Smallscale Benthic Fisheries in Chile: on Comanagement

Total Page:16

File Type:pdf, Size:1020Kb

Smallscale Benthic Fisheries in Chile: on Comanagement S124 JUAN C. CASTILLA AND MIRIAM FERNANDEZ Ecological Applications Special Issue Ecological Applications, 8(1) Supplement, 1998, pp. S124–S132 ᭧ 1998 by the Ecological Society of America SMALL-SCALE BENTHIC FISHERIES IN CHILE: ON CO-MANAGEMENT AND SUSTAINABLE USE OF BENTHIC INVERTEBRATES JUAN C. CASTILLA AND MIRIAM FERNANDEZ Estacio´n Costera de Investigaciones Marinas, Las Cruces Facultad de Ciencias Biolo´gicas, Pontificia Universidad Cato´lica de Chile, Casilla 114-D, Santiago, Chile Abstract. We discuss the issues of sustainable use and management in the Chilean inshore benthic small-scale (artisanal) fisheries. The fishery benefits from two features that make it possible to overcome some of the problems of conventional management. These are: (1) major advances have been made in understanding relevant ecological processes, and (2) this knowledge has been institutionalized in the 1991 Chilean Fishing and Aqua- culture Law (FAL). FAL legalizes the use of community-owned shellfish grounds, so-called ‘‘Management and Exploitation Areas’’ (MEA); this practice is considered to confer quasi- property rights to fishers’ unions. Management plans for these areas have to be approved by the government. This co-management approach solves one of the major problem in many fisheries: overexploitation. In addition, the study of the MEAs could provide useful infor- mation, if they are considered as ‘‘replicates,’’ in evaluating the effect of human perturbation and different management regimes. We think that by using the different tools provided by the FAL on the spatial arrangement of the small-scale fishery and answering certain key ecological questions, the sustainable use of inshore benthic resources in Chile (e.g., gas- tropods, sea urchins, and algae) via an ecosystem approach can be achieved in the near future. Key words: Chile; co-management; community ownership; ecosystem approach; small-scale fish- ery; sustainable use; invertebrates. INTRODUCTION problems still remain unresolved, primarily because of the uncertainty associated with recruitment dynamics The problem of variation in catches and overex- (Hilborn and Walters 1992). However, little attention ploitation in marine fisheries began to receive scientific has been given to Lankester’s view on species inter- attention in the late 1800s (Huxley 1884, Lankester action and ecological processes governing ecosystem 1884), primarily due to the development of more ef- functioning (but see Hjort 1914, Burkenroad 1953, ficient fishing methods (Smith 1988). On the other Paine 1984). The lack of knowledge about these pro- hand, natural fluctuation in population abundance ap- pears to be the rule rather than the exception in marine cesses is a major constraint in understanding the effect fisheries. Hjort (1914) recognized this factor and iden- of fishing on population dynamics and ecosystem func- tified some of the causes of larval survival and dis- tioning (Lubchenco et al. 1991, Hilborn and Walters persal. Ever since, this topic has been an important 1992). Furthermore, there are other issues related to focus of study in fishery science (e.g., Ricker 1954, fisheries management that need to be considered: (1) Beverton and Holt 1957). Major difficulties in under- exploited populations are subjected to different histo- standing recruitment fluctuation arise because inter- ries of intentional human ‘‘perturbations’’ that interfere actions among species are unknown, and besides, most with long-term ecological processes and (2) those per- marine fish populations are open (Sinclair 1988) and turbations are the result of a combination of political, under variable exploitation rate. These arguments can social, and economic factors. Besides, (3) management be found in almost all major fisheries (e.g., halibut usually focuses on a single stock with no explicit in- (Hippolossus stenolepis): Thompson 1950, Burkenroad teraction between its predators, competitors, or other 1953; Peruvian anchovy (Engraulis ringens): Pauly and environmental variables. Tsukayama 1987; California sardine (Sardina sp.): Sa- In this paper we discuss some of these issues in the ville and Bailey 1980). In many cases, the underlying context of the small-scale (artisanal) Chilean fishery of invertebrates and the new co-management tool (joint management involving resource users and government; Manuscript received 20 February 1996; revised 15 Sep- Hanna 1994) known as Management and Exploitation tember 1996; accepted 15 October 1996; final version re- ceived 16 July 1997. For reprints of this Special Issue, see Areas (MEA) recently established in Chile (Castilla footnote 1, p. S1. 