Coleoptera: Myxophaga) in Paraguay and a World Checklist of Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Current Classification of the Families of Coleoptera
The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations. -
Nevada Pest Management Association
N E V ADA PDECEMBERE 2014S • VOL. 7T NO. 3 CONTASSOCIATIONRO NEWSL PREPARING YOUR BUSINESS FOR THE RAT RACE: SANITATION, PROOFING AND POPULATION MANAGEMENT STRATEGIES By Sylvia Kenmuir, Page 8 AN ANIMAL CLASSIFICATION PRIMER By Erin Monteagudo, Page 10 THE OSTRICH DEFENSE EXCERPTS FROM: THE BED BUG COMBAT MANUAL By Paul J. Bello, Page 12 www.nevadapca.org PRESIDENT’S MESSAGE 1 The 2 CSI: TABLE OF CONTENTS CONTROL SOLUTIONS INC. President’s Message 3 By George Botta A Dozen Steps For Your By George Botta evidence reveals... American Cockroach Program 4 New Tekko™ Pro Insect Growth NPCA President By Austin Frishman Regulator Concentrate from Control 702-439-0479 Solutions provides effective, long- [email protected] Are You Getting In The Way term control of listed pests including Of Your Own Company? 6 cockroaches, fleas, flies, mosquitoes, s 2014 comes to an end we get to reflect back at some of By Lloyd Merritt Smigel gnats, crickets, litter beetles, and the events that have impacted us as American citizens: Isis, ants. Tekko Pro is formulated with Ferguson, Gaza, Putin, Ebola, Ray Rice Video, and the Secret Preparing Your Business For The Rat Race 8 Combination Chemistry™, which A Service, just to mention a few. As of this writing, Nevada, as well as By Sylvia Kenmuir combines two active ingredients the rest of the United States, is going through a Mid-Term Election. with two modes of action into Hopefully we all got out and voted for the right individuals that can get An Animal Classification Primer 10 one innovative product. -
A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their -
Coleoptera: Myxophaga) and the Systematic Position of the Family and Suborder
Eur. J. Entomol. 103: 85–95, 2006 ISSN 1210-5759 On the head morphology of Lepiceridae (Coleoptera: Myxophaga) and the systematic position of the family and suborder ERIC ANTON 1 and ROLF G. BEUTEL2 Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, FSU Jena, 07743 Jena, Germany; e-mails: 1 [email protected], 2 [email protected] Key words. Lepiceridae, head morphology, systematic position, function Abstract. Adult head structures of Lepicerus inaequalis were examined in detail and interpreted functionally and phylogenetically. The monogeneric family clearly belongs to Myxophaga. A moveable process on the left mandible is an autapomorphy of the subor- der. Even though Lepiceridae is the “basal” sistergroup of the remaining three myxophagan families, it is likely the group which has accumulated most autapomorphic features, e.g. tuberculate surface structure, internalised antennal insertion, and a specific entogna- thous condition. Adults of Lepiceridae and other myxophagan groups possess several features which are also present in larvae (e.g., premental papillae, semimembranous mandibular lobe). This is probably related to a very similar life style and has nothing to do with “desembryonisation”. Lepiceridae and other myxophagans share a complex and, likely, derived character of the feeding appa- ratus with many polyphagan groups (e.g., Staphyliniformia). The mandibles are equipped with large molae and setal brushes. The latter interact with hairy processes or lobes of the epi- and hypopharynx. This supports a sistergroup relationship between both sub- orders. INTRODUCTION association with semiaquatic species [e.g., Georissus, Lepicerus is a rather enigmatic and highly unusual Paracymus confusus Wooldridge, 1966, Anacaena debilis genus of Coleoptera. -
Diversity and Habitat Selection of Aquatic Beetles (Coleoptera)
