Physiological Effects of a Constitutive Tryptophanase in Bacillus Alvei

Total Page:16

File Type:pdf, Size:1020Kb

Physiological Effects of a Constitutive Tryptophanase in Bacillus Alvei JOURNAL OF BACTE1RIOLOGY, Sept., 1965 Vol. 90, No. 3 Copyright @ 1965 American Society for Microbiology Printed in U.S.A, Physiological Effects of a Constitutive Tryptophanase in Bacillus alvei J. A. HOCH AND R. D. DEMOSS Department of Microbiology, University of Illinois, Urbana, Illinois Received for publication 8 April 1965 ABSTRACT HOCH, J. A. (University of Illinois, Urbana), AND R. D. DEMoss. Physiological effects of a constitutive tryptophanase in Bacillus alvei. J. Bacteriol. 90:604-610. 1965. -Tryptophanase synthesis in B. alvei is not under the control of tryptophan and is not subject to catabolite repression. Exogenously supplied tryptophan was converted to indole by tryptophanase, and was excreted into the culture medium. The amount of indole excreted was dependent upon the concentration of tryptophan supplied. At intermediate levels of tryptophan (5 to 15 ,jg/ml), the excreted indole was completely reutilized by the cell, in contrast to the result with higher levels. Indole reutil zation was shown to be dependent upon a functional tryptophan synthetase. In the absience of exogenous tryptophan, indole was excreted into the culture medium at an earlier phys- iological age. The early indole was shown not to be a consequence of tryptophanase action. The early indole accompanied uniformly the normal process of tryptophan biosynthesis, and the fission of indole-3-glycerol phosphate was suggested as the origin of the excreted indole. The enzyme tryptophanase from Escherichia MATERIALS AND METHODS coli has been the subject of considerable research Bacteria. B. alvei ATCC 6348 was obtained from in recent years (Burns and DeMoss, 1962; New- the American Type Culture Collection. A non- ton and Snell, 1964). The enzyme cleaves tryp- mucoid variant which appeared on nutrient agar tophan to indole, pyruvate, and ammonia, with plates was isolated from this strain and used in the pyridoxal phosphate as a cofactor. Tryptophan- experiments reported here. This strain, designated ase in E. coli may serve only in a catabolic role, strain F, has the advantage of being more sus- to metabolizable ceptible to disruption by physical methods than degrading tryptophan pyruvate the parent strain. and excreting indole into the culture medium. Auxotrophic mutants, induced with ultraviolet Newton and Snell (1964) have shown that tryp- light, were selected by the penicillin technique of tophanase may also synthesize tryptophan from Nester, Schafer, and Lederberg (1963). The mu- indole and serine. A mutation to constitutivity tants used in this study are described in Table 1. for tryptophanase in a mutant with the trypto- Accumulated intermediates were identified by phan biosynthetic loci deleted will permit indole paper chromatography. to replace tryptophan as a growth requirement. Culture media. Starter cultures for all experi- Since E. coli is the only organism in which ments were grown on 2% (w/v) Trypticase (BBL), it pH 7.0, supplemented with 10 ,g/ml of thiamine tryptophanase has been studied, was of interest hydrochloride. The mineral salts prepared accord- to determine whether the enzyme was present ing to Smith and Yanofsky (1962) were supple- in other unrelated bacteria. Assuming that pro- mented with 10 ,g/ml of thiamine hydrochloride. duction of indole is a manifestation of tryp- Acid-hydrolysed casein (Nutritional Biochemicals tophanase activity, we have investigated a num- Corp., Cleveland, Ohio), 1% (w/v), was employed as the carbon source. ber of Bacillus species for this characteristic. One Tryptophanase assay. Tryptophanase activity species, B. alvei, produced indole and was found was assayed according to Boezi and DeMoss to exhibit true tryptophanase activity. (1961). The reaction mixture contained: pyri- In the course of investigation of tryptophanase doxal-5-phosphate, 40 pAg; potassium phosphate in B. alvei, its physiological state in the organism buffer (pH 8.0), 300 j,moles; and enzyme solution made to 1.5 ml with distilled water. The reaction was observed to have effects on tryptophan bio- mixture was overlaid with 4 ml of toluene and synthesis; it may fulfill a regulatory role in tryp- shaken at 37 C for 5 min in a 50-ml Erlenmeyer tophan biosynthesis. flask. The reaction was initiated with 0.5 ml of 604 VOL. 90, 1965 CONSTITUTIVE TRYPTOPHANASE IN B. ALVEI 605 0.02 M L-tryptophan and allowed to incubate at TABLE 1. Characteristics of Bacillus alvei mutants* 37 C for 1 hr. The reaction was stopped by adding 0.1 ml of 2 N NaOH and shaking for 5 min. Mutant no. Growth response Accumulation The indole present in the toluene layer was deter- mined according to Yanofsky (1955). Indole for- TS-2 An, In, Try mation in the assay is linear with respect to time TS-15 In, Try IG for at least 5 hr, and is