1994). We use the example of an artisanal fisher Union S124 February 1998 SMALL-SCALE FISHERIES, CHILE S125 FIG. 1. Chilean small-scale fishery landing (1960–1995) of the muricid gastropod ‘‘loco’’ Concholepas concholepas and export revenues in U.S. dollars. Different phases of the fishery are shown. Circled asterisks indicate Total Allowable Catch. Partially taken from Castilla 1996a. in central Chile, Caleta el Quisco (33Њ23Ј S; 71Њ42Ј W), not immune to overexploitation and, moreover, there where we have worked for ϳ8yr. are rights conflicts over portions of the ocean ‘‘used’’ by the industrial and artisanal fleets. The landings of SMALL-SCALE FISHERIES:THE CHILEAN EXPERIENCE the industrial fleet in Chile, Ͼ6 ϫ 109 kg/yr largely Although large-scale fisheries have generated most overpasses artisanal landings, of ϳ1.5 ϫ 108 kg/yr. of the attention in fishery biology, small-scale fisheries Nevertheless, in many coastal areas of developing are also very important. Particularly in developing countries, the small-scale artisanal sector provides the countries, a large group of finfish and shellfisheries are bulk of the domestic day-to-day food, and moreover, operated at a small scale as defined by Bermudez and the fished species (e.g., shellfishes and algae) have el- Aguero (1989): (1) fisheries operating with ‘‘open- evated market values as compared to products extracted boats’’ of Ͻ50 g ϫ 103 kg such as engine-powered by the industrial fleet. In Chile, Ͼ60 species of shellfish (inboard, outboard) boats, or rowboats; and (2) fisheries and algae (e.g., muricid gastropods, keyhole limpets, based on diving operations or even on hand-picking bivalves, sea urchins, barnacles, ascidians, bull-kelp, procedures at the shores (food gathering subsistence and Gracilaria spp.) are regularly exploited exclusively activities). Aguero (1992) estimated that in Latin by the small-scale fishery sector and external markets America there were ϳ106 people directly engaged in are exerting increasing pressures on these resources fishing activities, and ϳ90% of them belonged to small- (Bustamante and Castilla 1987, Castilla 1995). scale fisheries. The majority of the resources available The pattern of exploitation of these resources and to this sector are pelagic or benthic species restricted the socioeconomic and legal ripple effects produced by to inshore coastal areas, and in many cases endemic these external pressures is apparent in the fishery of species with restricted geographical distributions or the Chilean muricid gastropod loco, Concholepas con- unique to the area (e.g., Bustamante and Castilla 1987). cholepas Bruguie`re. The loco is the single most eco- These authors pointed out that the artisanal fishery in nomically important shellfish in Chile (Castilla 1996a) Chile plays crucial economic and social roles because and the most studied invertebrate species in the country many of the benthic resources (e.g., shellfishes and (Castilla 1988). During the past 35 yr the commercial algae) show elevated export revenues when compared exploitation of locos (the commercial fishery is done to those from the large-scale fishery sector (Castilla exclusively by divers) has shown five contrasting phas- 1996a). es (Fig. 1). The first phase (1960–1975) was charac- Resources targeted by the small-scale fisheries are terized by landings ranging between 2 ϫ 106 and 6 ϫ S126 JUAN C. CASTILLA AND MIRIAM FERNANDEZ Ecological Applications Special Issue 106 kg that were used for domestic consumption (the centralization and protected areas is one of the future domestic consumption—sustainable phase in Fig. 1). goals of marine fisheries management. The main dif- Between 1976 and 1980–1981, landings abruptly in- ferences between the Chilean MEA–TAC co-manage- creased due to high demand from the Asian market, ment scheme and the Individual Transferable Quotas reaching a peak of 2.48 ϫ 106 kg in 1980 (export (ITQ) system were discussed by Castilla 1996a.In phase—unsustainable in Fig. 1). Thereafter, from 1982 summary, ITQs, when used as the only tool to solve through 1988, landings decreased, probably due to small-scale management problems within traditional overexploitation (overexploitation phase in Fig. 1) re- fishery societies, can create ‘‘virtual communities.’’ sulting in the implementation of a complex series of ITQs are quasi-property rights which, if not used prop- management steps. Although illegal extractions oc- erly by the recipients, can destroy traditional fishery curred, between 1989 and 1992 the fishery was offi- societies (Pauly, in press). On the other hand, the cially closed (total closure phase). Since in Chile the MEA–TAC scheme is deeply rooted into the small- loco can represent up to 50% of the small-scale shellfish scale fishery communities and cannot be transferred. export revenues (e.g., $64 000 000/yr in U.S. currency; The two main elements considered by the Chilean Castilla 1996a), the Chilean shellfish exportation rate
Recommended publications
  • Research Article Spawning and Larval Rearing of Red Sea Urchin Salmacis Bicolor (L
