LIGHT's LABOUR's LOST Policies for Energy-Efficient Lighting

Total Page:16

File Type:pdf, Size:1020Kb

LIGHT's LABOUR's LOST Policies for Energy-Efficient Lighting INTERNATIONAL ENERGY AGENCY LIGHT'S LABOUR'S LOST Policies for Energy-efficient Lighting In support of the G8 Plan of Action Warning: Please note that this PDF is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at http://www.iea.org/w/ bookshop/pricing.html ENERGY EFFICIENCY POLICY PROFILES 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 16:55 Page 1 LIGHT'S LABOUR'S LOST Policies for Energy-efficient Lighting In support of the G8 Plan of Action ENERGY EFFICIENCY POLICY PROFILES INTERNATIONAL ENERGY AGENCY The International Energy Agency (IEA) is an autonomous body which was established in November 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. It carries out a comprehensive programme of energy co-operation among twenty-six of the OECD’s thirty member countries. The basic aims of the IEA are: • to maintain and improve systems for coping with oil supply disruptions; • to promote rational energy policies in a global context through co-operative relations with non-member countries, industry and international organisations; • to operate a permanent information system on the international oil market; • to improve the world’s energy supply and demand structure by developing alternative energy sources and increasing the efficiency of energy use; • to assist in the integration of environmental and energy policies. The IEA member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, the Republic of Korea, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom, the United States. The European Commission takes part in the work of the IEA. ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of thirty democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The European Commission takes part in the work of the OECD. © OECD/IEA, 2006 No reproduction, copy, transmission or translation of this publication may be made without written permission. Applications should be sent to: International Energy Agency (IEA), Head of Publications Service, 9 rue de la Fédération, 75739 Paris Cedex 15, France. 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 15:56 Page 3 FOREWORD When the incandescent lamp was first commercialised the main mode of transport was the horse,trains were powered by steam,balloons were the only means of flight and the telegraph was the state of the art for long-distance communication. Much has changed in the intervening 127 years, but much has also remained the same. In 1879 the incandescent lamp set a new standard in energy-efficient lighting technology, but today good-quality compact fluorescent lamps need only one- quarter of the power to provide the same amount of light. Yet most of us continue to rely on the “horse” of the incandescent lamp instead of the “internal combustion engine” of the compact fluorescent lamp. Nor is this the only way in which lighting energy is being wasted. We illuminate rooms when we’re not there, we over-light spaces, we squander available daylight and we underutilise the most efficient street lighting and non-residential building lighting technologies. This might not matter were it not for the severe challenges we face in securing a clean, sustainable and affordable energy system. Electricity generation is the main source of energy-related greenhouse gas emissions and lighting uses one-fifth of its output. Despite having many higher-efficiency and lower-cost alternatives, we continue to use less efficient and more expensive lighting technologies. Is this because we are inherently attached to these older technologies, or is it simply because we stick to what we know when unaware or unsure of the merits of the alternatives? In each of the main lighting end-use sectors (commercial buildings, households, industrial lighting, outdoor lighting and vehicle lighting), this book shows that not only do more cost-effective and higher- efficiency alternative choices exist, but that they could be deployed very quickly were the current market barriers to be addressed. Doing this would allow our economies to be stronger and cleaner without sacrificing anything in our quality of life. Moreover, the policies that can bring about this change have been tested and found to work. What is needed is more comprehensive and vigorous implementation in each economy and lighting sector. This book shows us why and how we should do so. Claude Mandil Executive Director, International Energy Agency 3 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 17:10 Page 6 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 15:56 Page 5 ACKNOWLEDGEMENTS Light’s Labour’s Lost was written and researched by Paul Waide and Satoshi Tanishima with contributions from Phil Harrington, Guyane Knight,Thomas Gueret, Sierra Peterson and Jane Rubery, all of the Energy Efficiency and Environment Division. Additional input on the analysis and modelling were provided by Ming Yang, Thomas Gueret and the staff of the Energy Economic Analysis