Symbiosis Between the Cyanobacterium Nostoc and the Liverwort Blasia Requires a Cher-Type MCP Methyltransferase

Total Page:16

File Type:pdf, Size:1020Kb

Symbiosis Between the Cyanobacterium Nostoc and the Liverwort Blasia Requires a Cher-Type MCP Methyltransferase Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase Paula S. Duggan, Teresa Thiel & David G. Adams Symbiosis ISSN 0334-5114 Volume 59 Number 2 Symbiosis (2013) 59:111-120 DOI 10.1007/s13199-012-0216-9 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Symbiosis (2013) 59:111–120 DOI 10.1007/s13199-012-0216-9 Symbiosis between the cyanobacterium Nostoc and the liverwort Blasia requires a CheR-type MCP methyltransferase Paula S. Duggan & Teresa Thiel & David G. Adams Received: 24 October 2012 /Accepted: 10 December 2012 /Published online: 29 December 2012 # Springer Science+Business Media Dordrecht 2012 Abstract In response to environmental change, the cyanobac- and hornworts (Adams et al. 2012; Adams and Duggan 2008, terium Nostoc punctiforme ATCC 29133 produces highly 2011; Bergman et al. 2008). In response to certain environmen- adapted filaments known as hormogonia that have gliding tal stimuli Nostoc develops small-celled, motile filaments motility and serve as the agents of infection in symbioses with known as hormogonia, which are essential for infection of the plants. Hormogonia sense and respond to unidentified plant- host plant (reviewed by Bergman et al. 2007; Meeks and Elhai derived chemical signals that attract and guide them towards 2002;Meeks2009; Adams and Duggan 2011). Indeed, host the symbiotic tissues of the host. There is increasing evidence plants release hormogonium-inducing factors (Bergman et al. to suggest that their interaction with host plants is regulated by 1996; Campbell and Meeks 1989; Cohen and Meeks 1997; chemotaxis-related signal transduction systems. The genome Knight and Adams 1996; Rasmussen et al. 1994; Watts et al. of N. punctiforme contains multiple sets of chemotaxis (che)- 1999). Hormogonia formation involves the up-regulation of like genes. In this study we characterize the large che5 locus of 944 genes, the majority of which appear to be involved in N. punctiforme. Disruption of NpR0248, which encodes a signal transduction and transcriptional activation (Campbell et putative CheR methyltransferase, results in loss of motility al. 2007). The hormogonium is therefore highly adapted to and significantly impairs symbiotic competency with the liver- sense and respond rapidly to its environment and is specialised wort Blasia pusilla when compared with the parent strain. Our for motility, dispersal and the initiation of symbiosis with host results suggest that chemotaxis-like elements regulate hormo- plants (e.g. Adams and Duggan 2008; Bergman et al. 2008; gonia function and hence symbiotic competency in this system. Meeks 2009). The surface of Nostoc punctiforme hormogonia is covered with pili (fimbriae) that are important for the infec- Keywords Symbiosis . Cyanobacteria . Nostoc . Liverwort tion process and may be involved in motility, host recognition and surface attachment (Duggan et al. 2007). Work in our laboratory (Knight and Adams 1996; Watts 1 Introduction et al. 1999) as well as by others (Nilsson et al. 2006; see also Adams and Duggan 2011) has shown that plant-derived Filamentous cyanobacteria of the genus Nostoc form symbiotic signals likely act as chemoattractants, guiding hormogonia associations with a wide range of plants, including liverworts towards the sites of infection within the host plant. However, the molecular elements regulating this process have yet to be characterised. One of the best studied che- P. S. Duggan : D. G. Adams Institute of Integrative and Comparative Biology, Faculty of motaxis systems is the regulation of flagellar-based motility Biological Sciences, University of Leeds, Leeds LS2 9JT, UK in Escherichia coli (Sourjik 2004; Wadhams and Armitage 2004). Transmembrane chemoreceptors (MCPs, methyl- T. Thiel accepting chemotaxis proteins) perceive extracellular stim- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA uli, producing signals that are transmitted to their cytoplas- mic domains. These domains regulate an associated two- D. G. Adams (*) component phosphotransfer signal transduction system, Institute of Integrative and Comparative Biology, CheA-CheY (with a linker protein CheW) that controls Garstang Building, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK flagellar rotation by binding to the flagellar motor protein e-mail: [email protected] FliM. Additional components of the chemotaxis machinery Author's personal copy 112 P.S. Duggan et al. include CheB, a methylesterase, and CheR, a methyltrans- Collection, PCC 73102; a kind gift of Jack Meeks) was orig- ferase, that modulate the methylation status of MCPs, which inally isolated from a symbiotic association with the cycad affects their sensitivity. CheB, activated through phosphor- Macrozamia (Rippka et al. 1979). N. punctiforme and its ylation of CheA, removes the methyl groups added to MCPs derivatives were grown in BG11 medium (which contains by CheR, leading to an adaptive response that enables the 17.5 mM NaNO3 as combined nitrogen source; Rippka et al. bacterium to respond to new stimuli in a background contain- 1979) with shaking at 27 °C with continuous irradiance of ing constant levels of chemoattractants and/or repellents (Bren 23 μmolm−2s−1. Recombinant N. punctiforme 29133 were and Eisenbach 2000; Clausznitzer et al. 2010). Chemotaxis- selected for resistance to, and maintained in, the presence of like genes are widespread among bacteria, and many are 25 μgml−1 neomycin (Nm). E. coli strains DH5α (plasmid known to be involved in signalling pathways that regulate construction) and HB101 (conjugation experiments) were rou- functions distinct from their well established role in the regu- tinely grown in Luria-Bertani medium (Sambrook et al. 1989) lation of chemotaxis (reviewed by Kirby 2009). Some exam- supplemented, as appropriate, with antibiotics, ampicillin (Ap; ples include the regulation of pili gene expression in the 100 μgml−1), kanamycin (Km 50 μgml−1) and chloramphen- unicellular cyanobacterium Synechocystis sp. PCC 6803 icol (Cm; 170 μgml−1). The liverwort Blasia pusilla was (Bhaya et al. 2001; Chung et al. 2001), virulence gene expres- growninliquidBG11mediumwithshakingat100rpm,at sion in Vibrio cholerae (Lee et al. 2001), biofilm formation 20 °C under a 12 h/12 h light/dark cycle (average light irradi- (Tran et al. 2008; see also Kirby 2009), fibril biogenesis and ance of 20 μmolm−2s−1). expression of developmental genes in Myxococcus xanthus (Yang et al. 2000; Kirby and Zusman 2003). Red light induction of hormogonia formation N. puncti- N. punctiforme hormogonia exhibit both chemotactic and forme filaments recovered by centrifugation were washed phototactic behaviour. Directed motility likely requires a signal three times in BG110 medium (BG11 lacking combined transduction system to detect the appropriate attractant in the nitrogen) and resuspended in twice the original culture environment and communicate the information to a motility volume of BG110. Flasks were covered with red cellophane apparatus. In the N. punctiforme genome sequence (completed and incubated for 18 h at 27 °C with shaking and a contin- by the Joint Genome Institute and available at http://www.jgi. uous irradiance of 50 μmolm−2s−1 to allow hormogonia to doe.gov; Meeks et al. 2001)therearefiveloci(designatedche1- develop. 5) containing ORFs exhibiting sequence similarity to known chemotaxis (che) genes from other bacterial species. Unlike the Reconstitution of symbiotic associations Nitrogen starved other loci, the che5 locus, containing seven che-like ORFs (by growing for 10–14 days in BG110) B. pusilla tissue (NpR0244-NpR0250),appearstohavebeenacquiredbyhori- (2–2.5 cm2 in diameter and 0.8–0.85 g wet wt) was co- zontal gene transfer (Wuichet and Zhulin 2003). This locus cultured with mutant and wild-type N. punctiforme (at a lacks the cheY-like genes found in the other 4 loci, but contains total chlorophyll a content of 100 μg) as described previ- genes encoding a response regulator receiver modulated CheB ously (Duggan et al. 2007). In the Blasia symbiosis the methylesterase (NpR0244) and a tetratricopeptide repeat cyanobacteria occupy dome-shaped structures known as (TPR)-containing CheR-type MCP methyltransferase auricles on the surface of the thallus. The number of sym- (NpR0248). The TPR domain is a structural motif found in a biotic colonies (i.e. infected auricles) was determined mi- wide range of proteins and mediates protein-protein interactions croscopically after 14 and 28 days of co-culture and the (Blatch and Lassle 1999). Genes encoding two other CheR frequency of infection expressed as a percentage of the total proteins and three additional CheB-like proteins have been number of auricles counted (at least 400 auricles were found elsewhere in the N. punctiforme genome. The additional counted for each determination). CheB proteins may have different physiological roles as they lack the response regulator receiver domain that is receptive
