Cytoplasmic Polyadenylation Element Binding Protein (CPEB): a Prion-Like Protein As a Regulator of Local Protein Synthesis and Synaptic Plasticity

Total Page:16

File Type:pdf, Size:1020Kb

Cytoplasmic Polyadenylation Element Binding Protein (CPEB): a Prion-Like Protein As a Regulator of Local Protein Synthesis and Synaptic Plasticity Luana Fioriti Research Associate Scholar The Italian Academy for Advanced Studies in America at Columbia University Weekly Seminar of the Fellows Program April 11th, 2007 Cytoplasmic polyadenylation element binding protein (CPEB): a prion-like protein as a regulator of local protein synthesis and synaptic plasticity 1.INTRODUCTION With this paper I would like to describe you what is my research project here at Columbia and how I am trying to address the many questions underlying my project by working everyday in the lab. But before doing this I feel somehow obliged to give you an introduction on the basic concepts of neurobiology. Therefore we will start with a brief definition and description of what is a neuron, how neurons interact to form synapse and neural circuits, how synapse activity can be modified and finally how these changes in synaptic activity underlie high cognitive processes such as learning and memory. After providing you this, I hope not too boring introduction, I will go deeper into the molecular aspects of these phenomenon and I will illustrate you the main goal of my research, which is to characterize the role of a particular protein called Cytoplasmic Polyadenylation Element Binding protein with respect to the morphological and physiological changes that occur at the synapse after neuronal stimulation. Memory In psychology, memory is an organism's ability to store, retain, and subsequently recall information. Although traditional studies of memory began in the realms of philosophy, the late nineteenth and early twentieth century put memory within the paradigms of cognitive psychology. In recent decades, it has become one of the principal pillars of a new branch of science called cognitive neuroscience, a marriage between cognitive psychology and neuroscience. There are several ways to classify memories, based on duration, nature and retrieval of information. From an information processing perspective there are three main stages in the formation and retrieval of memory: • Encoding or registration (processing and combining of received information) • Storage (creation of a permanent record of the encoded information) • Retrieval or recall (calling back the stored information in response to some cue for use in a process or activity) Classification A basic and generally accepted classification of memory is based on the duration of memory retention, and identifies three distinct types of memory: sensory memory, short term memory and long term memory. Sensory Sensory memory corresponds approximately to the initial 200 - 500 ms after an item is perceived. The ability to look at an item, and remember what it looked like with just a second of observation, or memorization, is an example of sensory memory. With very short presentations, participants often report that they seem to "see" more than they can actually report. The first experiments exploring this form of sensory memory were conducted by George Sperling using the "partial report paradigm." Subjects were presented with a grid of 12 letters, arranged into three rows of 4. After a brief presentation, subjects were then played either a high, medium or low tone, cuing them which of the rows to report. Based on these partial report experiments, Sperling was able to show that the capacity of sensory memory was approximately 12 items, but that it degraded very quickly (within a few hundred milliseconds). Because this form of memory degrades so quickly, participants would see the display, but be unable to report all of the items (12 in the "whole report" procedure) before they decayed. This type of memory cannot be prolonged via rehearsal. Short-term Some of the information in sensory memory is then transferred to short-term memory. Short-term memory allows one to recall something from several seconds to as long as a minute without rehearsal. Its capacity is also very limited: George A. Miller, when working at Bell Laboratories, conducted experiments showing that the store of short term memory was 7±2 items (the title of his famous paper, "The magic number 7±2"). Modern estimates of the capacity of short-term memory are lower, typically on the order of 4-5 items, and we know that memory capacity can be increased through a process called chunking. For example, if presented with the string: FB IPH DTW AIB M people are able to remember only a few items. However, if the same information is presented in the following way: FBI PHD TWA IBM people can remember a great deal more letters. This is because they are able to chunk the information into meaningful groups of letters. Beyond finding meaning in the acronyms above, Herbert Simon showed that the ideal size for chunking letters and numbers, meaningful or not, was three. This is evidenced by the tendency to remember phone numbers as several chunks of three numbers with the final four-number groups generally broken down into two groups of two. Short-term memory is believed to rely mostly on an acoustic code for storing information, and to a lesser extent a visual code. Conrad (1964) found that test subjects had more difficulty recalling collections of words that were acoustically similar (e.g. dog, fog, bog, log). Long-term The storage in sensory memory and short-term memory generally have a strictly limited capacity and duration, which means that information is available for a certain period of time, but is not retained indefinitely. By contrast, long-term memory can store much larger quantities of information for potentially unlimited duration (sometimes a whole lifespan). Whilst short-term memory encodes information acoustically, long-term memory encodes it semantically. Baddeley (1966) found