Trophic Relationships Among Invertebrates at the Kairei Hydrothermal Vent field (Central Indian Ridge)

Total Page:16

File Type:pdf, Size:1020Kb

Trophic Relationships Among Invertebrates at the Kairei Hydrothermal Vent field (Central Indian Ridge) Marine Biology (2002) 141: 761–772 DOI 10.1007/s00227-002-0865-y C.L. Van Dover Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge) Received: 17 January 2002 / Accepted: 26 April 2002 / Published online: 3 July 2002 Ó Springer-Verlag 2002 Abstract Exploration of hydrothermal vent systems in pic composition in vent communities from locations remote from well-studied sites allows ecolo- geographically disjunct oceanic regions. Given the as- gists to determine the degree of site-specific variation in sumptions associated with interpretations of isotopic trophic relationships among communities. A prelimi- data, there remains a missing pool of carbon (presum- nary outline of the trophic structure of the Kairei hy- ably unsampled bacterial biomass) that contributes to drothermal vent community on the Central Indian the maintenance of the 13C- and 15N-enriched primary Ridge (25°19.23¢S; 70°02.42¢E) is provided here, based consumers in these ecosystems. Electronic supplemen- on analysis of collections from an April 2001 expedi- tary material to this paper can be obtained by using the tion. Invertebrate biomass at Kairei is dominated by Springer LINK server located at http://dx.doi.org/ organic carbon with a d13C isotopic value of about – 10.1007/s00227-002-0865-y. 13&, due to the abundance of primary consumers (shrimp: Rimicaris aff. exoculata) and secondary con- sumers (anemones: Marianactis n. sp.) with this isotopic Introduction composition. Filamentous thiotrophic episymbionts on shrimp have been interpreted to be the major diet items More than two decades have passed since the initial of the shrimp and hence are the dominant primary discovery of invertebrate–bacterial trophic relationships producers within the community. Free-living auto- in hydrothermal-vent tubeworms (Cavanaugh et al. trophic microorganisms are implicated as the dietary 1981; Felbeck 1981). Despite the chemoautotrophic base base for other invertebrate species. Four trophic groups of vent food webs, trophic structure in vent communities are identified within the Kairei invertebrates based on is comparable in many ways to food webs of photo- carbon- and nitrogen-isotope ratios, but these groups synthetically based, shallow-water ecosystems (Van do not always define discrete trophic levels. Ontogenetic Dover 2000). In addition to free-living and symbiotic shifts in diet are documented for R. aff. exoculata and microbial primary producers, there are a variety of pri- brachyuran crabs (Austinograea n. sp.). Diets of sym- mary and secondary consumer types among vent inver- biont-bearing mussels (Bathymodiolus aff. brevior) and tebrate species, including grazers, suspension-feeders, two species of gastropods are isotopically constant deposit-feeders, predators, scavengers, and parasites. throughout the range of sizes analyzed. There is a Regional differences in vent food webs reflect the species consistent but unexplained pattern of increasing nitro- composition of the community and the functional nature gen isotopic composition with increasing carbon isoto- (thiotrophic and/or methanotrophic) of the primary producers. On the East Pacific Rise, for example, tube- worms, clams, and mussels are typical biomass domi- Communicated by J.P. Grassle, New Brunswick nants. They are host to endosymbiotic bacteria that Electronic supplementary material to this paper can be obtained by oxidize sulfide (i.e. are thiotrophic) to generate a cellular using the Springer LINK server located at http://dx.doi.org/ energy source for fixation of an inorganic carbon source 10.1007/s00227-002-0865-y. (CO2) into organic carbon. On the Mid-Atlantic Ridge, shrimp or mussels are typical biomass dominants. The C.L. Van Dover Biology Department, College of William & Mary, shrimp lack endosymbionts; instead they rely at least in Williamsburg, VA 23187, USA part on thiotrophic, filamentous episymbionts that grow E-mail: [email protected] in dense mats on the carapace that lines their branchial Tel.: +1-757-2212229 chambers (Gal’chenko et al. 1989; Casanova et al. 1993; Fax: +1-757-2216483 Polz et al. 1998). The Mid-Atlantic Ridge mussel species 762 (Bathymodiolus azoricus and