Symmetry® Columns Applications Notebook

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry® Columns Applications Notebook Symmetry ® Columns Applications Notebook Symmetry® SymmetryShield™ Symmetry300™ SymmetryPrep™ Intelligent Speed (IS™) www.waters.com Symmetry® Columns Setting the Standard for Reproducibility As today’s chemists establish new Unmatched Year-to-year Reproducibility analytical methods for the latest pharmaceu- ® ® tical and biopharmaceutical products, the Column: Symmetry C18, Instrumentation: Waters Alliance HT 2795 selection of a reproducible HPLC column is 4.6 x 150 mm, 5 µm Waters 996 PDA detector Mobile Phase A: H2O Sampling Rate: 5 pts./sec essential. The selected column needs to Mobile Phase B: MeCN Mobile Phase C: pH 3.75; 100 mM provide the same chromatographic results NH4COOH in H2O Flow Rate: 1.4 mL/min over the life of the new drug product. Isocratic: 30% A; 60% B; 10% C RSD’s for Retention Times Injection Volume: 5.0 µL ® 1. Terbinafine HCl 0.7% Symmetry columns demonstrate superior Temperature: 30 °C reproducibility over many years. Batches Detection: UV @ 233 nm 2. Ibuprofen 0.8% 3. Lovastatin 0.6% randomly selected over the past 5 years 4. Simvastatin 0.7% demonstrate excellent reproducibility in the example shown. Reproducibility is our number one priority in supplying Symmetry® columns. This excellent reproducibility is a result of our commitment Batch 136 (1998) to maintaining the tightest specifications in the HPLC column industry. Symmetry® columns Batch 142 (1998) are engineered with high purity raw materials, tightly controlled manufacturing Batch 149 (1999) processes and column packing procedures that provide today’s scientists with the best, Batch 151 (2000) most reproducible HPLC column available. Batch 156 (2001) Our goal is to supply a family of HPLC columns that you can rely on for rugged and Minutes robust methods. Symmetry® columns let you increase your laboratorys' productivity, and allow easier method transfer between labs and around the globe. Comprehensive Certificate of Analysis A three-page Certificate of Analysis is included with every Symmetry® column. We report both our specifications, which are the tightest in the industry, and the results of the 22 critical tests each column must pass before it carries the Symmetry® brand. Waters, Symmetry, SymmetryShield, Sentry, SymmetryPrep, Platform LC, Quattro Ultima, IS, Oasis and Alliance are trademarks of Waters Corporation. ©2003 Waters Corporation. 1 Table of Contents Introduction. 1 Compound Index . 3-4 List of Applications . 5-8 Applications . 9-182 Ordering Information . .183-186 Notes . 187-192 2 Waters, Symmetry, SymmetryShield, Sentry, SymmetryPrep, Platform LC, Quattro Ultima, IS, Oasis and Alliance are trademarks of Waters Corporation. ©2003 Waters Corporation. Compound Index Click in the box, Type desired page number, Then click OK Acephate . 5, 9 Butyl paraben . 79, 135, 150 Dichlorprop . 14 Acetaminophen . 5, 11-13 Butyrophenone . 147-148 Diclofenac Sodium . 6, 73 Acetanilide . 122-123, 147-148 Caffeine . 5, 45, 48, 140, 170 2,6-Diethylaniline . 10 Acetophenone . 147-148 Cafteric acid . 125 10,11-Dihydrocarbamezapine . 30 2-Acetylfuran . 147-148 Calcium Pantothenate . 180 Dihydroergotamine mesylate . 6, 74 Acifluorfen . 14 Captopril . 5, 46 Dilitiazem HCL . 75-76 Acyclovir . 5, 15-17 Captopril Disulfide . 46 Dinoseb . 14 Alachlor . 10 Carbadox. 5, 47 Diphenoxylate HCL . 6, 77 Albuterol . 5, 18-19 Catechins. 48 Diquat . 7, 120 Allobarbital . 33 Carbamezapine . 30 Disopyramide . 6, 78 Alpha-Tocopherol (Vitamin E) . 179 Carbamezapine-10,11-epoxide . 30 Doxepin . 6, 29, 79, 173-175 6a-Methyl-17l-hydroxyprogesterone . 122-123 Carbaryl . 36, 81 Doxycycline . 167 2-Amino-7-chloro-5-oxo-5H-[1] Cefixime . 5, 49 EDDP (Methadone Metabolite) . 99 Benzopyrano[2,3-b]pyridine-3-carbonitrile . 122-123 Cefuroxime . 5, 50 Enalapril . 80 7-Amino Clonazepam . 86 Cephalexin . 5, 51 Ephedrine . 26-27 3-Aminofluoranthene . 122-123 Chloramben . 14 Epicatechin . 48 7-Amino Flunitrazepam . 86 Chloramphenicol . 5, 52 Epigallocatechin Gallate . 48 7-Amino Nitrazepam . 86 Chlorcyclizine HCL . 65 Estazolam . 99 Amitriptyline . 173-175, 29 Chlordiazepoxide . 6, 53-54 Estradiol . 151-152 Amobarbital . 33-34 2-Chloro-2,6-diethylacetanilide . 10 Estrone . 151-152 Amoxapine. 5, 21 Chlorogenic acid . 125 Ethosuximide . 153 Amoxicillin . 5, 22-24 Chlorpheniramine . 6-7, 55, 137, 160 Etodolac . 6, 83 Amphetamine . 