together with 2,3- secoaromadendrane-type sesquiterpenoids (45--47), verrucosane-type diterpenoids (38, 39) and calamenane-type sesquiterpenoids (48, 49). There is no chemical affinity between H. planus and H. bescherellei ( Asakawa et al. 1990b) except for the presence of the clerodane­ type diterpenoids, although their structures are completely different. It is also interesting from view-point of chemosystematics that 2,3-secoaromadendrane-type sesquiterpenoids which are the most significant chemical markers of the Plagiochilaceae (Asakawa et al. 1980, Asakawa & Inoue l 984b; I 987b) have been isolated from the Lophocoleaceae. Lunularia cruciata (Lunulariaceae). L. cruciata elaborates perrottettin F (50) and 7',8'-dehydroperrottetin F (51), as well as 7',8'-dehydroperrottetin F dimer (52). Com­ pound 50 has previously been found in Radula perrottetii (Toyota et al. 1985). Lunulari­ aceae (Lunularia cruciata) is chemically close to the Marchantiaceae than to the Cono­ cephalaceae because the Marchantiaceae produce not only cyclic bis-bibenzyls but also perrottetin-type acyclic bis-bibenzyls but no bis-bibenzyls have been found in the Cono­ cephalaceae. T. HAsmMaro et al.: Chemical constituents of25 liverworts 135

Marchantia chenopoda (Marchantiaceae). Two previously known aromatic com­ pounds, lunularin (53) and marchantin C (54) which have been isolated from Marchantia polymorpha and M. paleacea var. diptera (Asakawa et al. 1984c) have been obtained from M. chenopoda. Although marchantin A, the major component of the latter two Marchantia species has not been isolated, M. chenopoda is chemically close to the other Marchantia species which biosynthesize bis-bibenzyls. Marchantia polymorpha (Marchantiaceae). The major chemical constituents of Malaysian M. polymorpha are identical to those of the same species in Japan. The chemical markers of M. polymorpha are marchantin A type macrocyclic bis-bibenzyls (54- 58). (Asakawa et al. l984c). Isoriccardin C (61) is newly isolated from Japanese M. polymorpha. Marchantia paleacea var. diptera (Marchantiaceae). M. paleacea var. diptera is chemically closely related to M. polymorpha because both species produce the same marchantin type bis-bibenzyls (Asakawa et al. l 984c ). In addition, two new acyclic bis­ bibenzyls, paleatins A (59) and B (60) have been isolated from the methanol extract. Omphalanthus filiformis (Lejeuneaceae ). 0. filiformis produces chamigrene-type sesquiterpenoids (63, 64) along with a new sesquiterpenoid named methyl omphalate (65) and the previously known aromatic compound, 5-heptadeca-8(Z), 11(Z),l4(Z)-trienylre­ sorcinol monomethyl ether (66) which has been found in the higher plants (Reffstrup et al. 1982). Ten species belonging to the Omphalanthus complex have been investigated chemi­ cally (Gradstein et al. 1985). 0 filiformis chemically resembles C. paramicola and 0. p/aty­ coleus, because they produce the same chamigrane-type sesquiterpenoids. Pallavicinia levieri (Dilaenaceae). The major component of P. levieri is sacculatal (67), the pungent diterpene dialdehyde and significant chemical marker of Pellia endiviifo­ lia (Asakawa l982a). Thus P levieri is chemically very close to Pellia endiviifolia belong­ ing to the same family. P levieri also produces a rare chettaphanin-type diterpenoid (68). It is interesting to note that the similar chettaphanin diterpenoid has been isolated from Pleu­ rozia gigantea (Asakawa et al. 1990a). Pellia endiviifolia (male and female) (Dilaenaceae). The female thallus of P endivi­ ifolia produces perrottetin E (69) and its related products, perrottetin E I !'-methyl ether (70) and 14-hydroxyperrottetin E 11 '-methyl ether (71) (Hashimoto et al. 1991 ). The male thullus contains a hot tasting substance. This taste is caused by sacculatal (67). In addition to this compound, the ether extract contained five further sacculatane-type diterpenoids (73, 75-78) and the previously known isosacculatal (72) and sacculatanolide (74). Bis­ bibenzyls found in the female thallus have not been detected in the male thallus. Plagiochila corrugata (Plagiochilaceae ). The most important chemical markers of the Plagiochilaceae are 2,3-secoaromadendrane-type sesquiterpenoids (Asakawa l 982a; 1993, Asakawa & Inoue l 984b; l 987b ). There is some