B. puteoserpentis) host two Southward et al. 1994; Vereshchaka et al. 2000; Colac¸o types of autotrophic symbionts (thiotrophic and met- et al. 2002). Isotopic techniques have also been used to hanotrophic). While the biomass of East Pacific Rise infer the importance of free-living chemoautotrophic and Mid-Atlantic Ridge vent communities is dominated microorganisms in the diet of heterotrophic inverte- by organic material produced by symbiotic bacteria, brates within vent communities (Van Dover and Fry stable-isotope studies suggest that many of the primary 1994). and secondary consumer invertebrates associated with Interpretations of trophic interactions among Kairei biomass dominants rely on an alternative resource, in- invertebrates using isotopic compositions are based on ferred to be free-living autotrophic bacteria (Van Dover empirical and experimental evidence for fidelity between and Fry 1994). d13C values of diet items and direct consumers (Peterson Differences in the degree of dependence on methano- and Fry 1987), a 3–4& shift toward more-positive d15N trophic and thiotrophic microorganisms, such as those values from diet items to direct consumers (Minagawa observed between Mid-Atlantic Ridge and East Pacific and Wada 1984), and the potential for mixing of two or Rise vent systems, point to the potential for food-web more isotopically distinct dietary sources to yield inter- variations in other regions. Discovery of vent communi- mediate isotopic values of carbon and nitrogen in con- ties in the Indian Ocean at the Kairei hydrothermal field sumers (Fry and Sherr 1984). These assumptions are (Hashimoto et al. 2001) provided an opportunity to look valid only where isotopic compositions of inorganic re- for additional trophic novelties within vent ecosystems. sources do not vary significantly within sites and where Invertebrate biomass within the Kairei field is dominated species-specific fractionations of carbon and nitrogen by swarms of shrimp (Rimicaris aff. exoculata) on the isotopes are not anomalous. In this report, isotopic data surfaces of black-smoker chimneys (10–20°C) and by are used in conjunction with other information regard- anemone beds in a lower-temperature peripheral zone ing nutritional modes (including presence or absence of (1–2°C; Hashimoto et al. 2001; Van Dover et al. 2001). A symbionts, behavior, morphology of feeding structures variety of other invertebrates occur in a narrow transi- and digestive systems, and gut contents) to characterize tional zone (1–2 m) between the base of the shrimp a species as either a symbiont-bearing primary con- swarms and the proximal boundary of the anemone beds sumer, a non-symbiont-bearing primary consumer (e.g. (see Appendix 1 at http://dx.doi.org/10.1007/s00227-002- suspension feeder or grazer), or an omnivore. Strict 0865-y, electronic supplementary material, for a photo- predatory or scavenging behaviors within vent inverte- graphic overview of these faunal zones). Many of the brates are difficult to distinguish with confidence. Many species found at this Indian Ocean vent field have evolu- top invertebrate consumers are likely to have mixed diets tionary affinities to western Pacific vent faunas, but the that include microorganisms, primary consumers, and ecologically dominant shrimp closely resembles its other omnivores. Mid-Atlantic Ridge counterpart (Hashimoto et al. 2001; I identified isotopically distinct groups within the Van Dover et al. 2001). Kairei invertebrate community and inferred the dietary An outline of potential trophic interactions or pat- resources and trophic relationships of these species. For terns within a community can be obtained rapidly five Kairei species, I examined the relationship between through a survey of stable-isotope compositions. Stable- individual size and isotopic composition to determine isotope methods are not the only tool for assessment of and interpret shifts in diet during growth. Comparisons trophic relationships among species within a commu- of carbon and nitrogen isotopic ratios for invertebrates nity, and they are subject to site- and species-specific of Indian Ocean, Atlantic, and Pacific vents allow violation of some underlying assumptions regarding evaluation of trophic similarities and contrasts in bi- trophic shifts in isotopic composition. Nevertheless, ogeographically disparate vent systems. isotopic methods have proven valuable in