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Phytotaxa, a Synthesis of Hornwort Diversity
    Phytotaxa 9: 150–166 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) A synthesis of hornwort diversity: Patterns, causes and future work JUAN CARLOS VILLARREAL1 , D. CHRISTINE CARGILL2 , ANDERS HAGBORG3 , LARS SÖDERSTRÖM4 & KAREN SUE RENZAGLIA5 1Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269; [email protected] 2Centre for Plant Biodiversity Research, Australian National Herbarium, Australian National Botanic Gardens, GPO Box 1777, Canberra. ACT 2601, Australia; [email protected] 3Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496; [email protected] 4Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901; [email protected] Abstract Hornworts are the least species-rich bryophyte group, with around 200–250 species worldwide. Despite their low species numbers, hornworts represent a key group for understanding the evolution of plant form because the best–sampled current phylogenies place them as sister to the tracheophytes. Despite their low taxonomic diversity, the group has not been monographed worldwide. There are few well-documented hornwort floras for temperate or tropical areas. Moreover, no species level phylogenies or population studies are available for hornworts. Here we aim at filling some important gaps in hornwort biology and biodiversity. We provide estimates of hornwort species richness worldwide, identifying centers of diversity. We also present two examples of the impact of recent work in elucidating the composition and circumscription of the genera Megaceros and Nothoceros.
    [Show full text]
  • Chemical Constituents of 25 Liverworts
    J. Hattori Bot. Lab. No. 74: 121- 138 (Nov. 1993) CHEMICAL CONSTITUENTS OF 25 LIVERWORTS 1 1 TOSHIHIRO HASHIMOT0 , YOSHINORI ASAKAWA , KATSUYUK.l NAKASHIMA1 AND MOTOO Toru1 ABSTRACT. Twenty-five liverworts were investigated chemically and 20 new compounds isolated and their structures characterized by spectroscopic evidence, X-ray analysis and chemical correlation. The chemosystematics of each species is discussed. INTRODUCTION Liverworts are rich sources of terpenoids and lipophilic aromatic compounds; these are very valuable for chemosystematic investigation. Previously, we have reported the chemical constituents of 700 species of liverworts and discussed the chemosystematics at family and genus level (Asakawa l 982a, b; 1993, Asakawa & Inoue l 984a; l 987a). Here we report the isolation and distribution of the terpenoids and aromatic compounds of 25 liverworts and discuss the chemical markers of each species. EXPERJMENTALS The liverworts collected in Japan and other countries shown in Table 1, were purified and dried for 1 to 7 days and then ground mechanically and extracted with ether or methanol for 7 to 30 days. Each extract was filtered and the solvent evaporated to give green crude oils, followed by chromatography on silica gel or Sephadex LH-20, using n­ hexane-ethyl acetate (EtOAc) and methanol-chloroform (1 : 1), respectively. Each fraction was further purified by a combination of preparative TLC (n-hexane-EtOAc 4 : 1) and preparative HPLC (µ.porasil; n-hexane-EtOAc 2 : 1). The stereostructures were elucidated by the analysis of spectroscopic data (UV, IR, MS, NMR and CD) and X-ray analysis or chemical correlation. The stereostructures of each compound characterized by the above methods are shown in Chart 1 and the structural elucidation of the new compounds will be reported elsewhere.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Nostocaceae (Subsection IV
    African Journal of Agricultural Research Vol. 7(27), pp. 3887-3897, 17 July, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.837 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Phylogenetic and morphological evaluation of two species of Nostoc (Nostocales, Cyanobacteria) in certain physiological conditions Bahareh Nowruzi1*, Ramezan-Ali Khavari-Nejad1,2, Karina Sivonen3, Bahram Kazemi4,5, Farzaneh Najafi1 and Taher Nejadsattari2 1Department of Biology, Faculty of Science, Tarbiat Moallem University, Tehran, Iran. 2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. 3Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014 Helsinki, Finland. 4Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 5Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Accepted 25 January, 2012 Studies of cyanobacterial species are important to the global scientific community, mainly, the order, Nostocales fixes atmospheric nitrogen, thus, contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and