linear with respect to en- TS-19 In,t Try In zyme concentration. One unit of enzyme is defined as that amount of * Abbreviations: An, anthranilic acid; In, enzyme forming 0.1 jAmole of indole per hr. Spe- indole; Try, tryptophan; IG, indole-3-glycerol. cific activity is expressed as units of enzyme per t Leaky on indole. absorbancy unit at 660 m,u of the cell suspension. Determination of indole. To determine indole in TABLE 2. of tryptophan on tryptophanase small samples of the culture, advantage was taken Effect of the high extinction coefficient of the indole-p- synthesis* dimethylaminocinnamaldehyde (PDAC) complex (Scott, 1960). The PDAC reagent consists of 5 Addition Amount Growth 1.activitySpecific parts of a 5% (w/v) solution of PDAC in 95% (v/v) ethyl alcohol and 12 parts of acid-alcohol ,ug/ml (16 ml of concentrated H2SO4 and 200 ml of 95% Tryptophan ............. 0 0.260 3.61 ethyl alcohol). To 0.3 ml of culture, 1.0 ml of 10 0.244 2.79 PDAC reagent was added, and after thorough mix- 50 0.258 3.33 ing the tubes were centrifuged for 5 min at 3,400 X 100 0.250 3.60 g to sediment debris. The clear supernatant fluid 500 0.250 3.28 was removed, and the absorbancy at 625 m, was 1,000 0.201 2.98 read in a Zeiss PMQ II spectrophotometer after Anthranilic acid ......... 200 0.337 3.17 10 min. Indole concentration was estimated from a Indole .................. 50 0.305 3.21 previously constructed standard curve. In some cases the indole was determined after extraction * Cells were harvested after 12 hr, and were into toluene. Either assay gives comparable re- assayed immediately. Growth is presented as sults. absorbancy at 660 m,u; specific activity is ex- Determination of tryptophan. Tryptophan was pressed as units of enzyme per absorbancy unit determined in culture supernatant fluids by the at 660 m,u. method of Frank and DeMoss (1957) with par- tially purified E. coli tryptophanase. Measurement of absorbancy. The absorbancy of (Table 2). Indole and anthranilic acid similarly cultures was measured at 660 m,u, either in a Zeiss have no effect. Such a situation can be envisioned PMQ II spectrophotometer or in an Evelyn photo- if tryptophan is overproduced by the organism, electric colorimeter. thus rendering the exogenous level of tryptophan Measurement of radioactivity. Indole-2-C14 insignificant. On the contrary, tryptophan auxo- (Calbiochem) was converted enzymatically to L-tryptophan-2-C14. In a typical experiment, a trophs grown on a limiting concentration of tryp- sample of culture was sedimented at 8,700 X g for tophan (e.g., 10 ,ug/ml) do not have enzyme levels 15 min. The cells were suspended in 5% (w/v) lower than the wild type. An alternative expla- trichloroacetic acid, and were allowed to stand at nation would suggest that the organism lacks a 4 C for at least 30 min. A sample of this cell sus- tryptophan permease. Although no permease pension was filtered on a membrane filter (no. studies were undertaken, this possibility is not B-6, Carl Schleicher & Schuell Co., Keene, N.H.), likely because copious amounts of indole accu- and the filter was allowed to dry. The supernatant mulate in the presence of exogenous tryptophan. fluid from the initial centrifugation was extracted with toluene, and samples of the toluene layer Thus, tryptophanase synthesis is not under were assayed for indole and radioactivity. A Tri- the control of tryptophan but rather is constitu- carb Liquid Scintillation Spectrometer was em- tive. It might be noted that the specific activity ployed for all radioactivity counting. of fully induced E. coli is approximately 200-fold higher than that of B. alvei. RESULTS Effect of tryptophan on indole excretion. When B. alvei was grown in the presence of Effect of tryptophan on enzyme level. E. coli tryp- tryptophan, tophanase is inducible by high levels of trypto- indole was excreted into the culture medium and phan; in its absence, only a minute amount of presumably arose from tryptophanase action. enzyme is synthesized. Conversely, in B. alvei Indole also appeared in the absence of exogenous the level of exogenous tryptophan has no influ- tryptophan. Figure 1 shows the indole-excretion ence on the specific activity of tryptophanase kinetics for various levels of tryptophan. When 606 HOCH AND DEMOSS J. BACTERIOL. tions (20 ,ug/ml) increased the absolute amount of indole formed but did not appreciably alter the kinetics of indole excretion. At lower concen- trations, anthranilate seemed to decrease the amount of indole formed. This observation lends support to a role for tryptophanase in early indole formation, since Burns (Ph.D. Thesis, Univ. of w 0 Illinois, Urbana) has shown that anthranilate is a competitive inhibitor of the E. coli trypto- 0 phanase. However, Gibson and Yanofsky (1960) showed that indole-3-glycerol phosphate (IGP) E synthetase is also inhibited by anthranilate. E Hence, the reaction is more probably a function 4 of a decreased IGP level.