Division. Helpful reviews were provided by Alan Meier,Rick Bradley, Noé Van Hulst, Fatih Birol and Claude Mandil. Copy-editing was performed by Kerry Munro and production by the staff of the CIO Division. The authors would also like to thank the following people for their valuable contributions towards producing this book: the members of the IEA Energy Efficiency Working Party, Gerald Strickland, Tim Whittaker, Harry Verhaar, Michael Scholand, David Goldstein, Evan Mills, Takeshi Sekiyama, Paolo Bertoldi, Julian Aizenberg, Gilberto Januzzi, Caspar Kofod, Olivier Sidler, Nils Borg, Kate Conway,Roger Fouquet, Peter Pearson, Adam Hinge, Steve Nadel, Hilary Graves, Diana Vorsatz, Egil Ofverholm, Peter Boyce, Guy Newsham, Jennifer Veitch, Steve Weil, Marc Fontoynont, Peter Karbo,Vincent Berrutto, Chuaru Murakoshi, Hidetoshi Nakagami, Eric Richman, Conrad Brunner,Jean- Christophe Visier, Hans Nilsson, Stuart Jeffcott, Benoît Lebot, Matt Oravetz, Mark Ellis, Peter du Pont, Li Aixan,Li Tienan,Lloyd Harrington and Shane Holt. Grateful thanks are also due to the following organisations and bodies for their contributions: the European Lamp Companies Federation, LEDs Magazine, Philips Lighting, Faktor Licht magazine, Navigant Consulting, the Japanese Luminaire Association, the New Buildings Institute, the Australian Greenhouse Office, the US Department of Energy, the UK Market Transformation Programme, CADDET, Syndicat Francais de l’Eclairage, STEM, the Lighting Research Center, the European Commission, Science magazine, Natural Resources Canada, Danish Electricity Savings Trust,IESNA, ECCJ, Fagerhult Lighting, Energy Efficiency Conservation Authority of New Zealand, Dena, KEMCO, CNIS, CECP, CEC, EGAT, Energy Savings Trust, the European GreenLight Programme, the IEA Solar Heating and Cooling and Energy Conservation in Buildings and Community Systems Implementing Agreements, Statoil, Gas Natural, Beerse Metallwerken (Belgium), Colombo shopping centre (Portugal) and the City of Sassari (Italy). Thanks in large measure to their efforts, we trust the fruits of these labours are not a case of Much Ado About Nothing… 5 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 17:10 Page 6 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 15:59 Page 7 TABLE OF CONTENTS EXECUTIVE SUMMARY. 25 OVERVIEW AND RECOMMENDATIONS . 31 1 THE MEANING OF LIGHT . 61 So what is the meaning of light? . 64 2 IN THE EYE OF THE BEHOLDER: HUMAN FACTORS IN LIGHTING. 67 To see or not to see . 68 Human response to light . 68 What is light and how do we see? 69 Lighting quality: a primary driver of lighting energy needs 74 Lighting guidelines and design criteria . 84 Recommended illuminance levels and implications for lighting energy demand 85 Uniformity, surface reflectance, colour rendering and glare thresholds 94 Discussion 97 3 THESE LOVELY LAMPS: LIGHTING TECHNOLOGIES AND DESIGN . 99 These windows of the soul . 100 General performance characteristics of lighting technologies . 101 Efficacy, lumen maintenance and temperature 101 Rated lamp life and useful lamp life 104 Lamp colour characteristics 105 Lamp types . 107 Incandescent lamps 110 Tungsten halogen lamps 112 Linear fluorescent lamps 115 Compact fluorescent lamps 119 7 01 - 23 Pages début + 531-537 abbr.qxd 15/06/06 15:59 Page 8 TABLE OF CONTENTS Cold-cathode fluorescent lamps 123 Low-pressure sodium lamps 124 High-intensity discharge lamps 125 Induction lamps 130 Vehicle lamps 132 Summary of lamp characteristics 134 Control gear . 137 Ballasts
Recommended publications
  • Confidential Ssociates a History of Energy Part I
    Winter 2014 Luthin Confidential ssociates A History of Energy Part I History of Lighting - Part 1 It wasn’t until the late In the early 1800s, gas M el Brooks’ 2000- 1700’s that European light (initially at less than Inside this issue: year old man used oil lamps (at ~0.3 lu- 1 lumen/watt), used coal torches in his cave, but mens/watt) became gas or natural gas from History of Lighting Part 1 1 today’s lighting is a tad widely available and mines or wells, and was more sophisticated, accepted due to im- relatively common in ur- How to Become A Producer 2 having gone through provements in design ban England. Its use ex- half a dozen stages, and the whaling indus- panded rapidly after the Can Spaceballs Be Shot Out 3 each producing more try’s ability to produce development of the incan- of Earth Tubes? light out of less energy sperm oil. That refined descent gas mantle around i.e., efficacy, than its product burned cleanly, 1890. That device more High (Voltage) Anxiety 3 predecessor. didn’t smell too bad, than doubled the efficacy and was relatively (to 2 lumens/watt) of gas On A Personal Note 4 Torches made of moss cheap compared to lighting, using a filament and animal fat, and commercially-made containing thorium and and the power industry adopted crude oil lamps were candles. cerium, which converted it as a standard. During this the mainstay for indoor more of the gas flame’s period, Nikola Tesla, and oth- lighting until the pro- The Industrial Revolu- heat into white light.