    Iranian Journal of Fisheries Sciences 19(6) 3098-3111 2020 DOI: 10.22092/ijfs.2020.122939 Research Article Spawning and larval rearing of red sea urchin Salmacis bicolor (L. Agassiz and Desor, 1846;Echinodermata: Echinoidea) Gobala Krishnan M.1; Radhika Rajasree S.R.2*; Karthih M.G.1; Aranganathan L.1 Received: February 2019 Accepted: May 2019 Abstract Gonads of sea urchin attract consumers due to its high nutritional value than any other seafood delicacies. Aquaculturists are also very keen on developing larval culture methods for large-scale cultivation. The present investigation systematically examined the larval rearing, development, survival and growth rate of Salmacis bicolor fed with various microalgal diets under laboratory condition. Fertilization rate was estimated as 95%. The blastula and gastrula stages attained at 8.25 h and 23.10 h post-fertilization. The 4 - armed pluteus larvae were formed with two well - developed post-oral arms at 44.20 h following post-fertilization. The 8 - armed pluteus attained at 9 days post fertilization. The competent larva with complete rudiment growth was developed on 25th days post - fertilization. Monodiet algal feed - Chaetoceros calcitrans and Dunaliella salina resulted medium (50.6 ± 2.7%) and low survival rate (36.8 ± 1.7%) of S. bicolor larvae. However, combination algal feed – Isochrysis galbana and Chaetoceros calcitrans has promoted high survival rate (68.3 ± 2.5%) which was significantly different between the mono and combination diet. From the observations of the study, combination diet could be adopted as an effective feed measure to promote the production of nutritionally valuable roes of S.
    [Show full text]
  • Macrocystis Pyrifera) of Puerto Toro, Navarino Island, Chile
    - Vol. 19: 55-63. 1984 MARINE ECOLOGY PROGRESS SERIES Published August 30 Mar. Ecol. Prog. Ser. Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile J. A. Vasquez, J. C. Castilla and B. Santelices Departamento de Biologia Ambiental y de Poblaciones, Facultad de Ciencias Biol6gicas. Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: The distribution pattern of microhabitat and diet was studied in 4 species of sea urchins (Loxechinus albus, Pseudechinus magellanicus, Arbacia dufresnei, Austrocidaris canaliculata) in a forest of Macrocystis pyrifera in southern Chile. We conclude that: (1) There is no overlap in space utilization (microhabitat) except for the species pair P. magellanicus -A, canaliculata. (2) All 4 species of sea urchins feed on M. pynfera in different percentages; this results in a high diet overlap in at least 3 of them; however, this resource does not appear to be limiting. (3) Neither competition among adults nor predation on adults appears to be a key factor in regulating the present population densities of the four species of sea urchins in the habitat studied. Our results further indicate that differences in intensity of water movement, correlated with bathymetric distribution, regulate population density, size of test and biomass in these four species. INTRODUCTION Puerto Toro, Navarino Island, in the Beagle Channel there are 4 species of sea urchins: Loxechinus albus Sea urchins are among the major grazers structuring (Molina), Arbacia dufresnei (Blainville), Pseudechinus communities of kelps in shallow waters of the Northern magellanicus (Philippi), Austrocidaris canaliculata Hemisphere (Leighton et al., 1965; Jones and Kain, (Agassiz).
    [Show full text]
  • Juvenile Ecology of the Sea Urchin Loxechinus Albusin Chiloé Island
    Aquaculture Sci. 57(4),567-577(2009) Juvenile Ecology of the Sea Urchin Loxechinus albus in Chiloé Island, Chile Sohei KINO Abstract: The natural distribution of the juvenile Chilean sea urchin Loxechinus albus was investi- gated to understand the ecology of the juvenile period from May 1987 to February 1989 in eastern coastal waters of Chiloé Island, Chile. Searching for juveniles by scuba diving and observing sus- pended bivalve culture lines was conducted. Juvenile L. albus at 38.5 individuals/m2 were found in Linao in February 1989. This was the maximum density noted in this study, and the juvenile size was 2.8-7.8 mm in test diameter. The habitat of juveniles was at the tip of the peninsula, where tidal drift was optimal and the depth was less than 6 m. Moreover, the bottom was pebbles or rock bed, and shell detritus or gravel was found. On the other hand, juvenile L. albus were also found on the suspended culture lines for oysters in Linao and Hueihue. Especially in Linao, approximately 540000 juveniles of 3.5 mm in test diameter were observed attached to suspended oyster culture lines in December 1988. The possible predation of juvenile L. albus in natural waters by juvenile crabs was suggested. According to findings on juvenile ecology, a fishing bank formation mecha- nism was discussed. Key words: Loxechinus albus; Juvenile sea urchin; Settlement; Recruitment For basic studies on stock enhancement However, there are few reports on the juve- of the sea urchin, a grasp of the juvenile ecol- nile ecology of this species.