Recommended publications
  • Synthesis of Tryptophan from Indole, Pyruvate, and Ammonia (E
    Proc. Nat. Acad. S&i. USA Vol. 69, No. 5, pp. 1086-1090, May 1972 Reversibility of the Tryptophanase Reaction: Synthesis of Tryptophan from Indole, Pyruvate, and Ammonia (E. coli/a-aminoacrylate/Michaelis-Menten kinetics/pyridoxal 5'-phosphate) TAKEHIKO WATANABE AND ESMOND E. SNELL Department of Biochemistry, University of California, Berkeley, Calif. 94720 Contributed by Esmond E. Snell, February 14, 1972 ABSTRACT Degradation of tryptophan to indole, tain substituted indoles. Reactions 1-3 were shown (4)t to pro- pyruvate, and ammonia by tryptophanase (EC 4 ....) from ceed through a common intermediate, probably an enzyme- Escherichia coli, previously thought to be an irreversible reaction, is readily reversible at high concentrations of bound a-aminoacrylic acid, which could either decompose to pyruvate and ammonia. Tryptophan and certain of its pyruvate and ammonia (in reactions 1 and 2) or add indole to analogues, e.g., 5-hydroxytryptophan, can be synthesized form tryptophan (in reaction 3). At concentrations previously by this reaction from pyruvate, ammonia, and indole or an tested, reactions 1 and 2 were irreversible (4). appropriate derivative at maximum velocities approaching to Yamada et al. those of the degradative reactions. Concentrations of Subsequent these investigations, (5-7) ammonia required for the synthetic reactions produce showed that 0-tyrosinase from Escherichia intermedia cata- specific changes in the spectrum of tryptophanase that lyzes reaction 4 but not reaction 1, and is similar in many differ from those produced by K+ and indicate that am- respects to tryptophanase. monia interacts with bound pyridoxal 5'-phosphate to form an imine. Kinetic results indicate that pyruvate is Tyrosine + H20 Phenol + Pyruvate + NH3 (4) the second substrate bound, hence indole must be the too, catalyzes degradation of serine, cysteine, etc.