that after 20 minutes, test subjects had the greatest difficulty recalling a collection of words that had similar meanings (e.g. big, large, great, huge). Short-term memory is supported by transient patterns of neuronal communication, dependent on regions of the frontal lobe (especially dorsolateral prefrontal cortex) and the parietal lobe. Long-term memories, on the other hand, are maintained by more stable and permanent changes in neural connections widely spread throughout the brain. The hippocampus is essential to the consolidation of information from short- term to long-term memory, although it does not seem to store information itself. Rather, it may be involved in changing neural connections for a period of three months or more after the initial learning. One of the main functions of sleep is thought to be to improve consolidation of information, as it can be shown that memory depends on getting sufficient sleep between training and test, and that the hippocampus replays activity from the current day while sleeping. For example, if we are given a random seven-digit number, we may remember it for only a few seconds and then forget, which means it was stored into our short-term memory. On the other hand, we can remember telephone numbers for many years through repetition; those long-lasting memories are said to be stored in our long-term memory. Physiology Overall, the mechanisms of memory are not well understood. Brain areas such as the hippocampus, the amygdala, or the mammillary bodies are thought to be involved in specific types of memory. For example, the hippocampus is believed to be involved in spatial learning and declarative learning. Damage to certain areas in patients and animal models and subsequent memory deficits is a primary source of information. However, rather than implicating a specific area, it could be that damage to adjacent areas, or to a pathway traveling through the area is actually responsible for the observed deficit. Further, it is not sufficient to describe memory, and its counterpart, learning, as solely dependent on specific brain regions. Learning and memory are attributed to changes in neuronal synapses, thought to be mediated by long- term potentiation and long-term depression. The coding unit: the neuron Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information. Neurons are typically composed of a soma, or cell body, a dendritic tree and an axon. The majority of vertebrate neurons receive input on the cell body and dendritic tree, and transmit output via the axon. However, there is great heterogeneity throughout the nervous system and the animal kingdom, in the size, shape and function of neurons. Neurons communicate via chemical and electrical synapses, in a process known as synaptic transmission. The fundamental process that triggers synaptic transmission is the action potential, a propagating electrical signal that is generated by exploiting the electrically excitable membrane of the neuron. The neuron's role as the primary functional unit of the nervous system was first recognized in the early 20th century through the work of the Spanish anatomist Santiago Ramón y Cajal (reviewed in Grant, 2007). Cajal proposed that neurons were discrete cells that communicated with each other via specialized junctions, or spaces, between cells. To observe the structure of individual neurons, Cajal used a silver staining method developed by his rival, Camillo Golgi. The Golgi stain is an extremely useful method for neuroanatomical investigations because, for reasons unknown, it stains a very small percentage of cells in a tissue, so one is able to see the complete microstructure of individual neurons without much overlap from other cells in the densely packed brain (López-Muñoz, 2006). Fig1. This is an illustration of Cajal staining of Purkinje cells in the cerebellum. These cells are characterized by a very complex dendritic arborization. Anatomy and histology Neurons are highly specialized for the processing and transmission of cellular signals. Given the diversity of functions performed by neurons in different parts of the nervous system, there is, as expected, a wide variety in the shape, size, and electrochemical properties of neurons. For instance, the soma of a neuron can vary from 4 to 100 micrometers in diameter.
Recommended publications
  • A Germline-Specific Isoform of Eif4e (IFE-1) Is Required for Efficient Translation of Stored Mrnas and Maturation of Both Oocytes and Sperm
    Research Article 1529 A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm Melissa A. Henderson1, Elizabeth Cronland1, Steve Dunkelbarger2, Vince Contreras1, Susan Strome2 and Brett D. Keiper1,* 1Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA 2Department of Molecular Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA *Author for correspondence (e-mail: [email protected]) Accepted 26 January 2009 Journal of Cell Science 122, 1529-1539 Published by The Company of Biologists 2009 doi:10.1242/jcs.046771 Summary Fertility and embryonic viability are measures of efficient germ CED-4/Apaf-1, and accumulated as multinucleate cells unable cell growth and development. During oogenesis and to mature to spermatids. A modest defect in oocyte development spermatogenesis, new proteins are required for both mitotic was also observed. Oocytes progressed normally through mitosis expansion and differentiation. Qualitative and quantitative and meiosis, but subsequent production of competent oocytes changes in protein synthesis occur by translational control of became limiting, even in the presence of wild-type sperm. mRNAs, mediated in part by eIF4E, which binds the mRNAs Combined gametogenesis defects decreased worm fertility by 5Ј cap. IFE-1 is one of five eIF4E isoforms identified in 80% at 20°C; ife-1 worms were completely sterile at 25°C. C. elegans. IFE-1 is expressed primarily in the germ line and Thus, IFE-1 plays independent roles in late oogenesis and associates with P granules, large mRNPs that store mRNAs.