IOSR Journal Of Pharmacy And Biological Sciences (IOSR-JPBS) e-ISSN:2278-3008, p-ISSN:2319-7676. Volume 14, Issue 1 Ver. I (Jan–Feb 2019), PP 31-37 www.Iosrjournals.Org Diversity and habitat selection of aquatic beetles (Coleoptera). 1Shailendra Sharma, 2Gurudutt Sharma, *1Faisal Ahmad Pir 1P.G.Department of Zoology, Adarsh Institute of Management & Science, Dhamnod. (Devi Ahilya University, Indore) (M.P.) India. *1,2P.G.Department of Zoology, P.M.B.Gujarati Science College, Indore. (M.P.) Corresponding Author: Faisal Ahmad Pir Abstract: In this study the diversity and habitat selection of aquatic Coleoptera has been assessed. The order Coleoptera includes more species than any order, constitutes 25 % of known life forms. Most of the species are terrestrial but some of them are aquatic however there is doubt whether a particular species is terrestrial or aquatic that is why Jach and Bhalke (2008) classify them as true water beetles, facultative water beetles,Phytophilous water beetles etc. depending upon the time they spend in or out of the water. More than 350000 species of beetles has been described so far out of which 12000 species are known from aquatic habitat. The order has been divided into 4 suborders three of which have aquatic representatives, Myxophaga (90% aquatic), Adephaga (18% aquatic), and Polyphaga (1.25% aquatic).Polyphaga contains most families (15) of which the family Hydrophilidae represents highest number of species (2,652). Aquatic beetles areknown to have diverse habitat selection and so is their adaptability. They are found to live in almost all kinds of aquatic habitats, such as rivers, springs, lakes, ditches, puddles, phytotelmata, seepages, and ground water but did not live in oceans however they can cope with a salinity up to 250%. -
Mckenna2009chap34.Pdf
Beetles (Coleoptera) Duane D. McKenna* and Brian D. Farrell and Polyphaga (~315,000 species; checkered beetles, Department of Organismic and Evolutionary Biology, 26 Oxford click beetles, A reP ies, ladybird beetles, leaf beetles, long- Street, Harvard University, Cambridge, MA 02138, USA horn beetles, metallic wood-boring beetles, rove beetles, *To whom correspondence should be addressed scarabs, soldier beetles, weevils, and others) (2, 3). 7 e ([email protected]) most recent higher-level classiA cation for living beetles recognizes 16 superfamilies and 168 families (4, 5). Abstract Members of the Suborder Adephaga are largely preda- tors, Archostemata feed on decaying wood (larvae) and Beetles are placed in the insect Order Coleoptera (~350,000 pollen (adults), and Myxophaga are aquatic or semi- described species). Recent molecular phylogenetic stud- aquatic and feed on green and/or blue-green algae ( 6). ies defi ne two major groups: (i) the Suborders Myxophaga Polyphaga exhibit a diversity of habits, but most spe- and Archostemata, and (ii) the Suborders Adephaga and cies feed on plants or dead and decaying plant parts Polyphaga. The time of divergence of these groups has (1–3). 7 e earliest known fossil Archostemata are from been estimated with molecular clocks as ~285–266 million the late Permian (7), and the earliest unequivocal fossil years ago (Ma), with the Adephaga–Polyphaga split at ~277– Adephaga and Polyphaga are from the early Triassic (1). 266 Ma. A majority of the more than 160 beetle families Myxophaga are not known from the fossil record, but are estimated to have originated in the Jurassic (200–146 extinct possible relatives are known from the Permian Ma). -
A Possible Larva of Lepicerus Inaequalis Motschulsky (Coleoptera: Myxophaga: Lepiceridae) from Panama
Zootaxa 3701 (3): 393–400 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3701.3.8 http://zoobank.org/urn:lsid:zoobank.org:pub:578E70C9-2E2F-46A4-BE92-50907EF8A651 A Possible Larva of Lepicerus inaequalis Motschulsky (Coleoptera: Myxophaga: Lepiceridae) from Panama JOHN F. LAWRENCE1,2 ADAM ŚLIPIŃSKI 1, ROLF G. BEUTEL3 & ALFRED F. NEWTON4 1CSIRO Ecosystem Sciences, Australian National Insect Collection, GPO Box 1700, Canberra, ACT 2101, Australia. E-mail: [email protected] 261 Glenbar Road, The Palms, Queensland 4570, Australia. E-mail: [email protected] 3Institut für Spezielle Zoologie and Evolutionsbiologie, FSU Jena, Jena, Germany. E-mail: [email protected] 4Field Museum of Natural History, Chicago, Illinois, U.S.A. E-mail: [email protected] Abstract A larva is described which is presumed to be that of Lepicerus inaequalis Motschulsky based on several probable first instars and one later instar collected