Sea Urchin Ecology and Biology Larry G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Risk Analysis: Vessel Biofouling
Risk Analysis: Vessel Biofouling ISBN 978-0-478-37548-0 (print) ISBN 978-0-478-37549-7 (online) 15 February 2011 Risk Analysis: Vessel Biofouling 15 February 2011 Approved for general release Christine Reed Manager, Risk Analysis Ministry of Agriculture and Forestry Requests for further copies should be directed to: Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the MAF website at http://www.biosecurity.govt.nz/regs/imports/ihs/risk © Crown Copyright - Ministry of Agriculture and Forestry i Contributors to this risk analysis 1. Primary author/s Dr Andrew Bell Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Simon Phillips Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Eugene Georgiades Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington Dr Daniel Kluza Senior Adviser MAF Biosecurity New Zealand Risk Analysis, Marine Wellington 2. Secondary contributors Dr Christopher Denny Adviser MAF Biosecurity New Zealand Border Standards Wellington 3. External peer review John Lewis Principal Marine Consultant ES Link Services Pty Ltd Melbourne, Victoria, Australia Richard Piola Senior Scientist Cawthron Institute Nelson, New Zealand The draft risk analysis has also been internally reviewed by: Liz Jones (Border Standards); Justin McDonald (Post-Clearance); Melanie Newfield (Risk Analysis); Howard Pharo (Risk Analysis); Sandy Toy (Risk Analysis). The contribution of all the reviewers is gratefully acknowledged. ii Contents Page Executive summary 1 Definitions 7 1. Introduction 8 1.1. Background 8 1.2. Scope 13 1.3. References 14 2. Methodology 19 2.1. -
Scientific and Biodiversity Values of Marine Reserves: a Review.DOC Research and Development Series 340
Scientific and biodiversity values of marine reserves A review DOC RESEARCH AND DEVELOPMENT SERIES 340 Trevor J. Willis DOC Research & Development Series is a published record of scientific research carried out, or advice given, by Department of Conservation staff or external contractors funded by DOC. It comprises reports and short communications that are peer-reviewed. This report is available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright October 2013, New Zealand Department of Conservation ISSN 1177–9306 (web PDF) ISBN 978–0–478–14999–9 (web PDF) This report was prepared for publication by the Publishing Team; editing by Sue Hallas and layout by Lynette Clelland. Publication was approved by the Deputy Director-General, Science and Capability Group, Department of Conservation, Wellington, New Zealand. Published by Publishing Team, Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. CONTENTS Abstract 1 1. Introduction 2 2. Research in New Zealand marine reserves 4 2.1 Peer-reviewed literature 5 2.2 University theses 7 2.3 Unpublished reports 9 2.4 Monitoring in New Zealand marine reserves 9 2.4.1 What is ‘monitoring’? 9 2.4.2 Comments on survey designs for monitoring 9 2.4.3 Trends in biological indicators 14 2.4.4 Understanding the biology of targeted species—a cautionary tale for meta-analysts 15 3. The value of marine reserves 17 3.1 Scientific research 17 3.1.1 Safety of in situ experiments and apparatus 17 3.1.2 Access to depleted species 17 3.1.3 Marine reserves as reference points for environmental and fishery management 21 3.2 Biodiversity values of marine reserves 25 3.3 Concluding remarks 26 4. -
The Effects of Environmental Factors and Husbandry Techniques on Roe Enhancement of the New Zealand Sea Urchin, Evechinus Chloroticus
The Effects of Environmental Factors and Husbandry Techniques on Roe Enhancement of the New Zealand Sea Urchin, Evechinus chloroticus By Philip James A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy in Marine Biology Victoria University of Wellington 2007 ABSTRACT The roe of sea urchins (Echinodermata: echinoidea) is a prized seafood in a number of countries around the world, including New Zealand. Increasing fishing pressure on world sea urchin stocks has failed to meet demand. This has led to increasing worldwide interest in roe enhancement of sea urchins. In New Zealand kina (Evechinus chloroticus) have also been heavily fished. However, there are large numbers of poor quality (low gonad index or GI) kina found in kina barrens which are uneconomic to harvest due to low returns. The primary aim of this research was to identify the key holding and environmental conditions for roe enhancement of E. chloroticus to assist in the development of a roe enhancement industry for E. chloroticus to utilise this resource. A series of experiments testing the optimal holding conditions for E. chloroticus in both land- and sea-based holding systems showed that culture depth (3 and 6 m) and removal of the urchins from the water three times per week had no significant effect on gonad growth or urchin mortality. However, exposing E. chloroticus to increased water movement resulted in significantly greater gonad growth in 12 weeks. Increasing water movement is believed to increase the available dissolved oxygen and facilitate the removal of metabolites from around the urchins. -