    [Show full text]
  • Sea Urchin Aquaculture
    American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988).
    [Show full text]
  • Genomics of the Globally Distributed Echinoid Genus Tripneustes
    GENOMICS OF THE GLOBALLY DISTRIBUTED ECHINOID GENUS Tripneustes A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY,EVOLUTION,&CONSERVATION BIOLOGY) May 2018 BY Áki Jarl LÁRUSON DISSERTATION COMMITTEE: Floyd A. Reed, Chairperson Robert C. Thomson Robert J. Toonen Daniel Rubinoff David B. Carlon Keywords: Marine Invertebrate, Phylogenomics, Transcriptomics, Population Genomics © Copyright 2018 – Áki Jarl Láruson All rights reserved i DEDICATION I dedicate this dissertation to my grandfather, Marteinn Jónsson (née Donald L. Martin). ii Acknowledgements Every step towards the completion of this dissertation has been made possible by more people than I could possibly recount. I am profoundly grateful to my teachers, in all their forms, and especially my undergraduate advisor, Dr. Sean Craig, of Humboldt State Uni- versity, for all the opportunities he afforded me in experiencing biological research. My dissertation committee deserves special mention, for perpetually affording me pressing encouragement, but also providing an attitude of support and positivity that has been formative beyond measure. My mentor and committee chair, Dr. Floyd Reed, has pro- vided me with perspectives, insights, and advise that I will carry with me for the rest of my life. My family, although far from the tropical shores of Hawai‘i, have been with me in so many ways throughout this endeavor, and I am so profoundly grateful for their love and support. iii Abstract Understanding genomic divergence can be a key to understanding population dynam- ics. As global climate change continues it becomes especially important to understand how and why populations form and dissipate, and how they may be better protected.
    [Show full text]
  • Microbial Composition and Genes for Key Metabolic Attributes in the Gut
    Article Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins Lytechinus variegatus and Strongylocentrotus purpuratus Using Shotgun Metagenomics Joseph A. Hakim 1,†, George B. H. Green 1, Stephen A. Watts 1, Michael R. Crowley 2, Casey D. Morrow 3,* and Asim K. Bej 1,* 1 Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA; [email protected] (J.A.H.); [email protected] (G.B.H.G.); [email protected] (S.A.W.) 2 Department of Genetics, Heflin Center Genomics Core, School of Medicine, The University of Alabama at Birmingham, 705 South 20th Street, Birmingham, AL 35294, USA; [email protected] 3 Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA * Correspondence: [email protected] (C.D.M.); [email protected] (A.K.B.); Tel.: +1-205-934-5705 (C.D.M.); +1-205-934-9857 (A.K.B.) † Current Address: School of Medicine (M.D.), The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA. Abstract: This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics Citation: Hakim, J.A.; Green, G.B.H.; approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria Watts, S.A.; Crowley, M.R.; Morrow, at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative C.D.; Bej, A.K.
    [Show full text]
  • Evolutionary Pathways Among Shallow and Deep-Sea Echinoids of the Genus Sterechinus in the Southern Ocean
    Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin To cite this version: Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin. Evolutionary path- ways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean.. Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 2011, 58 (1-2), pp.205-211. 10.1016/j.dsr2.2010.10.012. hal-00567501 HAL Id: hal-00567501 https://hal.archives-ouvertes.fr/hal-00567501 Submitted on 3 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean A. Dı´az a,n, J.-P. Fe´ral b, B. David c, T. Saucede c, E. Poulin a a Instituto de Ecologı´a y Biodiversidad (IEB), Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile b Universite´ de la Me´diterrane´e-CNRS, UMR 6540 DIMAR, COM-Station Marine d’Endoume, Marseille, France c Bioge´osciences, UMR CNRS 5561, Universite´ de Bourgogne, Dijon, France abstract Antarctica is structured by a narrow and deep continental shelf that sustains a remarkable number of benthic species.