a few miles from and in a similar habitat to adult specimens of this species. The as- sociation is additionally based on several features also occurring in other known myxophagan larvae. A key is provided comparing these larvae with those of the other three families of Myxophaga. Key words: Coleoptera, Myxophaga, Lepiceridae Introduction “How often have I said to you that when you have eliminated the impossible, whatever remains, however improbable, must be the truth?” Sherlock Holmes to Dr. Watson (Doyle 1890). Thirty-seven years ago, one of us (AFN) discovered a short series of minute larvae extracted with a Tullgren funnel from wet leaves and flood debris along the banks of a stream near Gamboa, Canal Zone, Panama. -
Figures in Italics Indicate the Prime Taxonomic Reference. Figures in Bold Type Indicate the Page on Which There Is a Figure. AB
INDEX Figures in italics indicate the prime taxonomic reference. Figures in bold type indicate the page on which there is a figure. ABALOOS, 732, 748 Acerentomon, food, 455, 4.59; A. Acrocera, 1006; A. globulus, ABEL, 49I, 493 doderoi, 455 1006 abdomen, Coleoptera, adephagid Acerentulus, 4.59; head, mouth Acroceridae, 10o6; larvae par type, haplogastrous, hologa parts, 456; internal anatomy, asitic, 970; mesopleural sulcus strous, symphiogastrous, 825, 457 straight, 979 826, Diptera, 864; Achanthiptera rohrellijormis Acromantis, 6oi Hymenoptera, number of ex ( = inanis) in nests of Vespula, Acronycta, larval ecdyses, I094 posed segments, I I 87 I249 Acrotelsa, 44I ABDULLAH,884,89I,904 Acherontia atropos, I I39; sound acrotrophic ovarioles, in ABERNATHY,722,756 production, I I40; larva, alimen Coleoptera, 832 Abies excelsa, Physokermes piceae, tary canal, 1095; mandibular Acrydiidae, see Tetrigidae a pest on, 726 gland, 267 Actaletes, 470; tracheae present, ABRAHAMSON,903,904 Acheta domesticus, 546, .5 48; 467 Abraxas grossulariata auditory organ, I33 Actaletidae, 470 (Geometridae) wing-variation, Achilidae, 705 Actinoscytidae, 762 1133 Achilixiidae, 70.5 ACTON,684,688,748,767 Acalyptratae, I 020; larvae oc achrestogonimes, in Isoptera, 620 Actora, see Helcomyza casionally parasitic, 970; ner ACHTELIG,426,427,794,8I2 Actornithophilus, 665 vous system, 970; preapical Achroia, I 12 I Aculagnathidae, 884 tibial bristle, 967 acid gland, 1189 Aculeata, see Hymenoptera Acanaloniidae, 707 Acidia, see Philophylla Aculeata acanthae, in Mecoptera, 936; in ACKER, 794, 812 aculei, in Lepidoptera, I077 Siphonaptera, 946 Aclerda, 729 Acyrtosiphon, 7I7; A. pisum, Acanthaspis, puncture by, pain Aclerdidae, 7 29 photoperiod, temperature and ful, 732 Acleris (Tortricidae) venation, wing-development, 722 Acanthiidae, see Cimicidae or 1708 ACZEL, IOI6, I02J, IOJ7, I046 Saldidae Acletoxenus, I022 ADAIR, 599, 601 Acanthoceridae, 86o Aclypea, 854 Adalia, colour variation, 882; Acanthococcus devoniensis, 728 Acraea, I 126 development oflarva, 883; A. -
Sato, 1982) (Coleoptera) 53-59 © Wiener Coleopterologenverein, Zool.-Bot
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Water Beetles of China Jahr/Year: 1998 Band/Volume: 2 Autor(en)/Author(s): Beutel Rolf Georg Artikel/Article: Torridincolidae: II. Description of the larva of Satonius kurosawai (Sato, 1982) (Coleoptera) 53-59 © Wiener Coleopterologenverein, Zool.-Bot. Ges. Österreich, Austria; download unter www.biologiezentrum.at M.A.JACII&L. Ji(eds.): Water Hectics of China Vol.11 53-59 Wien, December 1998 TORRIDINCOLIDAE: II. Description of the larva of Satonius kurosawai (SATO, 1982) (Coleoptera) R.G. BEUTEL Abstract Third instar larvae of Satonius kurosawai (SATÖ) (Coleoptera: Torridincolidac) arc described. They are characterized by a strongly flattened, ovoid body, 4 stemmata which arc inserted on a distinct elevation, broad tergal extensions with lateral contact hairs on the thoracic segments, laterally inserted abdominal spiracular gills, and fixed urogomphi. Satonius ENDRÖDY-YOUNGA is the sistcrgroup of Torridincolinae. The ovoid body shape, a nearly semicircular thorax which is about as long as the abdomen, fused labral scnsillae, and a strongly reduced trapezoid or triangular abdominal stcrnite IX arc synapmorphies of