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna Present # of Tryptic
    list list sample) short list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein detected (total list) detected (long list) membrane sample Proteins detected - detected (short list) # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides # of tryptic peptides Functional category detected (membrane Protein detected - total Protein detected - long b0003 thrB 6781 P 9 P 3 3 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 P 11 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 P 16 P 13 0 transaldolase B Metabolism of small molecules b0009 mog 1296 P 7 0 0 0 0 required for the efficient incorporation of molybdate into molybdoproteins Metabolism of small molecules b0014 dnaK 13283 P 32 P 23 P 24 P 23 0 chaperone Hsp70; DNA biosynthesis; autoregulated heat shock proteins Cell processes b0031 dapB 2348 P 16 P 3 3 P 3 0 dihydrodipicolinate reductase Metabolism of small molecules b0032 carA 9312 P 14 P 8 P 8 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 2 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of outer b0053 surA 3825 P 19 P 4 P 5 P 4 P(m) 1 GenProt membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 0 0 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770
    [Show full text]
  • B Number Gene Name Mrna Intensity Mrna
    sample) total list predicted B number Gene name assignment mRNA present mRNA intensity Gene description Protein detected - Membrane protein membrane sample detected (total list) Proteins detected - Functional category # of tryptic peptides # of tryptic peptides # of tryptic peptides detected (membrane b0002 thrA 13624 P 39 P 18 P(m) 2 aspartokinase I, homoserine dehydrogenase I Metabolism of small molecules b0003 thrB 6781 P 9 P 3 0 homoserine kinase Metabolism of small molecules b0004 thrC 15039 P 18 P 10 0 threonine synthase Metabolism of small molecules b0008 talB 20561 P 20 P 13 0 transaldolase B Metabolism of small molecules chaperone Hsp70; DNA biosynthesis; autoregulated heat shock b0014 dnaK 13283 P 32 P 23 0 proteins Cell processes b0015 dnaJ 4492 P 13 P 4 P(m) 1 chaperone with DnaK; heat shock protein Cell processes b0029 lytB 1331 P 16 P 2 0 control of stringent response; involved in penicillin tolerance Global functions b0032 carA 9312 P 14 P 8 0 carbamoyl-phosphate synthetase, glutamine (small) subunit Metabolism of small molecules b0033 carB 7656 P 48 P 17 0 carbamoyl-phosphate synthase large subunit Metabolism of small molecules b0048 folA 1588 P 7 P 1 0 dihydrofolate reductase type I; trimethoprim resistance Metabolism of small molecules peptidyl-prolyl cis-trans isomerase (PPIase), involved in maturation of b0053 surA 3825 P 19 P 4 P(m) 1 GenProt outer membrane proteins (1st module) Cell processes b0054 imp 2737 P 42 P 5 P(m) 5 GenProt organic solvent tolerance Cell processes b0071 leuD 4770 P 10 P 9 0 isopropylmalate
    [Show full text]
  • Microfilmed 199S Information to Users
    UMI MICROFILMED 199S INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with s m a ll overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Beil & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313.-761-4700 800.521-0600 Order Number 0517044 Molecular and biochemical studies of RubisCO activation in Anabatna species Li, Lih-Ann, Ph.D. The Ohio State University, 1094 Copyright ©1094 by Li, Llh-Ann.
    [Show full text]
  • Supplementary Information
    Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle.
    [Show full text]
  • A Chemoautotroph with a Carbon Concentrating Mechanism
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 7-13-2009 Thiomicrospira crunogena: A Chemoautotroph With a Carbon Concentrating Mechanism Kimberly P. Dobrinski University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Dobrinski, Kimberly P., "Thiomicrospira crunogena: A Chemoautotroph With a Carbon Concentrating Mechanism" (2009). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/1937 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Thiomicrospira crunogena: A Chemoautotroph With a Carbon Concentrating Mechanism by Kimberly P. Dobrinski A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology College of Arts and Sciences University of South Florida Major Professor: Kathleen M. Scott, Ph.D. James Garey, Ph.D. Valerie Harwood, Ph.D. John Paul, Ph.D. Date of Approval: July 13, 2009 Keywords: Thiomicrospira crunogena, carbon concentrating mechanism, chemoautotroph, carbon fixation. carbonic anhydrase ©Copyright 2009, Kimberly P. Dobrinski Dedication Thank you Mom (the first scientist in the family) for fun discussions about Biology and all your encouragement. A warm thank you to Dad, Mike, Aunt Sallie and Uncle Jim for unending support. Also thank you Cathy, Joe, Donna and all my family and friends for believing in me. Thank you Sondra for being the friend of a scientist.