    [Show full text]
  • Measuring and Modeling the Trajectory of Visual Spatial Attention
    Psychological Review Copyright 2002 by the American Psychological Association, Inc. 2002, Vol. 109, No. 2, 260–305 0033-295X/02/$5.00 DOI: 10.1037//0033-295X.109.2.260 Measuring and Modeling the Trajectory of Visual Spatial Attention Shui-I Shih George Sperling University of Southampton University of California, Irvine In a novel choice attention-gating paradigm, observers monitor a stream of 3 ϫ 3 letter arrays until a tonal cue directs them to report 1 row. Analyses of the particular arrays from which reported letters are chosen and of the joint probabilities of reporting pairs of letters are used to derive a theory of attention dynamics. An attention window opens 0.15 s following a cue to attend to a location, remains open (minimally) 0.2 s, and admits information simultaneously from all the newly attended locations. The window dynamics are independent of the distance moved. The theory accounts for about 90% of the variance from the over 400 data points obtained from each of the observers in the 3 experiments reported here. With minor elaborations, it applies to all the principal paradigms used to study the dynamics of visual spatial attention. We explored a method of measuring the trajectory of spatial strong test of the possibility of equivalent attention trajectories in attention that is analogous to measuring the trajectory of subatomic different experimental paradigms requires that all paradigms be particles in a Glaser bubble chamber (Gray & Isaacs, 1975). In the tested with the same observers and with similar stimulus materials. bubble chamber, a three-dimensional space is filled with a super- Therefore, in addition to the main experiment, which measured heated liquid.
    [Show full text]
  • Cognitive Functions of the Brain: Perception, Attention and Memory
    IFM LAB TUTORIAL SERIES # 6, COPYRIGHT c IFM LAB Cognitive Functions of the Brain: Perception, Attention and Memory Jiawei Zhang [email protected] Founder and Director Information Fusion and Mining Laboratory (First Version: May 2019; Revision: May 2019.) Abstract This is a follow-up tutorial article of [17] and [16], in this paper, we will introduce several important cognitive functions of the brain. Brain cognitive functions are the mental processes that allow us to receive, select, store, transform, develop, and recover information that we've received from external stimuli. This process allows us to understand and to relate to the world more effectively. Cognitive functions are brain-based skills we need to carry out any task from the simplest to the most complex. They are related with the mechanisms of how we learn, remember, problem-solve, and pay attention, etc. To be more specific, in this paper, we will talk about the perception, attention and memory functions of the human brain. Several other brain cognitive functions, e.g., arousal, decision making, natural language, motor coordination, planning, problem solving and thinking, will be added to this paper in the later versions, respectively. Many of the materials used in this paper are from wikipedia and several other neuroscience introductory articles, which will be properly cited in this paper. This is the last of the three tutorial articles about the brain. The readers are suggested to read this paper after the previous two tutorial articles on brain structure and functions [17] as well as the brain basic neural units [16]. Keywords: The Brain; Cognitive Function; Consciousness; Attention; Learning; Memory Contents 1 Introduction 2 2 Perception 3 2.1 Detailed Process of Perception .