    [Show full text]
  • Electroindustry, February 2017 Issue
    electroindustry www.nema.org | February 2017 | Vol. 22 No. 2 10 | Agility Overcomes Risks of a Maturing Technology 16 | Solutions for Wide Open Spaces 20 | Illuminating Symbolism 26 | Cover Story: A Designer's Perspective Photograph by by Eric Laignel 2016 Hermes Award Winner 2016 MarCom Award Winner A Revolutionary Design Vocabulary for the Grid. Empower your creativity without complexity. www.acuitybrands.com/Rubik CONTENTS 4 33 Setting new standards 5 Using common sense Wild West of lighting protocols Agility Overcomes Risks of electroindustry 10 a Maturing Technology Jes Munk Hansen, CEO, LEDVANCE, formerly known as OSRAM SYLVANIA Publisher | Tracy Cullen Editor in Chief | Pat Walsh Editor | Christine Coogle Daylight Management Opens the Contributing Editors | Ann Brandstadter, William E. Green III 12 Art Director | Jennifer Tillmann Window to Energy Efficiency National Advertising Representative | Bill Mambert Konstantinos Papamichael, PhD, Professor, University of California, Davis A Zoo and a College Campus: electroindustry (ei) magazine (ISSN 1066-2464) is published monthly by the National Electrical Manufacturers Association (NEMA), 1300 N. 17th Street, Suite 900, Rosslyn, VA 22209; 22 Different Venues, Same Goals 703.841.3200. Periodicals postage paid at Rosslyn, Virginia; York, Pennsylvania; and additional mailing offices. POSTMASTER: Tom Salpietra, President and COO, EYE Lighting International Send address changes to NEMA, 1300 N. 17th Street, Suite 900, Rosslyn, VA 22209. The opinions or views expressed in ei do not necessarily reflect the positions of NEMA or any of its subdivisions. The editorial staff reserves the right to Regulatory Update and 2017 Outlook edit all submissions but will not alter the author’s viewpoint. Alex Boesenberg, Manager, Government Relations, NEMA Every attempt is made to ensure that information is current 37 and accurate.
    [Show full text]
  • Those Magnificent Chandeliers We Are
    Those Magnificent Chandeliers We are blessed with a beautiful church, “a model of elegance and good taste” The Mecklenburg Times announced in April 1895 in anticipation of the re-opening of the First Presbyterian Church in Charlotte following an extensive and quite expensive (just over $30,000) rebuilding and remodeling of the church. One of the new and much anticipated features of the 1894-1895 remodeling was the installation of three very large and exquisitely ornate chandeliers. “The First Presbyterian Church is to have the handsomest chandeliers in the State”, revealed the Daily Charlotte Observer in a sneak preview in 1894. Prior to the remodeling, First Presbyterian had been regarded as one the most dimly lit churches in Charlotte, having only 39 lights in total. The Session decided as early as 1888 that new lighting, and lighting with electricity, was highly desirable and some electric lights were added at that time to supplement the gas lights. Electric lighting, though a relatively new technology (it wasn’t until 1883 that the first church in the United States was wired for electricity), was much easier to use and much safer than gas. Electrical lighting was rapidly replacing gas lighting across the country. The chandeliers that were going to adorn First Presbyterian actually had dual fuel capability, thus combining the new technology of electrical lighting with the more proven technology of gas lighting. A fail-safe system seemingly. Each of the chandeliers had 72 lights, 36 electric and 36 gas, for a total potential of 216 lights. Dim lighting at First Presbyterian was going to be a feature of the past.