chemical affinity between P corrugata and Japanese P sciophila because the former species elaborates similar fusicoccane diter­ penoids (79, 82) as those isolated from the latter species. It is also noteworthy that fusicogi­ gantone A (79) has also been isolated from Pleurozia gigantea (Asakawa et al. 1990a) al­ though the morphology of Plagiochi/a and Pleurozia is quite different. Previously, Pla­ giochila species were divided into 8 chemo-types. P corrugata is classified to the new 136 J. Hattori Bot. Lab. No. 74 I 9 9 3 chemo-type, type IX (fusicoccane-type). Plagiochila fruticosa (Plagiochilaceae). From P. fruticosa which belongs to the chemo-type I (2,3-secoaromadendrane-type), a new bicyclogermacrane-type sesquiter­ penoid (85) has been isolated along with the previously known plagiochilide (83) and pla­ giochiline A (84) (Asakawa l 982a, Asakawa et al. 1980). This leafy liverwort contained two new cyclic bis-bibenzyls, named isoplagiochin A (86) and isoplagiochin B (87) whose structures are very similar to those of plagiochins isolated from P. sciophila (Hashimoto et al. 1987). However, the sesquiterpenoid composition of both species are quite distinct. Plagiochila ovalifo/ia (Plagiochilaceae ). Further fractionation of the ether extract of P ovalifolia resulted in the isolation of a new secoaromadendrane type sesquiterpenoid, pla­ giochiline N (90) which has not been found in any other Plagiochila species so far exam­ ined. Porella roellii (Porellaceae). P. roe/Iii shows surprisingly intense hot taste which re­ sults from (-)-polygodial (91). The ether extract also contained drimane-type sesquiter­ penoids (92- 96), along with aristolone (97) and a diterpenic acid, dehydroabietic acid (98). P roe/Iii is classified to chemo-type I (drimane-type) in the Porellaceae. It is chemically quite similar to Japanese P. vernicosa complex, paticularly, Pfauriei (Asakawa l982a, b). This is the first isolation of dehydroabietic acid from a . Porella subobtusa (Porellaceae). The major components of P. subobtusa are cae­ spitenone (99) and santalane-type sesquiterpene diol (100) which have been isolated from P caespitans var. setigera (Toyota et al. 1992). Thus, P subobtusa is chemically identical to P. caespitans. Porella swartziana (Porellaceae ). Purification of the ether exract of P. swartziana col­ lected in Colombia resulted in the isolation of five new africane-type sesquiterpenoids (101- 104), two new secoafricane-type sesquiterpenoids (105, 106), a new germacrane-type sesquiterpene ketones (107) and two new guaiane-type sesquiterpene ketols (108, 109). P swartziana is chemically related to the two Japanese species of Porella mentioned above because these three Pore/la species biosynthesize unique africane-type sesquiterpenoids as the major components (Toyota et al. 1992). P. caespitans var. setigera, P. subobtusa and P. swartziana belong to the chemotype-V (africane-type). Ptychanthus striatus (Lejeuneaceae). In addition to the previously known pinguisane­ type sesquiterpenoids (118-121) (Asakawa 1982a, b) labdane-type diterpenopids, tentative names, Ps-3 (= ptychanthin A) (110), Ps-4 (= ptychanthin B) (111), Ps-5 (= ptychanthin C) (112) and Ps-7 ( = ptychanthin D) (113), and four related new labdanoids, ptychanthins E-H (11 4- 117) have been isolated from the ether extract of P striatus. These highly oxy­ genated labdane-type diterpenoids have not been found previously in any Lejeuneaceae species. Reboulia hemisphaerica (Grimaldiaceae). There are two chemical races in R. hemis­ phaerica. Material grown in Japan produces mainly aristolane-type sesquiterpenoids (97, 124, 125) while European material elaborates barbatane- and cuparane-type sesquiter­ penoids and no aristolane-type sesquiterpenoids (Morais et al. 1988). In conclusion, the oil body constituents of Hepaticae are easily analyzed by a combi­ nation of TLC and GC-MS; these detect the major components as well as lipophilic corn- T. HASHIMOTO et al. : Chemical constituents of25 liverworts 137 pounds. The chemical constituents found in liverworts are often very characteristic for each species. These characters are therefore very valuable for taxonomic investigation of the He­ paticae. Accumulation of such chemical data may play an important role in of the bryophytes.