    [Show full text]
  • Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2009 Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA Rebecca R. Payton University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Animal Sciences Commons Recommended Citation Payton, Rebecca R., "Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA. " PhD diss., University of Tennessee, 2009. https://trace.tennessee.edu/utk_graddiss/628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Rebecca R. Payton entitled "Direct Effects of Heat Stress During Meiotic Maturation on Bovine Oocyte and Cumulus RNA." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Animal Science. J. Lannett Edwards, Major Professor We have read this dissertation and recommend its acceptance: Cheryl Kojima, Arnold Saxton, F. Neal Schrick, Neal Stewart Accepted for the Council: Carolyn
    [Show full text]
  • CPEB3 Inhibits Translation of Mrna Targets by Localizing Them to P Bodies
    CPEB3 inhibits translation of mRNA targets by localizing them to P bodies Lenzie Forda,b,c,1, Emi Linga,d,1, Eric R. Kandela,b,c,e,2, and Luana Fioritia,f,2 aDepartment of Neuroscience, Columbia University, New York, NY 10027; bMortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027; cHoward Hughes Medical Institute, Chevy Chase, MD 20815; dDepartment of Genetics, Harvard Medical School, Broad Institute of MIT and Harvard, Cambridge, MA 02142; eKavli Institute for Brain Science, Columbia University, New York, NY 10027; and fDulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy Contributed by Eric R. Kandel, June 28, 2019 (sent for review September 20, 2018; reviewed by Cristina M. Alberini and Sathyanarayanan V. Puthanveettil) Protein synthesis is crucial for the maintenance of long-term of CPEB3. Soluble CPEB3 inhibits target mRNA translation while memory-related synaptic plasticity. The cytoplasmic polyadenyla- oligomeric, partially insoluble CPEB3 promotes the translation of tion element-binding protein 3 (CPEB3) regulates the translation of target mRNA (4). several mRNAs important for long-term synaptic plasticity in the As neurons are polarized structures, we presume that mRNAs hippocampus. In previous studies, we found that the oligomeri- involved in the maintenance of long-term memory will be under zation and activity of CPEB3 are controlled by small ubiquitin-like strict spatial control. Indeed, intracellular transport of mRNA modifier (SUMO)ylation. In the basal state, CPEB3 is SUMOylated; and local translation play a key role in neuronal physiology. it is soluble and acts as a repressor of translation.
    [Show full text]
  • The CPEB3 Ribozyme Modulates Hippocampal-Dependent Memory 3 4 Authors 1 2 2 2† 3 4 5 Claire C
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.23.426448; this version posted May 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 The CPEB3 ribozyme modulates hippocampal-dependent memory 3 4 Authors 1 2 2 2† 3 4 5 Claire C. Chen , Joseph Han , Carlene A. Chinn , Xiang Li , Mehran Nikan , Marie Myszka , Liqi 5 2† 2* 1,4,6* 6 Tong , Timothy W. Bredy , Marcelo A. Wood , Andrej Lupták 7 Affiliations 1 8 Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, 9 United States. 2 10 Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, 11 University of California–Irvine, Irvine, California 92697, United States. 3 12 Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA. 4 13 Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States. 5 14 Institute for Memory Impairments and Neurological Disorders, University of California–Irvine, 15 Irvine, California 92697, United States. 6 16 Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, 17 California 92697, United States 18 *Correspondence to: Andrej Lupták. Department of Pharmaceutical Sciences, University of 19 California–Irvine, Irvine, California 92697, United States. [email protected]. Marcelo A. Wood. 20 Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, 21 University of California–Irvine, Irvine, California 92697, United States.
    [Show full text]
  • The CPEB3 Ribozyme Modulates Hippocampal-Dependent Memory
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.23.426448; this version posted January 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The CPEB3 ribozyme modulates hippocampal-dependent memory Claire C. Chen1, Joseph Han2, Carlene A. Chinn2, Xiang Li2†, Mehran Nikan3, Marie Myszka4, Liqi Tong5, Timothy W. Bredy2†, Marcelo A. Wood2*, Andrej Lupták1,4,6* 1 Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States. 2 Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States. 3 Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA 92010, USA. 4 Department of Chemistry, University of California–Irvine, Irvine, California 92697, United States. 5 Institute for Memory Impairments and Neurological Disorders, University of California– Irvine, Irvine, California 92697, United States. 6 Department of Molecular Biology and Biochemistry, University of California–Irvine, Irvine, California 92697, United States *Correspondence to: Andrej Lupták. Department of Pharmaceutical Sciences, University of California–Irvine, Irvine, California 92697, United States. [email protected]. Marcelo A. Wood. Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California–Irvine, Irvine, California 92697, United States. [email protected]. † Present address: Cognitive Neuroepigenetics Laboratory, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia. Keywords: ribozyme, splicing, self-scission, polyadenylation, local translation 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.23.426448; this version posted January 24, 2021.