    [Show full text]
  • Light and Dark.Pdf
    LIGHT AND DARK DAVID GREENE Institute of Physics Publishing Bristol and Philadelphia ­c IOP Publishing Ltd 2003 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency under the terms of its agreement with Universities UK (UUK). British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. ISBN 0 7503 0874 5 Library of Congress Cataloging-in-Publication Data are available Commissioning Editor: Nicki Dennis Production Editor: Simon Laurenson Production Control: Sarah Plenty Cover Design: Fr´ed´erique Swist Marketing: Nicola Newey and Verity Cooke Published by Institute of Physics Publishing, wholly owned by The Institute of Physics, London Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK US Office: Institute of Physics Publishing, The Public Ledger Building, Suite 929, 150 South Independence Mall West, Philadelphia, PA 19106, USA Typeset in LATEX2ε by Text 2 Text, Torquay, Devon Printed in the UK by J W Arrowsmith Ltd, Bristol CONTENTS PREFACE ix 1 ESSENTIAL, USEFUL AND FRIVOLOUS LIGHT 1 1.1 Light for life 1 1.2 Wonder and worship 4 1.3 Artificial illumination 6 1.3.1 Light from combustion 6 1.3.2 Arc lamps and filament lamps 9 1.3.3 Gas discharge lamps
    [Show full text]
  • Lighting for the Workplace
    Lighting for the Workplace AWB_Workplace_Q_Produktb_UK.qxd 02.05.2005 10:35 Uhr Seite 3 CONTENTS 3 Foreword by Paul Morrell, 4–5 President of the British Council for Offices INTRODUCTION 6–7 The Changing Corporate Perspective 6–7 WORKPLACE LIGHTING – PAST, PRESENT AND FUTURE 8–51 Lighting Research versus the Codes 10–11 – The Lessons of Lighting Research 12–15 – Current Guidance and its Limitations 16–23 Key Issues in Workplace Lighting 24–29 Natural Light, Active Light & Balanced Light 30–37 Further Considerations in Workplace Lighting 38–47 Lighting Techniques – Comparing the Options 48–51 WORKPLACE LIGHTING – APPLICATION AREAS 52–97 Open Plan Offices 56–67 Cellular Offices 68–71 Dealer Rooms 72–75 Control Rooms 76–79 Call Centres 80–83 Communication Areas/Meeting Rooms 84–87 Break-Out Zones 88–91 Storage 92–93 Common Parts 94–97 WORKPLACE LIGHTING – LIGHTING DESIGN 98–135 Product Selector 100–133 Advisory Services 134–135 References & Useful Websites 135 IMPRINT Publisher: Zumtobel Staff GmbH, Dornbirn/A Design: Marketing Communication Reprints, even in part, require the permission of the publishers © 2005 Zumtobel Staff GmbH, Dornbirn/A Paul Morrell President of the British Council for Offices (BCO) London aims to continue being Europe’s leading financial centre and will need more, higher quality office space in the future (photo: Piper’s model of the future City of London, shown at MIPIM 2005) FOREWORD 5 The UK office market, in particular in London, is changing, driven by a number of long-term trends in international banking and finance. Informed forecasts, such as the recent Radley Report*, point, firstly, to a shift towards our capital city, at the expense of Paris and Frankfurt, as Europe’s leading financial centre, with a commensurate pressure on office space.
    [Show full text]
  • Energy Efficient Landscape Lighting
    energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. Casey Gates energy efficient landscape lighting OPTIONS FOR COMMERCIAL & RESIDENTIAL SITES June 2008. A Senior Project Presented to the Faculty of the Landscape Architecture Department University of California, Davis in Partial Fulfillment of the Requirement for the Degree of Bachelors of Science of Landscape Architecture Accepted and Approved by: __________________________ Faculty Committee Member, Byron McCulley _____________________________ Committee Member, Bart van der Zeeuw _____________________________ Committee Member, Jocelyn Brodeur _____________________________ Faculty Senior Project Advisor, Rob Thayer Casey Gates Acknowledgements THANK YOU Committee Members: Byron McCulley, Jocelyn Brodeur, Bart Van der zeeuw, Rob Thayer Thank you for guiding me through this process. You were so helpful in making sense of my ideas and putting it all together. You are great mentors. Family: Mom, Dad, Kelley, Rusty You inspire me every day. One of my LDA projects 2007 One of my LDA projects 2007, Walker Hall The family Acknowledgements Abstract ENERGY EFFICIENT LANDSCAPE LIGHTING IN COMMERCIAL AND LARGE SCALE RESIDENTIAL SITES Summary Landscape lighting in commercial and large scale residential sites is an important component to the landscape architecture industry. It is a concept that is not commonly covered in university courses but has a significant impact on the success of a site. This project examines the concepts of landscape lighting and suggests ideas to improve design standards while maintaining energy efficiency. This project will discuss methods and ideas of landscape lighting to improve energy efficiency. Designers should know lighting techniques and their energy efficient alternatives. This project demonstrates how design does not have to be compromised for the sake of energy efficiency.