    [Show full text]
  • Chromatic Adaptation in Lichen Phyco- and Photobionts
    Biologia 65/4: 587—594, 2010 Section Botany DOI: 10.2478/s11756-010-0058-y Chromatic adaptation in lichen phyco- and photobionts Bazyli Czeczuga,EwaCzeczuga-Semeniuk & Adrianna Semeniuk Department of General Biology, Medical University, Kili´nskiego 1,PL-15-089 Bialystok, Poland; e-mail: [email protected] Abstract: The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light. In Trebouxia phycobiont of Hypogymnia and Nostoc photobiont of Peltigera species the presence of the phytochromes was observed. Key words: carotenoids; chlorophylls; chromatic adaptation; lichens; photobionts; phycobiliproteins; phycobionts; phy- tochromes. Introduction Taking the above into account, we decided to in- vestigate the chromatic adaptation of common lichen Lichens can be found all over our planet, inhabiting species in the Knyszy´nska Forest to various light con- diverse biotopes and tolerating even extreme environ- ditions during the vegetative period.
    [Show full text]
  • Conservation and Ecology of Bryophytes in Partially Harvested Boreal Mixed-Wood Forests of West-Central Canada
    University of Alberta Conservation and ecology of bryophytes in partially harvested boreal mixed-wood forests of west-central Canada by Richard Theodore Caners A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Conservation Biology Department of Renewable Resources ©Richard Theodore Caners Fall 2010 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Examining Committee S. Ellen Macdonald, Renewable Resources, University of Alberta René J. Belland, Renewable Resources, University of Alberta Mark R. T. Dale, Biological Sciences, University of Northern British Columbia Dennis L. Gignac, Biological Sciences, University of Alberta Lars Söderström, Biology, Norwegian University of Science and Technology Abstract This thesis examined the efficacy of residual forest structure for the preservation and recovery of bryophytes five to six years after partial canopy harvest in boreal mixed-wood forests of northwestern Alberta, Canada. Bryophytes were sampled in two forest types that differed in pre-harvest abundance of broadleaf (primarily Populus tremuloides Michx.
    [Show full text]
  • Biological Soil Crust Rehabilitation in Theory and Practice: an Underexploited Opportunity Matthew A
    REVIEW Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity Matthew A. Bowker1,2 Abstract techniques; and (3) monitoring. Statistical predictive Biological soil crusts (BSCs) are ubiquitous lichen–bryo- modeling is a useful method for estimating the potential phyte microbial communities, which are critical structural BSC condition of a rehabilitation site. Various rehabilita- and functional components of many ecosystems. How- tion techniques attempt to correct, in decreasing order of ever, BSCs are rarely addressed in the restoration litera- difficulty, active soil erosion (e.g., stabilization techni- ture. The purposes of this review were to examine the ques), resource deficiencies (e.g., moisture and nutrient ecological roles BSCs play in succession models, the augmentation), or BSC propagule scarcity (e.g., inoc- backbone of restoration theory, and to discuss the prac- ulation). Success will probably be contingent on prior tical aspects of rehabilitating BSCs to disturbed eco- evaluation of site conditions and accurate identification systems. Most evidence indicates that BSCs facilitate of constraints to BSC reestablishment. Rehabilitation of succession to later seres, suggesting that assisted recovery BSCs is attainable and may be required in the recovery of of BSCs could speed up succession. Because BSCs are some ecosystems. The strong influence that BSCs exert ecosystem engineers in high abiotic stress systems, loss of on ecosystems is an underexploited opportunity for re- BSCs may be synonymous with crossing degradation storationists to return disturbed ecosystems to a desirable thresholds. However, assisted recovery of BSCs may trajectory. allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabili- Key words: aridlands, cryptobiotic soil crusts, cryptogams, tation has three major components: (1) establishment of degradation thresholds, state-and-transition models, goals; (2) selection and implementation of rehabilitation succession.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp.