    [Show full text]
  • Potential Pharmacological Applications of Enzymes Associated with Bacterial Metabolism of Aromatic Compounds
    Vol. 9(1), pp. 1-13, January 2017 DOI: 10.5897/JMA2015.0354 Article Number: BD2460762280 ISSN 2141-2308 Journal of Microbiology and Antimicrobials Copyright © 2017 Author(s) retain the copyright of this article http://www.academicjournals.org/JMA Review Potential pharmacological applications of enzymes associated with bacterial metabolism of aromatic compounds Ranjith N. Kumavath1*, Debmalya Barh2, Vasco Azevedo3 and Alan Prem Kumar 4,5,6,7** 1Department of Genomic Sciences, School of Biological Sciences, Central University of Kerala, P.O. Central University, Kasaragod- 671314, India. 2Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, PurbaMedinipur, West Bengal 721172, India. 3 Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais. MG, Brazil 4 Cancer Science Institute of Singapore, National University of Singapore, Singapore 5Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore. 6Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia. 7 Department of Biological Sciences, University of North Texas, Denton, TX, USA. Received 30 September, 2015; Accepted 3 January, 2016 Many purple anoxygenic bacteria contribute significantly to the catabolic and anabolic processes in the oxic/anoxic zones of several ecosystems. However, these bacteria are incapable of degrading the benzenoid ring during the biotransformation of aromatic hydrocarbons. The key enzymes in the aromatic
    [Show full text]
  • O O2 Enzymes Available from Sigma Enzymes Available from Sigma
    COO 2.7.1.15 Ribokinase OXIDOREDUCTASES CONH2 COO 2.7.1.16 Ribulokinase 1.1.1.1 Alcohol dehydrogenase BLOOD GROUP + O O + O O 1.1.1.3 Homoserine dehydrogenase HYALURONIC ACID DERMATAN ALGINATES O-ANTIGENS STARCH GLYCOGEN CH COO N COO 2.7.1.17 Xylulokinase P GLYCOPROTEINS SUBSTANCES 2 OH N + COO 1.1.1.8 Glycerol-3-phosphate dehydrogenase Ribose -O - P - O - P - O- Adenosine(P) Ribose - O - P - O - P - O -Adenosine NICOTINATE 2.7.1.19 Phosphoribulokinase GANGLIOSIDES PEPTIDO- CH OH CH OH N 1 + COO 1.1.1.9 D-Xylulose reductase 2 2 NH .2.1 2.7.1.24 Dephospho-CoA kinase O CHITIN CHONDROITIN PECTIN INULIN CELLULOSE O O NH O O O O Ribose- P 2.4 N N RP 1.1.1.10 l-Xylulose reductase MUCINS GLYCAN 6.3.5.1 2.7.7.18 2.7.1.25 Adenylylsulfate kinase CH2OH HO Indoleacetate Indoxyl + 1.1.1.14 l-Iditol dehydrogenase L O O O Desamino-NAD Nicotinate- Quinolinate- A 2.7.1.28 Triokinase O O 1.1.1.132 HO (Auxin) NAD(P) 6.3.1.5 2.4.2.19 1.1.1.19 Glucuronate reductase CHOH - 2.4.1.68 CH3 OH OH OH nucleotide 2.7.1.30 Glycerol kinase Y - COO nucleotide 2.7.1.31 Glycerate kinase 1.1.1.21 Aldehyde reductase AcNH CHOH COO 6.3.2.7-10 2.4.1.69 O 1.2.3.7 2.4.2.19 R OPPT OH OH + 1.1.1.22 UDPglucose dehydrogenase 2.4.99.7 HO O OPPU HO 2.7.1.32 Choline kinase S CH2OH 6.3.2.13 OH OPPU CH HO CH2CH(NH3)COO HO CH CH NH HO CH2CH2NHCOCH3 CH O CH CH NHCOCH COO 1.1.1.23 Histidinol dehydrogenase OPC 2.4.1.17 3 2.4.1.29 CH CHO 2 2 2 3 2 2 3 O 2.7.1.33 Pantothenate kinase CH3CH NHAC OH OH OH LACTOSE 2 COO 1.1.1.25 Shikimate dehydrogenase A HO HO OPPG CH OH 2.7.1.34 Pantetheine kinase UDP- TDP-Rhamnose 2 NH NH NH NH N M 2.7.1.36 Mevalonate kinase 1.1.1.27 Lactate dehydrogenase HO COO- GDP- 2.4.1.21 O NH NH 4.1.1.28 2.3.1.5 2.1.1.4 1.1.1.29 Glycerate dehydrogenase C UDP-N-Ac-Muramate Iduronate OH 2.4.1.1 2.4.1.11 HO 5-Hydroxy- 5-Hydroxytryptamine N-Acetyl-serotonin N-Acetyl-5-O-methyl-serotonin Quinolinate 2.7.1.39 Homoserine kinase Mannuronate CH3 etc.