Satonius and Torridincolinae. The monophyly of Torridincolinae is suggested by the reduced number of 3 stemmata and the presence of frayed setae on the labrum. Key words: Coleoptera, Torridincolidae, Satonius, larva, phylogeny. Introduction Satonius kurosawai (SATÖ, 1982) was discovered in 1958 by Dr. Yoshiko Kurosawa in the Fukushima Prefecture in northeastern Japan (SATÖ 1982). It was the first known representative of Torridincolidae in Asia. However, the systematic affinity was unclear by that time. Torridincolidae was established as a family by STEFFAN (1964) based on an African species, Torridincola rhodesica STEFFAN, 1964. -
The Beetle Tree of Life Reveals That Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution Duane D
Clemson University TigerPrints Publications Plant and Environmental Sciences 10-2015 The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution Duane D. McKenna University of Memphis Alexander L. Wild University of Texas at Austin Kojun Kanda University of Arizona Charles L. Bellamy California Department of Food and Agriculture Rolf G. Beutel University of Jena See next page for additional authors Follow this and additional works at: https://tigerprints.clemson.edu/ag_pubs Part of the Entomology Commons Recommended Citation Please use the publisher's recommended citation. http://onlinelibrary.wiley.com/doi/10.1111/syen.12132/abstract This Article is brought to you for free and open access by the Plant and Environmental Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. Authors Duane D. McKenna, Alexander L. Wild, Kojun Kanda, Charles L. Bellamy, Rolf G. Beutel, Michael S. Caterino, Charles W. Farnum, David C. Hawks, Michael A. Ivie, Mary Liz Jameson, Richard A.B. Leschen, Adriana E. Marvaldi, Joseph V. McHugh, Alfred F. Newton, James A. Robertson, Margaret K. Thayer, Michael F. Whiting, John F. Lawrence, Adam Ślipinski, David R. Maddison, and Brian D. Farrell This article is available at TigerPrints: https://tigerprints.clemson.edu/ag_pubs/67 Systematic Entomology (2015), 40, 835–880 DOI: 10.1111/syen.12132 The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution DUANE D. MCKENNA1,2, ALEXANDER L. WILD3,4, KOJUN , KANDA4,5, CHARLES L. -
Universidade Federal De Pernambuco Centro De Ciências Biológicas Departamento De Genética Programa De Pós-Graduação Em
UNIVERSIDADE FEDER AL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E BIOLOGIA MOLECULAR DISSERTAÇÃO DE MESTRADO ANÁLISE CARIOTÍPICA EM TRÊS REPRESENTANTES DA TRIBO PHANAEINI (COLEOPTERA: SCARABAEIDAE) AMANDA PAULINO DE ARCANJO RECIFE 2010 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE CIÊNCIAS BIOLÓGICAS DEPARTAMENTO DE GENÉTICA PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA E BIOLOGIA MOLECULAR DISSERTAÇÃO DE MESTRADO ANÁLISE CARIOTÍPICA EM TRÊS REPRESENTANTES DA TRIBO PHANAEINI (COLEOPTERA: SCARABAEIDAE) AMANDA PAULINO DE ARCANJO Dissertação apresentada ao Programa de Pós-graduação em Genética e Biologia Molecular da Universidade Federal de Pernambuco como requisito para obtenção do grau de Mestre em Genética pela UFPE Orientadora: Profa. Dra. Maria José de Souza Lopes a a Co-orientadora: Prof . Dr . Rita de Cássia de Moura RECIFE 2010 Arcanjo, Amanda Paulino de Análise cariotípica em três representantes da tribo Phanaeini (Coleoptera: Scarabaeidae) / Amanda Paulino de Arcanjo. – Recife: O Autor, 2010. 83 folhas : il., fig., tab. Dissertação (mestrado) – Universidade Federal de Pernambuco. CCB. Genética e Biologia molecular, 2009. Inclui bibliografia e apêndices. 1. Genética 2. Citogenética 3. Genética molecular 4. Besouro I. Título. 572.8 CDD (22.ed.) UFPE/ CCB – 2010- 050 Agradecimentos Em primeiro lugar a Deus, pela minha vida, por me dar diariamente oportunidades de crescer e por todas as bênçãos e alegrias concedidas. Aos meus pais e irmão, pelo apoio, amor, incentivo e dedicação. Ao meu avô, por apoiar não só a mim como toda a minha família nos momentos difíceis. Aos meus familiares, especialmente meus tios Áurea, Carlos, Gonçalves, Inaldo, Isaac, Ivan, Ivanise e Júnior, e meus primos, Alice, Bruno, Carol, Clívia, Cristiani (Tiani), Edson, José Paulo, Júlia, Lidja, Raphaela e Wlisses.