    [Show full text]
  • Algal Toxic Compounds and Their Aeroterrestrial, Airborne and Other Extremophilic Producers with Attention to Soil and Plant Contamination: a Review
    toxins Review Algal Toxic Compounds and Their Aeroterrestrial, Airborne and other Extremophilic Producers with Attention to Soil and Plant Contamination: A Review Georg G¨аrtner 1, Maya Stoyneva-G¨аrtner 2 and Blagoy Uzunov 2,* 1 Institut für Botanik der Universität Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria; [email protected] 2 Department of Botany, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 blvd. Dragan Tsankov, 1164 Sofia, Bulgaria; mstoyneva@uni-sofia.bg * Correspondence: buzunov@uni-sofia.bg Abstract: The review summarizes the available knowledge on toxins and their producers from rather disparate algal assemblages of aeroterrestrial, airborne and other versatile extreme environments (hot springs, deserts, ice, snow, caves, etc.) and on phycotoxins as contaminants of emergent concern in soil and plants. There is a growing body of evidence that algal toxins and their producers occur in all general types of extreme habitats, and cyanobacteria/cyanoprokaryotes dominate in most of them. Altogether, 55 toxigenic algal genera (47 cyanoprokaryotes) were enlisted, and our analysis showed that besides the “standard” toxins, routinely known from different waterbodies (microcystins, nodularins, anatoxins, saxitoxins, cylindrospermopsins, BMAA, etc.), they can produce some specific toxic compounds. Whether the toxic biomolecules are related with the harsh conditions on which algae have to thrive and what is their functional role may be answered by future studies. Therefore, we outline the gaps in knowledge and provide ideas for further research, considering, from one side, Citation: G¨аrtner, G.; the health risk from phycotoxins on the background of the global warming and eutrophication and, ¨а Stoyneva-G rtner, M.; Uzunov, B.
    [Show full text]
  • Adaptations of Cyanobacterium Nostoc Commune to Environ- Mental Stress: Comparison of Morphological and Physiological Markers
    CZECH POLAR REPORTS 8 (1): 84-93, 2018 Adaptations of cyanobacterium Nostoc commune to environ- mental stress: Comparison of morphological and physiological markers between European and Antarctic populations after re- hydration Dajana Ručová1, Michal Goga1, Marek Matik2, Martin Bačkor1* 1Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of Pavol Jozef Šafárik, Mánesova 23, 041 67 Košice, Slovakia 2Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia Abstract Availability of water may influence activities of all living organisms, including cyano- bacterial communities. Filamentous cyanobacterium Nostoc commune is well adapted to wide spectrum of ecosystems. For this reason, N. commune had to develop diverse pro- tection strategies due to exposition to regular rewetting and drying processes. Few studies have been conducted on activities, by which cyanobacteria are trying to avoid water deficit. Therefore, the present study using physiological and morphological param- eters is focused on comparison between European and Antarctic ecotypes of N. commune during rewetting. Gradual increase of FV/FM ratios, as the markers of active PS II, demonstrated the recovery processes of N. commune colonies from Europe as well as from Antarctica after time dependent rehydration. During the initial hours of rewetting, there was lower content of soluble proteins in colonies from Antarctica in comparison to those from Europe. Total content of nitrogen was higher in European ecotypes of N. commune. Significantly higher frequency of occurrence of heterocysts in Antarctic ecotypes was observed. The heterocyst cells were significantly longer in Antarctic ecotypes rather than European ecotypes of N. commune. Key words: Antarctica, soluble proteins, cyanobacteria, chlorophyll fluorescence, heterocysts, nitrogen, James Ross Island DOI: 10.5817/CPR2018-1-6 ——— Received December 19, 2017, accepted April 4, 2018.
    [Show full text]