ACKNOWLEDGEMENTS We thank Dr. S. R. Gradstein (University of Utrecht ), Prof. Jan-Peter Frahm (Duis­ burg Universitiit) and Prof. R. Mues (Universitiit des Saarlandes) for the collection and identification of the liverworts.Thanks are also due to Dr. M. Mizutani (Hattori Botanical Laboratory) for his identification and valuable discussion. Specimens documenting the he­ patics discussed here are deposited at the herbarium of Hattori Botanical Laboratory (NICH).

LITERATURE CITED Asakawa, Y. 1982a. Chemical constituents of the Hepaticae. In W. Herz, H. Grisebach & G. W. Kirby (eds.), Progress in the Chemistry of Organic Natural Products: Vol. 42: pp. 1- 285 . Springer, Wien. Asakawa, Y. 1982b. Terpenoids and aromatic compounds as chemosystematic indicators in Hepaticae and Anthocerotae. J. Hattori Bot. Lab. 53: 283- 293 . Asakawa, Y. 1993. Chemical constituents of bryophytes. In W. Herz, H. Grisebach, G. W. Kirby & Ch.Tamm (eds.), Progress in the Chemistry of Organic Natural Products: Springer, Wien. in press. Asakawa, Y. , H. Inoue, M. Toyota & T. Takemoto. 1980. Sesquiterpenoids of fourteen Plagiochila species. Phytochemistry 19: 2621 - 2626. Asakawa, Y., R. Matsuda, M. Toyota, S. Hattori & G. Ourisson. 1981. Terpenoids and bibenzyls of25 liverwort Frul/ania species. Phytochemistry 20: 2187- 2194. Asakawa, Y., M. Toyota., Z. Taira, T. Takemoto & M. Kido. 1983. Riccardin A and riccardin B, two novel cyclic bis(bibenzyls) possessing cytotoxicity from the liverwort Riccardia multifida (L.) S. Gray. J. Org. Chem. 48: 2164-2167. Asakawa, Y. & H. Inoue. I 984a. Chemical constituents of selected Chilean liverworts. In H. Inoue (ed.), Studies on Cryptogams in Southern Chile. pp. 109- 115 . Kenseisha Publishing Co., Tokyo. Asakawa, Y. & H. Inoue. 1984b.Chemical constituents of Chilean Plagiochila species. In H. Inoue (ed.), Studies on Cryptogarns in Southern Chile: pp. 117- 124. Kenseisha Publishing Co., Tokyo. Asakawa, Y. , M. Toyota, H. Bischler, E. 0 . Campbell & S. Hattori. 1984c. Comparative study of chemical constituents of Marchantia species. J. Hattori. Bot. Lab. 57: 383-389. Asakawa, Y. & H. Inoue. 1987a. Chemical constituents of Peruvian liverworts. In H. Inoue (ed.), Studies on Cryptogams in Southern Peru. pp. I 07- 117. Tokai University Press, Tokyo. Asakawa, Y. & H. Inoue. l 987b. Chemical constituents of Peruvuan Plagiochila species. In H. Inoue (ed.), Studies on Cryptogams in Southern Peru.: pp. 119- 128. Tokai University Press, Tokyo. Asakawa, Y., X. Lin, M. Tori & K. Kondo. 1990a. Fusicoccane-, dolabellane- and rearranged labdane-type diterpenoids from the liverwort Pleurozia gigantea. Phytochemistry 29: 2597- 2603. Asakawa, Y., M. Toyota & A. Ueda. 1990b. Sacculatane- and clerodane-type diterpenoids from the liverworts Pore/la perrottetiana and Heteroscyphus bescherel/ei. Phytochemistry 29: 2165- 2167. 138 J. Hattori Bot. Lab. No. 74 I 9 9 3