Research Article Spawning and Larval Rearing of Red Sea Urchin Salmacis Bicolor (L
Iranian Journal of Fisheries Sciences 19(6) 3098-3111 2020 DOI: 10.22092/ijfs.2020.122939 Research Article Spawning and larval rearing of red sea urchin Salmacis bicolor (L. Agassiz and Desor, 1846;Echinodermata: Echinoidea) Gobala Krishnan M.1; Radhika Rajasree S.R.2*; Karthih M.G.1; Aranganathan L.1 Received: February 2019 Accepted: May 2019 Abstract Gonads of sea urchin attract consumers due to its high nutritional value than any other seafood delicacies. Aquaculturists are also very keen on developing larval culture methods for large-scale cultivation. The present investigation systematically examined the larval rearing, development, survival and growth rate of Salmacis bicolor fed with various microalgal diets under laboratory condition. Fertilization rate was estimated as 95%. The blastula and gastrula stages attained at 8.25 h and 23.10 h post-fertilization. The 4 - armed pluteus larvae were formed with two well - developed post-oral arms at 44.20 h following post-fertilization. The 8 - armed pluteus attained at 9 days post fertilization. The competent larva with complete rudiment growth was developed on 25th days post - fertilization. Monodiet algal feed - Chaetoceros calcitrans and Dunaliella salina resulted medium (50.6 ± 2.7%) and low survival rate (36.8 ± 1.7%) of S. bicolor larvae. However, combination algal feed – Isochrysis galbana and Chaetoceros calcitrans has promoted high survival rate (68.3 ± 2.5%) which was significantly different between the mono and combination diet. From the observations of the study, combination diet could be adopted as an effective feed measure to promote the production of nutritionally valuable roes of S. -
Macrocystis Pyrifera) of Puerto Toro, Navarino Island, Chile
- Vol. 19: 55-63. 1984 MARINE ECOLOGY PROGRESS SERIES Published August 30 Mar. Ecol. Prog. Ser. Distributional patterns and diets of four species of sea urchins in giant kelp forest (Macrocystis pyrifera) of Puerto Toro, Navarino Island, Chile J. A. Vasquez, J. C. Castilla and B. Santelices Departamento de Biologia Ambiental y de Poblaciones, Facultad de Ciencias Biol6gicas. Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile ABSTRACT: The distribution pattern of microhabitat and diet was studied in 4 species of sea urchins (Loxechinus albus, Pseudechinus magellanicus, Arbacia dufresnei, Austrocidaris canaliculata) in a forest of Macrocystis pyrifera in southern Chile. We conclude that: (1) There is no overlap in space utilization (microhabitat) except for the species pair P. magellanicus -A, canaliculata. (2) All 4 species of sea urchins feed on M. pynfera in different percentages; this results in a high diet overlap in at least 3 of them; however, this resource does not appear to be limiting. (3) Neither competition among adults nor predation on adults appears to be a key factor in regulating the present population densities of the four species of sea urchins in the habitat studied. Our results further indicate that differences in intensity of water movement, correlated with bathymetric distribution, regulate population density, size of test and biomass in these four species. INTRODUCTION Puerto Toro, Navarino Island, in the Beagle Channel there are 4 species of sea urchins: Loxechinus albus Sea urchins are among the major grazers structuring (Molina), Arbacia dufresnei (Blainville), Pseudechinus communities of kelps in shallow waters of the Northern magellanicus (Philippi), Austrocidaris canaliculata Hemisphere (Leighton et al., 1965; Jones and Kain, (Agassiz). -
Juvenile Ecology of the Sea Urchin Loxechinus Albusin Chiloé Island