    [Show full text]
  • Verbal Learning Burbank Seminar Rooms Session 2B -Mathematical
    Mathematical Psychology Meetings Stern Sail - Stanford Wednesday, August 23; 10-12 aojis, - BfoHadsy Lounges Session la - .'Neural nets Burbank Seminar Room:: Session lb - Verbal learning 1-3 pt-m. - Holiaday Lounge: Session 2s - Measurement and Sealing X Burbank Seminar Rooms Session 2b Mathematical Analysis of - Learning Data 3530-5 P«m. gfolladay Lounges Session 3: Symposium on Geometric Representation - of Psychological Data p«*nu - Reception at the Stanford Faculty Club Sburaday., August 29s 10-12 a^nu - felladay Lounge; Session 4a - Paychophyiiiesi Burbaok Seminar Ro®,n Sesuion Ub Concept learning and Social - Psychology Burbank Seminar Room Kb* 2'. Session Ue "" Choice Behavior 1-3 P»m*» - $3urbank Seminar Rooms Session _?a - Measurement and Scaling XI 1-5 P-n« - Holiaday Lounges Session Sb - Symposium on Models of Memory > Mathematical Psychology Meetings Stanford University August 23 and 29, 1968 PROGRAM Wednesday, August 28 10-12 a.m. Session la : Neural Nets Earl Hunt, University of Washington, A performance model for memory tasks based on a physiological model of retrieval. Robert J. Baron, Clarkson College of Technology, An associative memory system. Floyd Ratliff, Bruce Knight, and Norma Graham, The Rockefeller University, On tuning and amplification by lateral inhibition in a neural network. Naomi Weisstein, Loyola University, A Rashevsky-Landahl neural net for simulation of metacontrast. George Sperling, Bell Telephone Laboratories, Inc., Energy models of binocular vision. 10-12 a.m. Session lb : Verbal Learning John Brelsford, Yale University, A finite Integer analysis of recall and recognition performance. William H. Batchelder, University of Illinois, A mathematical framework for item interrelationships during learning.
    [Show full text]
  • RNA-Binding Profiles of Drosophila CPEB Proteins Orb and Orb2
    RNA-binding profiles of Drosophila CPEB proteins Orb and Orb2 Barbara Krystyna Stepiena,1,2, Cornelia Oppitza,3, Daniel Gerlacha,3,4, Ugur Dagb, Maria Novatchkovaa, Sebastian Krüttnera,5, Alexander Starka, and Krystyna Kelemana,b,1 aThe Research Institute of Molecular Pathology, 1030 Vienna, Austria; and bHoward Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147 Edited by Eric C. Lai, Sloan-Kettering Institute, New York, NY 10065, and accepted by Editorial Board Member Kathryn V. Anderson September 26, 2016 (received for review March 8, 2016) Localized protein translation is critical in many biological contexts, zinc finger (Znf) region (12). Most CPEB proteins exist in mul- particularly in highly polarized cells, such as neurons, to regulate tiple isoforms (11). Orb2 has two variants, Orb2A and Orb2B (12), gene expression in a spatiotemporal manner. The cytoplasmic which differ in the composition of the N terminus preceding the polyadenylation element-binding (CPEB) family of RNA-binding poly-Q and share a common RBD (12). The poly-Q is required proteins has emerged as a key regulator of mRNA transport and exclusively for LTM, whereas the RBD is required for both de- local translation required for early embryonic development, synap- velopment and LTM (20), and its mutations are lethal (12, 13). tic plasticity, and long-term memory (LTM). Drosophila Orb and Moreover, the RBD of Orb2 can be functionally replaced by the Orb2 are single members of the CPEB1 and CPEB2 subfamilies of RBD of mouse CPEB2 (mCPEB2) but not by that of Orb or the CPEB proteins, respectively. At present, the identity of the mCPEB1, suggesting the conservation of target specificity within mRNA targets they regulate is not fully known, and the binding but not between the CPEB subfamilies, at least in regard to specificity of the CPEB2 subfamily is a matter of debate.