generating or constraining hypotheses about trophic relationships in systems where direct observations of feeding interac- Materials and methods tions and samples are difficult to obtain, as at deep-sea hydrothermal vents (Conway et al. 1994). Carbon and Individuals of 15 invertebrate species (Table 1) were collected from nitrogen stable-isotope compositions have been used to the Kairei hydrothermal field (25°19.23¢S; 70°02.42¢E; 2415– 2460 m depth) on the Central Indian Ridge using the remotely advantage in a variety of marine settings (e.g. Rau and operated vehicle (R.O.V.) ‘‘Jason’’ in April 2001. Voucher speci- Hedges 1979; Rau et al. 1992; Van Dover et al. 1992; mens of undescribed species have been retained in an archival Wainright et al. 1993). Characterization of patterns of collection at The College of William & Mary. In situ observations isotopic compositions among individuals and among of invertebrate distributions and behavior were documented
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny
    Comparative Neuroanatomy of Mollusks and Nemerteans in the Context of Deep Metazoan Phylogeny Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Biologin Simone Faller aus Frankfurt am Main Berichter: Privatdozent Dr. Rudolf Loesel Universitätsprofessor Dr. Peter Bräunig Tag der mündlichen Prüfung: 09. März 2012 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar. Contents 1 General Introduction 1 Deep Metazoan Phylogeny 1 Neurophylogeny 2 Mollusca 5 Nemertea 6 Aim of the thesis 7 2 Neuroanatomy of Minor Mollusca 9 Introduction 9 Material and Methods 10 Results 12 Caudofoveata 12 Scutopus ventrolineatus 12 Falcidens crossotus 16 Solenogastres 16 Dorymenia sarsii 16 Polyplacophora 20 Lepidochitona cinerea 20 Acanthochitona crinita 20 Scaphopoda 22 Antalis entalis 22 Entalina quinquangularis 24 Discussion 25 Structure of the brain and nerve cords 25 Caudofoveata 25 Solenogastres 26 Polyplacophora 27 Scaphopoda 27 i CONTENTS Evolutionary considerations 28 Relationship among non-conchiferan molluscan taxa 28 Position of the Scaphopoda within Conchifera 29 Position of Mollusca within Protostomia 30 3 Neuroanatomy of Nemertea 33 Introduction 33 Material and Methods 34 Results 35 Brain 35 Cerebral organ 38 Nerve cords and peripheral nervous system 38 Discussion 38 Peripheral nervous system 40 Central nervous system 40 In search for the urbilaterian brain 42 4 General Discussion 45 Evolution of higher brain centers 46 Neuroanatomical glossary and data matrix – Essential steps toward a cladistic analysis of neuroanatomical data 49 5 Summary 53 6 Zusammenfassung 57 7 References 61 Danksagung 75 Lebenslauf 79 ii iii 1 General Introduction Deep Metazoan Phylogeny The concept of phylogeny follows directly from the theory of evolution as published by Charles Darwin in The origin of species (1859).
    [Show full text]
  • A Phylum-Wide Survey Reveals Multiple Independent Gains of Head Regeneration Ability in Nemertea
    bioRxiv preprint doi: https://doi.org/10.1101/439497; this version posted October 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A phylum-wide survey reveals multiple independent gains of head regeneration ability in Nemertea Eduardo E. Zattara1,2,5, Fernando A. Fernández-Álvarez3, Terra C. Hiebert4, Alexandra E. Bely2 and Jon L. Norenburg1 1 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA 2 Department of Biology, University of Maryland, College Park, MD, USA 3 Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Barcelona, Spain 4 Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA 5 INIBIOMA, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Bariloche, RN, Argentina Corresponding author: E.E. Zattara, [email protected] Abstract Animals vary widely in their ability to regenerate, suggesting that regenerative abilities have a rich evolutionary history. However, our understanding of this history remains limited because regeneration ability has only been evaluated in a tiny fraction of species. Available comparative regeneration studies have identified losses of regenerative ability, yet clear documentation of gains is lacking. We surveyed regenerative ability in 34 species spanning the phylum Nemertea, assessing the ability to regenerate heads and tails either through our own experiments or from literature reports. Our sampling included representatives of the 10 most diverse families and all three orders comprising this phylum.