Aquaculture Sci. 57(4),567-577(2009) Juvenile Ecology of the Sea Urchin Loxechinus albus in Chiloé Island, Chile Sohei KINO Abstract: The natural distribution of the juvenile Chilean sea urchin Loxechinus albus was investi- gated to understand the ecology of the juvenile period from May 1987 to February 1989 in eastern coastal waters of Chiloé Island, Chile. Searching for juveniles by scuba diving and observing sus- pended bivalve culture lines was conducted. Juvenile L. albus at 38.5 individuals/m2 were found in Linao in February 1989. This was the maximum density noted in this study, and the juvenile size was 2.8-7.8 mm in test diameter. The habitat of juveniles was at the tip of the peninsula, where tidal drift was optimal and the depth was less than 6 m. Moreover, the bottom was pebbles or rock bed, and shell detritus or gravel was found. On the other hand, juvenile L. albus were also found on the suspended culture lines for oysters in Linao and Hueihue. Especially in Linao, approximately 540000 juveniles of 3.5 mm in test diameter were observed attached to suspended oyster culture lines in December 1988. The possible predation of juvenile L. albus in natural waters by juvenile crabs was suggested. According to findings on juvenile ecology, a fishing bank formation mecha- nism was discussed. Key words: Loxechinus albus; Juvenile sea urchin; Settlement; Recruitment For basic studies on stock enhancement However, there are few reports on the juve- of the sea urchin, a grasp of the juvenile ecol- nile ecology of this species. -
Smallscale Benthic Fisheries in Chile: on Comanagement
S124 JUAN C. CASTILLA AND MIRIAM FERNANDEZ Ecological Applications Special Issue Ecological Applications, 8(1) Supplement, 1998, pp. S124–S132 ᭧ 1998 by the Ecological Society of America SMALL-SCALE BENTHIC FISHERIES IN CHILE: ON CO-MANAGEMENT AND SUSTAINABLE USE OF BENTHIC INVERTEBRATES JUAN C. CASTILLA AND MIRIAM FERNANDEZ Estacio´n Costera de Investigaciones Marinas, Las Cruces Facultad de Ciencias Biolo´gicas, Pontificia Universidad Cato´lica de Chile, Casilla 114-D, Santiago, Chile Abstract. We discuss the issues of sustainable use and management in the Chilean inshore benthic small-scale (artisanal) fisheries. The fishery benefits from two features that make it possible to overcome some of the problems of conventional management. These are: (1) major advances have been made in understanding relevant ecological processes, and (2) this knowledge has been institutionalized in the 1991 Chilean Fishing and Aqua- culture Law (FAL). FAL legalizes the use of community-owned shellfish grounds, so-called ‘‘Management and Exploitation Areas’’ (MEA); this practice is considered to confer quasi- property rights to fishers’ unions. Management plans for these areas have to be approved by the government. This co-management approach solves one of the major problem in many fisheries: overexploitation. In addition, the study of the MEAs could provide useful infor- mation, if they are considered as ‘‘replicates,’’ in evaluating the effect of human perturbation and different management regimes. We think that by using the different tools provided by the FAL on the spatial arrangement of the small-scale fishery and answering certain key ecological questions, the sustainable use of inshore benthic resources in Chile (e.g., gas- tropods, sea urchins, and algae) via an ecosystem approach can be achieved in the near future. -
Sea Urchin Aquaculture
American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988). -
Genomics of the Globally Distributed Echinoid Genus Tripneustes
GENOMICS OF THE GLOBALLY DISTRIBUTED ECHINOID GENUS Tripneustes A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MANOA¯ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY,EVOLUTION,&CONSERVATION BIOLOGY) May 2018 BY Áki Jarl LÁRUSON DISSERTATION COMMITTEE: Floyd A. Reed, Chairperson Robert C. Thomson Robert J. Toonen Daniel Rubinoff David B. Carlon Keywords: Marine Invertebrate, Phylogenomics, Transcriptomics, Population Genomics © Copyright 2018 – Áki Jarl Láruson All rights reserved i DEDICATION I dedicate this dissertation to my grandfather, Marteinn Jónsson (née Donald L. Martin). ii Acknowledgements Every step towards the completion of this dissertation has been made possible by more people than I could possibly recount. I am profoundly grateful to my teachers, in all their forms, and especially my undergraduate advisor, Dr. Sean Craig, of Humboldt State Uni- versity, for all the opportunities he afforded me in experiencing biological research. My dissertation committee deserves special mention, for perpetually affording me pressing encouragement, but also providing an attitude of support and positivity that has been formative beyond measure. My mentor and committee chair, Dr. Floyd Reed, has pro- vided me with perspectives, insights, and advise that I will carry with me for the rest of my life. My family, although far from the tropical shores of Hawai‘i, have been with me in so many ways throughout this endeavor, and I am so profoundly grateful for their love and support. iii Abstract Understanding genomic divergence can be a key to understanding population dynam- ics. As global climate change continues it becomes especially important to understand how and why populations form and dissipate, and how they may be better protected. -