    [Show full text]
  • The Role of CPEB Family Proteins in the Nervous System Function in the Norm and Pathology Eugene Kozlov1 , Yulii V
    Kozlov et al. Cell Biosci (2021) 11:64 https://doi.org/10.1186/s13578-021-00577-6 Cell & Bioscience REVIEW Open Access The role of CPEB family proteins in the nervous system function in the norm and pathology Eugene Kozlov1 , Yulii V. Shidlovskii1,2 , Rudolf Gilmutdinov1 , Paul Schedl1,3 and Mariya Zhukova1* Abstract Posttranscriptional gene regulation includes mRNA transport, localization, translation, and regulation of mRNA stabil- ity. CPEB (cytoplasmic polyadenylation element binding) family proteins bind to specifc sites within the 3′-untrans- lated region and mediate poly- and deadenylation of transcripts, activating or repressing protein synthesis. As part of ribonucleoprotein complexes, the CPEB proteins participate in mRNA transport and localization to diferent sub- cellular compartments. The CPEB proteins are evolutionarily conserved and have similar functions in vertebrates and invertebrates. In the nervous system, the CPEB proteins are involved in cell division, neural development, learning, and memory. Here we consider the functional features of these proteins in the nervous system of phylogenetically distant organisms: Drosophila, a well-studied model, and mammals. Disruption of the CPEB proteins functioning is associated with various pathologies, such as autism spectrum disorder and brain cancer. At the same time, CPEB gene regulation can provide for a recovery of the brain function in patients with fragile X syndrome and Huntington’s disease, making the CPEB genes promising targets for gene therapy. Keywords: CPEB, Translation, Prion, Neurogenesis, Long-term memory Background for transport, anchoring and translational regulation Te functioning of the nervous system is based on the including signals for regulating cytoplasmic polyadenyla- ability of neurons to perceive, transmit, and store infor- tion (cytoplasmic polyadenylation elements: CPE) are mation encoded in electrical and chemical signals.
    [Show full text]
  • VITA GEORGE SPERLING, UCI Distinguished Professor
    VITA GEORGE SPERLING, UCI Distinguished Professor, Department of Cognitive Sciences, Department of Neurobiology and Behavior, and Institute For Mathematical Behavioral Sciences, University of Cali- fornia, Irvine Business address: Dept. of Cognitive Sciences, SSPA3, University of California, Irvine, CA 92697-5100 Tel: 949-824-6879 Fax: -2517 http://aris.ss.uci.edu/HIPLab Email: [email protected] Education: University of Michigan, B.S. Mathematics, 1955. Joint major in mathematics and biophysics. (Fulfilled requirements for summa cum laude.) Award: Gomberg Chemistry Prize and Scholarship, 1953-54. Memberships in collegiate honor societies: Phi Beta Kappa, Phi Eta Sigma, Phi Kappa Phi, Sigma Xi. Columbia University, M.A. Psychology, 1956. Harvard University, Ph.D. Psychology, 1959. Professional Employment: Research Assistant in Biophysics, Brookhaven National Laboratories, Upton, New York, summer, 1955. Research Assistant in Psychology, Harvard University, 1957-59. Member Technical Research Staff, Acoustical and Behavioral Research Center, AT&T Bell Laboratories, Murray Hill, New Jersey: 1958 (summer); full-time, 1959-70; part-time, 1970-86. Instructor in Psychology (part-time), Department of Psychology, Washington Square College, New York University, 1962-63. Visiting Associate Professor, Department of Psychology, Duke University, Spring, 1964. Adjunct Associate Professor, Department of Psychology, Columbia University, 1964-65. Acting Associate Professor, Department of Psychology, University of California, Los Angeles, 1967-68. Fellow of the John Simon Guggenheim Memorial Foundation, 1969-70. Aw ard for a theoretical study of perception and short-term memory. Honorary Research Associate, Department of Psychology, University College, University of London, 1969-70. Professor of Psychology and Neural Sciences, Graduate School of Arts and Science, New York University, 1970-1992.
    [Show full text]
  • 17. MEMORY in Psychology, Memory Is an Organism's Ability to Store, Retain, and Recall Information. Traditional Studies of Memor
    17. MEMORY In psychology, memory is an organism's ability to store, retain, and recall information. Traditional studies of memory began in the fields of philosophy, including techniques of artificially enhancing the memory. The late nineteenth and early twentieth century put memory within the paradigms of cognitive psychology. In recent decades, it has become one of the principal pillars of a branch of science called cognitive neuroscience, an interdisciplinary link between cognitive psychology and neuroscience. Sensory memory Sensory memory corresponds approximately to the initial 200 - 500 milliseconds after an item is perceived. The ability to look at an item, and remember what it looked like with just a second of observation, or memorization, is an example of sensory memory. With very short presentations, participants often report that they seem to "see" more than they can actually report. The first experiments exploring this form of sensory memory were conducted by George Sperling (1960) using the "partial report paradigm." Subjects were presented with a grid of 12 letters, arranged into three rows of 4. After a brief presentation, subjects were then played either a high, medium or low tone, cuing them which of the rows to report. Based on these partial report experiments, Sperling was able to show that the capacity of sensory memory was approximately 12 items, but that it degraded very quickly (within a few hundred milliseconds). Because this form of memory degrades so quickly, participants would see the display, but be unable to report all of the items (12 in the "whole report" procedure) before they decayed. This type of memory cannot be prolonged via rehearsal.
    [Show full text]