    [Show full text]
  • Analysis of Time-Lapse Images As a Tool to Study Movement in Situ in Four Species of Sea Urchins and One Limpet from North Patagonia and the South Shetland Islands
    Rostock. Meeresbiolog. Beitr. Heft 30 117 – 136 Rostock 2020 Dirk SCHORIES1,2, María José DÍAZ3,4, Ignacio GARRIDO1,5,6, Thomas HERAN3,4, Jorge HOLTHEUER7, Jose Luis KAPPES1, Gesche KOHLBERG8 & Gerd NIEDZWIEDZ8* 1 Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile 2 DLR Projektträger, Heinrich-Konen-Straße 1, D-53227 Bonn, Germany 3 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany 4 University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany 5 Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile 6 Département de biologie & Québec-Océan, Université Laval, Québec (QC) G1V 0A6 Canada. 7 Asesorías Ambientales y Buceo Profesional, Empresa KOJH, Punta Arenas, Chile. 8 Universität Rostock, MNF / Institut für Biowissenschaften, Meeresbiologie, Albert-Einstein-Straße 3, 18059 Rostock, Germany [email protected] Analysis of time-lapse images as a tool to study movement in situ in four species of sea urchins and one limpet from North Patagonia and the South Shetland Islands Abstract Time lapse photography closes a gap to other benthic studies, where the community and its structure is often investigated by estimates of percentage cover and abundance of epibenthic organisms. We realized preliminary experiments of the move- ment patterns of the three Southern Chilean sea urchin species, Arbacia dufresnii, Loxechinus albus, Pseudechinus magellanicus and the Antarctic species Sterechinus neumayeri in shallow water (10 m depth). Additionally, we included the Antarctic limpet Nacella concinna from a subtidal location in our study. The maximum movement activity of single specimen of all four species varied between 22.5 cm and 62.5 cm h-1 during day time.
    [Show full text]
  • Sustainability of the Artisanal Fishery in Northern Chile: a Case Study of Caleta Pisagua
    sustainability Article Sustainability of the Artisanal Fishery in Northern Chile: A Case Study of Caleta Pisagua Carola Espinoza 1,2,Víctor A. Gallardo 1, Carlos Merino 3, Pedro Pizarro 3 and Kwang-Ming Liu 1,4,5,* 1 Institute of Marine Affairs and Resource Management, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan; [email protected] (C.E.); [email protected] (V.A.G.) 2 Department of Oceanography, University of Concepción, Concepción 4030000, Chile 3 Faculty of Natural Renewables Resources, Arturo Prat University, Iquique 2210000, Chile; [email protected] (C.M.); [email protected] (P.P.) 4 George Chen Shark Research Center, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan 5 Center of Excellence for the Oceans, National Taiwan Ocean University, 2, Pei-Ning Road, Keelung 20224, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2462-2192 (ext. 5018) Received: 14 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Abstract: The Humboldt Current, one of the most productive waters in the world, flows along the Chilean coast with high primary production level. However, living marine resources in these waters are declining due to overexploitation and other anthropogenic and environmental factors. It has been reported that deploying artificial reefs in coastal waters can improve the production of benthic resources. Toensure the sustainability of coastal fisheries in northern Chile this study aims to investigate fishermen’s perceptions on deploying artificial reefs and propose future management measures using Caleta Pisagua as a case study. Interviews of artisanal fishermen regarding four aspects: fishermen profile, fishing activity, resources, and artificial reefs were conducted.
    [Show full text]
  • Redalyc.Feeding and Nutritional Ecology of the Edible Sea Urchin
    Revista Chilena de Historia Natural ISSN: 0716-078X [email protected] Sociedad de Biología de Chile Chile GONZÁLEZ, SOLANGE J.; CÁCERES, CRISTIÁN W.; OJEDA, F. PATRICIO Feeding and nutritional ecology of the edible sea urchin Loxechinus albus in the northern Chilean coast Revista Chilena de Historia Natural, vol. 81, núm. 4, 2008, pp. 575-584 Sociedad de Biología de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=369944288010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative FEEDING ECOLOGY OF L. ALBUS Revista Chilena de Historia Natural575 81: 575-584, 2008 Feeding and nutritional ecology of the edible sea urchin Loxechinus albus in the northern Chilean coast Ecología nutricional y alimenticia del erizo comestible Loxechinus albus en el norte de Chile SOLANGE J. GONZÁLEZ2, CRISTIÁN W. CÁCERES3 & F. PATRICIO OJEDA1 1 Center for Advanced Studies in Ecology and Biodiversity, Departamento de Ecología, Pontificia Universidad Católica de Chile, CP 6513677, Santiago, Chile 2 Departamento de Ciencias del Mar, Universidad Arturo Prat, Iquique, Chile. 3 Departamento de Ecología Costera, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile * e-mail for correspondence: [email protected] ABSTRACT The red sea urchin Loxechinus albus, an economically important species occurring along the Chilean littoral benthic systems, has been heavily exploited by artisanal fisheries in recent decades. However, basic knowledge of its trophic biology is still scarce.