    [Show full text]
  • Characterization, Modeling, and Optimization of Light-Emitting Diode Systems
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 Characterization, Modeling, and Optimization of Light-Emitting Diode Systems Thorseth, Anders Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Thorseth, A. (2011). Characterization, Modeling, and Optimization of Light-Emitting Diode Systems. Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. FACULTY OF SCIENCE UNIVERSITY OF COPENHAGEN Ph.D. thesis Anders Thorseth Characterization, Modeling, and Optimiza- tion of Light-Emitting Diode Systems Principal supervisor: Jan W. Thomsen Co-supervisor: Carsten Dam-Hansen Submitted: 31/03/2011 i \Here forms, here colours, here the character of every part of the universe are concentrated to a point." Leonardo da Vinci, on the eye [156, p. 20] ii Abstract This thesis explores, characterization, modeling, and optimization of light-emitting diodes (LED) for general illumination.
    [Show full text]
  • The Price of Light
    The Price of Light Duncan MacFarlane The University of Texas at Dallas Richardson, Texas 75083 The Erik Jonsson School of Engineering and Computer Science "I look to the diffusion of light and education as the resource most to be relied on for ameliorating the conditions, ppgromoting the virtue and advancin g the happiness of man." --Thomas Jefferson to Cornelius Camden Blatchly, 1822 The Erik Jonsson School of Engineering and Computer Science Household expenditures on light 14 12 get dd 10 8 of Bu tt 6 ercen 4 PP 2 0 1760 1835 1875 1880 1890 1960 Nordhaus, 1996 The Erik Jonsson School of Engineering and Computer Science Open Fire Earliest tool: “Oldowan chopper” 2.6 million years ago Definite signs of domesticated fire by the Australopithecus, Africa, 1.42m BC Torches, Fire in Caves, Peking Man, 500,000 yygears ago The Erik Jonsson School of Engineering and Computer Science Lamps Fat burning lamps from Paleolithic era, 40,000 - 15,000 BC Sesame o il lamps in Ba by lon ia, 2000 BC Pottery and bronze lamps with the Greeks, 700 BC Wick technology lamps in Rome, 100 BC Greek pottery lamp 400-300 BC The Erik Jonsson School of Engineering and Computer Science Candles and Oil 3000 BC, Egypt and Crete Tallow, middle ages Whale Oil, 1700s, 1800s The Erik Jonsson School of Engineering and Computer Science Petition of the Candlemakers “We are subjected to the intolerable competition of a foreiggjyn rival, who enjoys superior facilities for the production of light that he can inundate our national market at reduced price.
    [Show full text]
  • Design with LED Technology for Interior Designers
    Design with LED Technology for Interior Designers This unit will discuss LED technology from the point of view of an Interior Designer and a custom LED lighting fabricator. LED lighting technology applications will be showcased in a variety of Interior Design projects, residential and commercial, by Paris K Interior Design. They will be analyzed for their availability, affordability and applicability in various design scenarios. A discussion will follow to help audience understand the difficulties still to be surpassed, but also abundance of available custom led light options an Interior Designer or Architect has in the market place today. Paris Kostopoulos, Paris K Interior Design After working along Industry notable designers such as Jeffrey Bilhuber, Susan Orsini and Richard Mervis, Paris Kostopoulos founded Paris K Interior Design in 2001. He has since completed various hi-end residential and commercial projects in the New York Metropolitan area. Paris Kostopoulos used lighting extensively in his projects implementing LED technology early on in his career and has strived to push the boundaries of conventional design and construction methods in every project he delivers to his clients. In addition, he served as the Operations Manager for the Department of the "Look of the Games", for the Organizing Committee for the Olympic Games Athens 2004 and as a consultant to the same department of the Organizing Committee for the Winter Olympic Games, Torino, Italy, Oct 2004 – Jan 2006. Education: Pratt Institute, June 1992, New York, NY. Master of Industrial Design (M.I.D.). Technological Educational Institute, June 1988, (T.E.I.), Athens, Greece. Bachelor of Art in Interior Design.