    [Show full text]
  • A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-12-2014 A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Marine Biology Commons, and the Microbiology Commons Scholar Commons Citation Rubelmann, Haydn III, "A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5432 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments by Haydn Rubelmann III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: James R. Garey, Ph.D. Randy Larsen, Ph.D. Kathleen Scott, Ph.D. David Merkler, Ph.D. Date of Approval: November 12, 2014 Keywords: environmental microbiology, extremophiles, shallow-water hydrothermal vents, anoxic marine pits Copyright © 2014, Haydn Rubelmann III DEDICATION I would like to dedicate this dissertation to three of my personal champions: my grandfather, Haydn Rubelmann Sr. (1929 - 2004), who encouraged me to pursue an academic career; my stepfather, Dale Jones (1954 - 2008), who was the best father anyone could ever hope for, and my husband, Eduardo Godoy, who suffered through not only 8 years of my doctoral tenure, but a grueling civil liberty injustice that almost wedged the Caribbean Sea between us.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • R E S E a R C H / M a N a G E M E N T Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea)
    RESEARCH/MANAGEMENT FINDINGSFINDINGS “Put a piece of raw meat into a small stream or spring and after a few hours you may find it covered with hundreds of black worms... When not attracted into the open by food, they live inconspicuously under stones and on vegetation.” – BUCHSBAUM, et al. 1987 Aquatic and Terrestrial Flatworm (Platyhelminthes, Turbellaria) and Ribbon Worm (Nemertea) Records from Wisconsin Dreux J. Watermolen D WATERMOLEN Bureau of Integrated Science Services INTRODUCTION The phylum Platyhelminthes encompasses three distinct Nemerteans resemble turbellarians and possess many groups of flatworms: the entirely parasitic tapeworms flatworm features1. About 900 (mostly marine) species (Cestoidea) and flukes (Trematoda) and the free-living and comprise this phylum, which is represented in North commensal turbellarians (Turbellaria). Aquatic turbellari- American freshwaters by three species of benthic, preda- ans occur commonly in freshwater habitats, often in tory worms measuring 10-40 mm in length (Kolasa 2001). exceedingly large numbers and rather high densities. Their These ribbon worms occur in both lakes and streams. ecology and systematics, however, have been less studied Although flatworms show up commonly in invertebrate than those of many other common aquatic invertebrates samples, few biologists have studied the Wisconsin fauna. (Kolasa 2001). Terrestrial turbellarians inhabit soil and Published records for turbellarians and ribbon worms in leaf litter and can be found resting under stones, logs, and the state remain limited, with most being recorded under refuse. Like their freshwater relatives, terrestrial species generic rubric such as “flatworms,” “planarians,” or “other suffer from a lack of scientific attention. worms.” Surprisingly few Wisconsin specimens can be Most texts divide turbellarians into microturbellarians found in museum collections and a specialist has yet to (those generally < 1 mm in length) and macroturbellari- examine those that are available.
    [Show full text]
  • Nemertea (Ribbon Worms)
    ISSN 1174–0043; 118 (Print) ISSN 2463-638X; 118 (Online) Taihoro Nukurc1n,�i COVERPHOTO: Noteonemertes novaezealandiae n.sp., intertidal, Point Jerningham, Wellington Harbour. Photo: Chris Thomas, NIWA. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH (NIWA) The Invertebrate Fauna of New Zealand: Nemertea (Ribbon Worms) by RAY GIBSON School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street Liverpool L3 3AF, United Kingdom NIWA Biodiversity Memoir 118 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication GIBSON, Ray The invertebrate fauna of New Zealand: Nemertea (Ribbon Worms) by Ray Gibson - Wellington : NIWA (National Institute of Water and Atmospheric Research) 2002 (NIWA Biodiversity memoir: ISSN 0083-7908: 118) ISBN 0-478-23249-7 II. I. Title Series UDC Series Editor: Dennis P. Gordon Typeset by: Rose-Marie C. Thompson National Institute of Water and Atmospheric Research (NIWA) (incorporating N.Z. Oceanographic Institute) Wellington Printed and bound for NIWA by Graphic Press and Packaging Levin Received for publication - 20 June 2001 ©NIWA Copyright 2002 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page 5 ABSTRACT 6 INTRODUCTION 9 Materials and Methods 9 CLASSIFICATION OF THE NEMERTEA 9 Higher Classification CLASSIFICATION OF NEW ZEALAND NEMERTEANS AND CHECKLIST OF SPECIES .