    [Show full text]
  • Complete Mitogenome of the Edible Sea Urchin Loxechinus Albus: Genetic Structure and Comparative Genomics Within Echinozoa
    Mol Biol Rep DOI 10.1007/s11033-014-3847-5 Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa Graciela Cea • Juan Diego Gaita´n-Espitia • Leyla Ca´rdenas Received: 7 May 2014 / Accepted: 25 November 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract The edible Chilean red sea urchin, Loxechinus Hemicentrotus, whereas the other included species of albus, is the only species of its genus and endemic to the Mesocentrotus and Pseudocentrotus. Southeastern Pacific. In this study, we reconstructed the mitochondrial genome of L. albus by combining Sanger Keywords Loxechinus albus Á Mitochondrial genome Á and pyrosequencing technologies. The mtDNA genome Genome architecture Á Echinodermata had a length of 15,737 bp and encoded the same 13 pro- tein-coding genes, 22 transfer RNA genes, and two ribo- somal RNA genes as other animal mtDNAs. The size of Introduction this mitogenome was similar to those of other Echinoder- mata species. Structural comparisons showed a highly Metazoan mitochondrial DNA (mtDNA) is typically a conserved structure, composition, and gene order within circular double-stranded molecule of approximately Echinoidea and Holothuroidea, and nearly identical gene 12–20 kb length that contains 13 protein-coding genes organization to that found in Asteroidea and Crinoidea, (PCGs) involved in oxidative phosphorylation (OXPHOS), with the majority of differences explained by the inversions 22 transfer RNA (tRNA) genes necessary to translate the of some tRNA genes. Phylogenetic reconstruction sup- PCGs, two ribosomal RNA genes (rRNA), and a major AT- ported the monophyly of Echinozoa and recovered the rich non-coding region usually denominated the mito- monophyletic relationship of Holothuroidea and Echinoi- chondrial control region [1, 2].
    [Show full text]
  • Marine Biodiversity at the End of the World: Cape Horn and Diego Ramı´Rez Islands
    RESEARCH ARTICLE Marine biodiversity at the end of the world: Cape Horn and Diego RamõÂrez islands Alan M. Friedlander1,2*, Enric Ballesteros3, Tom W. Bell4, Jonatha Giddens2, Brad Henning5, Mathias HuÈne6, Alex Muñoz1, Pelayo Salinas-de-LeoÂn1,7, Enric Sala1 1 Pristine Seas, National Geographic Society, Washington DC, United States of America, 2 Fisheries Ecology Research Laboratory, University of Hawai`i, Honolulu, Hawai`i, United States of America, 3 Centre d0Estudis AvancËats (CEAB-CSIC), Blanes, Spain, 4 Department of Geography, University of California Los Angeles, Los Angeles, California, United States of America, 5 Remote Imaging Team, National Geographic Society, Washington DC, United States of America, 6 FundacioÂn IctioloÂgica, Santiago, Chile, 7 Charles a1111111111 Darwin Research Station, Puerto Ayora, GalaÂpagos Islands, Ecuador a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract The vast and complex coast of the Magellan Region of extreme southern Chile possesses a diversity of habitats including fjords, deep channels, and extensive kelp forests, with a OPEN ACCESS unique mix of temperate and sub-Antarctic species. The Cape Horn and Diego RamõÂrez Citation: Friedlander AM, Ballesteros E, Bell TW, archipelagos are the most southerly locations in the Americas, with the southernmost kelp Giddens J, Henning B, HuÈne M, et al. (2018) Marine biodiversity at the end of the world: Cape forests, and some of the least explored places on earth. The giant kelp Macrocystis pyrifera Horn and Diego RamõÂrez islands. PLoS ONE 13(1): plays a key role in structuring the ecological communities of the entire region, with the large e0189930. https://doi.org/10.1371/journal. brown seaweed Lessonia spp.
    [Show full text]