Microbial Composition and Genes for Key Metabolic Attributes in the Gut
Article Microbial Composition and Genes for Key Metabolic Attributes in the Gut Digesta of Sea Urchins Lytechinus variegatus and Strongylocentrotus purpuratus Using Shotgun Metagenomics Joseph A. Hakim 1,†, George B. H. Green 1, Stephen A. Watts 1, Michael R. Crowley 2, Casey D. Morrow 3,* and Asim K. Bej 1,* 1 Department of Biology, The University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA; [email protected] (J.A.H.); [email protected] (G.B.H.G.); [email protected] (S.A.W.) 2 Department of Genetics, Heflin Center Genomics Core, School of Medicine, The University of Alabama at Birmingham, 705 South 20th Street, Birmingham, AL 35294, USA; [email protected] 3 Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA * Correspondence: [email protected] (C.D.M.); [email protected] (A.K.B.); Tel.: +1-205-934-5705 (C.D.M.); +1-205-934-9857 (A.K.B.) † Current Address: School of Medicine (M.D.), The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL 35233, USA. Abstract: This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics Citation: Hakim, J.A.; Green, G.B.H.; approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria Watts, S.A.; Crowley, M.R.; Morrow, at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative C.D.; Bej, A.K. -
Evolutionary Pathways Among Shallow and Deep-Sea Echinoids of the Genus Sterechinus in the Southern Ocean
Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin To cite this version: Angie Díaz, Jean-Pierre Féral, Bruno David, Thomas Saucède, Elie Poulin. Evolutionary path- ways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean.. Deep Sea Research Part II: Topical Studies in Oceanography, Elsevier, 2011, 58 (1-2), pp.205-211. 10.1016/j.dsr2.2010.10.012. hal-00567501 HAL Id: hal-00567501 https://hal.archives-ouvertes.fr/hal-00567501 Submitted on 3 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean A. Dı´az a,n, J.-P. Fe´ral b, B. David c, T. Saucede c, E. Poulin a a Instituto de Ecologı´a y Biodiversidad (IEB), Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile b Universite´ de la Me´diterrane´e-CNRS, UMR 6540 DIMAR, COM-Station Marine d’Endoume, Marseille, France c Bioge´osciences, UMR CNRS 5561, Universite´ de Bourgogne, Dijon, France abstract Antarctica is structured by a narrow and deep continental shelf that sustains a remarkable number of benthic species. -
Analysis of Time-Lapse Images As a Tool to Study Movement in Situ in Four Species of Sea Urchins and One Limpet from North Patagonia and the South Shetland Islands
Rostock. Meeresbiolog. Beitr. Heft 30 117 – 136 Rostock 2020 Dirk SCHORIES1,2, María José DÍAZ3,4, Ignacio GARRIDO1,5,6, Thomas HERAN3,4, Jorge HOLTHEUER7, Jose Luis KAPPES1, Gesche KOHLBERG8 & Gerd NIEDZWIEDZ8* 1 Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile 2 DLR Projektträger, Heinrich-Konen-Straße 1, D-53227 Bonn, Germany 3 Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany 4 University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany 5 Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile 6 Département de biologie & Québec-Océan, Université Laval, Québec (QC) G1V 0A6 Canada. 7 Asesorías Ambientales y Buceo Profesional, Empresa KOJH, Punta Arenas, Chile. 8 Universität Rostock, MNF / Institut für Biowissenschaften, Meeresbiologie, Albert-Einstein-Straße 3, 18059 Rostock, Germany [email protected] Analysis of time-lapse images as a tool to study movement in situ in four species of sea urchins and one limpet from North Patagonia and the South Shetland Islands Abstract Time lapse photography closes a gap to other benthic studies, where the community and its structure is often investigated by estimates of percentage cover and abundance of epibenthic organisms. We realized preliminary experiments of the move- ment patterns of the three Southern Chilean sea urchin species, Arbacia dufresnii, Loxechinus albus, Pseudechinus magellanicus and the Antarctic species Sterechinus neumayeri in shallow water (10 m depth). Additionally, we included the Antarctic limpet Nacella concinna from a subtidal location in our study. The maximum movement activity of single specimen of all four species varied between 22.5 cm and 62.5 cm h-1 during day time.