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]
  • Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation
    CHAPTER 9 Introduction to the Bilateria and the Phylum Xenacoelomorpha Triploblasty and Bilateral Symmetry Provide New Avenues for Animal Radiation long the evolutionary path from prokaryotes to modern animals, three key innovations led to greatly expanded biological diversification: (1) the evolution of the eukaryote condition, (2) the emergence of the A Metazoa, and (3) the evolution of a third germ layer (triploblasty) and, perhaps simultaneously, bilateral symmetry. We have already discussed the origins of the Eukaryota and the Metazoa, in Chapters 1 and 6, and elsewhere. The invention of a third (middle) germ layer, the true mesoderm, and evolution of a bilateral body plan, opened up vast new avenues for evolutionary expan- sion among animals. We discussed the embryological nature of true mesoderm in Chapter 5, where we learned that the evolution of this inner body layer fa- cilitated greater specialization in tissue formation, including highly specialized organ systems and condensed nervous systems (e.g., central nervous systems). In addition to derivatives of ectoderm (skin and nervous system) and endoderm (gut and its de- Classification of The Animal rivatives), triploblastic animals have mesoder- Kingdom (Metazoa) mal derivatives—which include musculature, the circulatory system, the excretory system, Non-Bilateria* Lophophorata and the somatic portions of the gonads. Bilater- (a.k.a. the diploblasts) PHYLUM PHORONIDA al symmetry gives these animals two axes of po- PHYLUM PORIFERA PHYLUM BRYOZOA larity (anteroposterior and dorsoventral) along PHYLUM PLACOZOA PHYLUM BRACHIOPODA a single body plane that divides the body into PHYLUM CNIDARIA ECDYSOZOA two symmetrically opposed parts—the left and PHYLUM CTENOPHORA Nematoida PHYLUM NEMATODA right sides.
    [Show full text]
  • Regeneration in Spiralians: Evolutionary Patterns and Developmental Processes ALEXANDRA E
    Int. J. Dev. Biol. 58: 623-634 (2014) doi: 10.1387/ijdb.140142ab www.intjdevbiol.com Regeneration in spiralians: evolutionary patterns and developmental processes ALEXANDRA E. BELY*,1, EDUARDO E. ZATTARA1,2 and JAMES M. SIKES3 1Department of Biology, University of Maryland, College Park, Maryland, USA 2Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA and 3Department of Biology, University of San Francisco, San Francisco, California, USA ABSTRACT Animals differ markedly in their ability to regenerate, yet still little is known about how regeneration evolves. In recent years, important advances have been made in our understanding of animal phylogeny and these provide new insights into the phylogenetic distribution of regenera- tion. The developmental basis of regeneration is also being investigated in an increasing number of groups, allowing commonalities and differences across groups to become evident. Here, we focus on regeneration in the Spiralia, a group that includes several champions of animal regeneration, as well as many groups with more limited abilities. We review the phylogenetic distribution and developmental processes of regeneration in four major spiralian groups: annelids, nemerteans, platyhelminths, and molluscs. Although comparative data are still limited, this review highlights phylogenetic and developmental patterns that are emerging regarding regeneration in spiralians and identifies important avenues for future research. KEY WORDS: regeneration, Annelida, Nemertea, Platyhelminthes, Mollusca Introduction entire phyla, appear to have little to no ability to regenerate body structures (e.g., nematodes, rotifers) while other groups have Many animals are able to regenerate lost body parts, yet little is numerous representatives that can regenerate every part of the known about how this capability has evolved (Brockes and Kumar, body (e.g., planarians, annelids).
    [Show full text]