    [Show full text]
  • Dependent Enzymes. a Hypothesis Philipp Christen*, Patrik Kasper, Heinz Gehring, Michael Sterk Bioehemisches Institut, Universitgit Ziirich, Winterthurerstr
    FEBS Letters 389 (1996) 12-14 FEBS 16909 Minireview Stereochemical constraint in the evolution of pyridoxal-5'-phosphate- dependent enzymes. A hypothesis Philipp Christen*, Patrik Kasper, Heinz Gehring, Michael Sterk Bioehemisches Institut, Universitgit Ziirich, Winterthurerstr. 190, CH-8057 Ziirieh, Switzerland Received 11 January 1996 cular evolution of B6 enzymes. Alanine aminotransferase, as- Abstract In the transamination reactions undergone by pyri- doxal-5'-phosphate-dependent enzymes that act on L-amino partate aminotransferase, 2,2-dialkylglycine decarboxylase, acids, the C4' atom of the cofactor is without exception glutamate decarboxylase, and serine hydroxymethyltransfer- protonated from the si side. This invariant absolute stereo- ase indeed belong to the large c~ family of homologous B6 chemistry of enzymes not all of which are evolutionarily related enzymes [1-3]. However, the pyridoxal-5'-phosphate-depen- to each other and the inverse stereochemistry in the case of D- dent 13 subunit of tryptophan synthase which shows the alanine aminotransferase might reflect a stereochemical con- same stereochemistry is a member of the [3 family of B6 en- straint in the evolution of these enzymes rather than an zymes which is not homologous with the e~ family [1,4]. accidental historical trait passed on from a common ancestor (About the seventh enzyme, pyridoxamine pyruvate amino- enzyme. Conceivably, the coenzyme and substrate binding sites transferase, no information on primary or tertiary structure of primordial pyridoxal-5'-phosphate-dependent
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Modular Control of L-Tryptophan Isotopic Labelling Via an Efficient Biosynthetic Cascade
    Organic & Biomolecular Chemistry Modular Control of L-Tryptophan Isotopic Labelling via an Efficient Biosynthetic Cascade Journal: Organic & Biomolecular Chemistry Manuscript ID OB-COM-04-2020-000868.R1 Article Type: Communication Date Submitted by the 14-May-2020 Author: Complete List of Authors: Thompson, Clayton; University of Wisconsin Madison, Chemistry McDonald, Allwin; University of Wisconsin Madison, Chemistry Yang, Hanming; University of Wisconsin Madison, Chemistry Cavagnero, Silvia; University of Wisconsin Madison, Chemistry Buller, Andrew; University of Wisconsin Madison, Chemistry Page 1 of 6 OrganicPlease & do Biomolecular not adjust marginsChemistry COMMUNICATION Modular Control of L-Tryptophan Isotopic Substitution via an Efficient Biosynthetic Cascade a a a a Received 00th January 20xx, Clayton M. Thompson, Allwin D. McDonald , Hanming Yang , Silvia Cavagnero *, and Andrew R. Accepted 00th January 20xx Bullera* DOI: 10.1039/x0xx00000x Isotopologs are powerful tools for investigating biological systems. We report a biosynthetic-cascade synthesis of Trp isotopologs starting from indole, glycine, and formaldehyde using the enzymes L-threonine aldolase and an engineered β-subunit of tryptophan synthase. This modular route to Trp isotopologs is simple and inexpensive, enabling facile access to these compounds. Isotopically substituted amino acids are valuable tools for the mechanistic and structural analysis of biological systems.1 Among the standard amino acids, L-tryptophan (Trp) is the most structurally complex and serves as the precursor to diverse natural products and clinically used compounds.2 Selective isotopic substitution of Trp is often essential for determining the metabolic fate of individual atoms and the kinetic properties of enzymes that manipulate Trp.3,4 Further, the low prevalence of Trp in proteins makes this amino acid attractive for selective substitution methodologies for protein NMR.5,6 In each of these cases, however, access to the requisite Trp isotopolog is a central hurdle.
    [Show full text]
  • Building Microbial Factories for the Production of Aromatic Amino Acid
    Chemical and Biological Engineering Publications Chemical and Biological Engineering 8-10-2019 Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products Mingfeng Cao Iowa State University Meirong Gao Iowa State University, [email protected] Miguel Suastegui Iowa State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/cbe_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biology and Biomimetic Materials Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ cbe_pubs/386. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemical and Biological Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Chemical and Biological Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products Abstract The ra omatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to continue to increase at national and global levels.
    [Show full text]