    [Show full text]
  • Gas Lighting Resources for Teachers
    Gas nationalgridgas.com/resources-teachers Gas Lighting Resources for teachers © National Gas Museum Using the resource National Grid owns, manages and operates the national gas transmission network in Great Britain, making gas available when and where it’s needed all over the country. This resource is part of our series for schools, highlighting and celebrating how gas has lit our homes and streets and kept us warm for over 200 years. This resource primarily supports History at Key Stages 1 and 2 and the development of children’s enquiry, creative and critical thinking skills. It includes: • Information for teachers • Fascinating Did you know..? facts • A series of historical images to help children explore the theme, with additional information and questions to help them look closer. It can be combined with other resources in the series to explore wider topics such as: • Energy • Homes • Victorians • Jobs and work • The industrial revolution • Technology And used to support cross-curricular work in English, Technology, Science and Art & Design. Project the images onto a whiteboard to look at them really closely, print them out, cut them up or add them to presentations, Word documents and other digital applications. Our Classroom activities resource provides hints, tips and ideas for looking more closely and using the images for curriculum-linked learning. Resources in the series • Gas lighting • Heating and cooking with gas Gas• Gas gadgets • Gas – how was it made? •How The changing role ofwas women It • Transport and vehicles • Classroom activities •made? Your local gas heritage A brief history of gas lighting – information for teachers Before the 1800s, most homes, workplaces and streets were lit by candles, oil lamps or rushlights (rush plants dried and dipped in grease or fat).
    [Show full text]
  • Edward Y Y Ng
    Curriculum Vitae Edward Y Y Ng BA(1st Hons) Nott, BArch(Distinction) Manc, MBA(Distinction) Warwick, PhD Cantab, RIBA, HKIA, IESNA, FHKMetS, FRMetS, FRSA, Architect (UK and HK) Professor NG Yan Yung Edward is the Professor of Architecture in the School of Architecture of The Chinese University of Hong Kong (CUHK). He is the first incumbent of the Yao Ling Sun Endowed Chair Professorship in Architecture. He worked as an architect before becoming a professor. He specializes in Green Building, Environmental and Sustainable Design, and Urban Climatology for City Planning. As an environmental consultant to the Government of the Hong Kong Special Administrative Region, He developed the performance-based daylight design practice note, the Air Ventilation Assessment Technical Guidelines and the Urban Climatic Maps for City Planning. He has published over 500 papers and 3 books. He has twice received the International Award from the Royal Institute of British Architects (RIBA). He has also twice been honoured by the UNESCO Asia Pacific Heritage Jury Commendation for Innovation Award. He received the World Building of the Year Award from the World Architecture Festival in 2017. PERSONAL Current Appointment Yau Ling Sun Professor of Architecture Address School of Architecture, Chinese University of Hong Kong, Shatin, NT, Hong Kong College SH Ho College, CUHK Contact (T) +(852) 2609 6515 (E) [email protected] (W) www.edwardng.com EDUCATION Edward was trained as an architect in the United Kingdom. He received a Commonwealth Scholarship to study at Cambridge under Professor Dean Hawkes; at the same time, he took technical courses equivalent to the award of their MSc in Light and Lighting at London University under David Loe and Ted Rowland.
    [Show full text]
  • Handbook of Rigging About the Authors Joseph A
    Handbook of Rigging About the Authors Joseph A. MacDonald—of San Diego, CA—has more than 45 years of editing experience in the engineering and construction sector, including 18 years with Engineering News-Record and Construction Methods & Equipment; as well as 10 years engineering field experience on various construction projects throughout New York and New England. During his years with McGraw-Hill, he was editor-in-chief of the Encyclopedia of U.S. Building & Construction Technology (a McGraw-Hill/Chilton joint venture publication for the former Soviet Union); managing editor of CM&E; senior editor of EN-R; editor of the Directory of Construc- tion Information Resources (EN-R); and coeditor of the Handbook of Rigging (fourth ed). Since 1980, he has served as chief editor for a number of international publications, including Private Power Executive, Information Display, and Computers for Design & Construction. In 1974, he received the industry’s top Technical Article Award for his chapter “Will Solid Wastes Bury Us?”—published originally in Engineering News-Record’s 100th anniversary publication Probing the Future, and then republished (in Japanese) by Kajima Institute Publishing Co. Ltd. (1975). He earned his degree in civil engineering from Man- hattan College, Riverdale, NY; graduated from the U.S. Naval Construction Battalion (Seabee) School, Port Huen- eme, CA; and served as a Mobile Construction Battalion project engineer for the construction of a 250-personnel naval facility. W. E. Rossnagel was a consulting and fire-protection engineer and was a safety engineer with the Consolidated Edison Company of New York. Lindley R. Higgins was a professional engineer, writer, and consultant in the construction industry for more than 25 years.
    [Show full text]