Asakawa, Y. , X. Lin, K. Kondo & Y. Fukuyama. 199la. Terpenoids and aromatic compounds from selected Malaysian liverworts. Phytochemistry 30: 4019--4024. Asakawa, Y., M. Sono, M. Wakamatsu, K. Kondo, S. Hattori & M. Mizutani. 199lb. Geographical distribution of tamariscol, a mossy odorous sesquiterpene alcohol, in the liverwort Frullania tamarisci and related species. Phytochemistry 30: 2295- 2300. Gradstein, S. R. , R. Matsuda & Y. Asakawa. 1985. A chemotaxonomic survey ofterpenoids and aro­ matic compounds in the Lejeuneaceae (Hepaticae). Jn S. R. Gradstein (ed.), Contribution to a monograph of the Lejeuneaceae subfamily Ptychanthoideae. pp. 63- 86. J. Cramer, Vaduz. Hashimoto, T., M. Tori, Y. Asakawa & Y. Fukazawa. 1987. Plagiochins A, B, C, and D, new type of macrocyclic bis(bibenzyls) having a biphenyl linkage between the ortho position to the benzyl methylenes, from the liverwort Plagiochila acanthophylla subsp. japonica. Tetrahedron Letters 28 : 6295--6298. Hashimoto, T., H. Suzuki, M. Tori & Y. Asakawa. 1991 . Bis(bibenzyls) ethers from Pellia endiviifo­ lia. Phytochemistry 30: 1523- 1530. Morais, R. M. S. C. , L. J. Harrison & H. Becker. 1988. ( + )-Gymnomitr-8(12)-en-9a-ol and (R)-( - )- 8, 11-dihydro-a-cuparenone, two novel sesquiterpenoids from the liverwort Reboulia hemi­ sphaerica. J. Chem. Res. (S): 380- 381. Reffstrup, T., 0. Hammershoy, P. M. Boll & H. Schmidt. 1982. Philodendron scandens Koch et Sello subsp. oxycardium (Schott) Bunting. A new source of allergenic alkyl resorcinols. Acta Chem. Scand. B 36: 291 - 294. Toyota, M. 1992. The specificity and the diversity of the chemical constituents of liverworts. 36th Symposium on Chemistry ofTerpenes, Essential Oils and Aromatics, Nishinomiya, Japan, Sym­ posium Papers I: 1-8. Toyota, M., M. Tori, K. Takikawa, Y. Shiobara, M. Kodama & Y. Asakawa. 1985 . Perrottetin E, F, and G from Radula perrotetii (liverwort)-isolation, structure determination, and synthesis of perrottetin E. Tetrahedron Letters 26: 6097--6100. Toyota, M., F. Nagashima, K. Shima & Y. Asakawa. 1992. Africane- and santalane-type sesquiter­ penoids from the liverwort Pore/la caespitans var. setigera. Phytochemistry 31 : 183- 189.