5, 26-27 1-(3-Chlorophenyl)peperazine . 171 Fenoprofen . 131-132 Ampicillin . 5, 25 Cholecalciferol (Vitamin D3) . 179 Flunitrazepam . 6, 85-86 Angiotensin I . 115 Cichoric acid . 125 Flurbiprofen . 131-132 Angiotensin II . 115 Cimetidine . 6, 56-58 Folic Acid . 8, 181 Antipyrine . 5, 31 Clavulanate . 23 Furazolidone . 161 Atrazine . 5, 32, 36, 81, 172 Clobetasol . 6, 59 Furosemide . 6, 88 AZT . 182 Clonazepam . 6, 60, 86 Guanosine hydrate . 17 β-hydroxyethyltheophylline (I.S.) . 45, 140 Cocaethylene . 62 Heptanophenone . 147-148 Bamethan (I.S.) . 19 Cocaine . 6, 61-62 Hexanophenone . 147-148 Barbital . 33 Codeine . 6, 11, 63-64, 139 Hydrastine . 20 Beclomethasone . 5, 35, 59 Codeine-6-Glucuronide (C-6-G) . 63-64 Hydrocodone Bitartrate . 5, 12 Benomyl . 5, 36, 81 Corticosterone . 151-152 Hydrocortisone . 6, 89, 122-123 Bentazon . 14 Cortisone . ..
Recommended publications
  • Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant
    Author Manuscript Published OnlineFirst on December 19, 2016; DOI: 10.1158/1078-0432.CCR-16-2054 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant 2 Prostate Cancer Patient-Derived Xenografts 3 4 Hung-Ming Lam1,2*, Ryan McMullin3*†, Holly M. Nguyen1, Ilsa Coleman4, Michael Gormley5, 5 Roman Gulati4, Lisha G. Brown1, Sarah K. Holt1, Weimin Li5, Deborah S. Ricci6, Karin 6 Verstraeten7, Shibu Thomas5, Elahe A. Mostaghel4, 8, Peter S. Nelson4, 8, Robert L. Vessella1, 7 9, and Eva Corey1 8 9 Affiliation of authors: 1Department of Urology, University of Washington School of 10 Medicine, Seattle, Washington; 2State Key Laboratory of Quality Research in Chinese 11 Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of 12 Science and Technology, Macau (SAR), China; 3LabConnect, Seattle, Washington; 4Fred 13 Hutchinson Cancer Research Center, Seattle, Washington; 5Janssen Research & 14 Development, Spring House, Pennsylvania; 6Janssen Research & Development, Raritan, 15 New Jersey; 7Janssen Research & Development, Beerse, Belgium; 8Department of 16 Medicine, University of Washington, Seattle, Washington; 9Department of Veterans Affairs 17 Medical Center, Seattle, Washington 18 19 *Co-primary lead authors 20 †Current affiliation: Janssen Research & Development, Spring House, Pennsylvania 21 22 23 Running title (60 characters max): Abiraterone Response and Resistance 24 25 Keywords: abiraterone acetate, prostate cancer, xenografts, biomarkers, androgen 26 receptor, glucocorticoid receptor, castration resistance 27 28 Grant/funding support: The work was supported by The Richard M. Lucas Foundation, the 29 Prostate Cancer Foundation, SU2C, a NIH PO1 CA085859, and the PNW Prostate Cancer 1 Downloaded from clincancerres.aacrjournals.org on September 23, 2021.
    [Show full text]
  • Pesticides Reduce Symbiotic Efficiency of Nitrogen-Fixing Rhizobia and Host Plants
    Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants Jennifer E. Fox*†, Jay Gulledge‡, Erika Engelhaupt§, Matthew E. Burow†¶, and John A. McLachlan†ʈ *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403; †Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699; ‡Department of Biology, University of Louisville, Louisville, KY 40292 ; §University of Colorado, Boulder, CO 80309; and ¶Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699 Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved May 8, 2007 (received for review January 8, 2007) Unprecedented agricultural intensification and increased crop by plants, in rotation with non-N-fixing crops (8, 15). The yield will be necessary to feed the burgeoning world population, effectiveness of this strategy relies on maximizing symbiotic N whose global food demand is projected to double in the next 50 fixation (SNF) and plant yield to resupply organic and inorganic years. Although grain production has doubled in the past four N and nutrients to the soil. The vast majority of biologically fixed decades, largely because of the widespread use of synthetic N is attributable to symbioses between leguminous plants (soy- nitrogenous fertilizers, pesticides, and irrigation promoted by the bean, alfalfa, etc.) and species of Rhizobium bacteria; replacing ‘‘Green Revolution,’’ this rate of increased agricultural output is this natural fertilizer source with synthetic N fertilizer would cost unsustainable because of declining crop yields and environmental Ϸ$10 billion annually (16, 17).
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Antibiotics and Antibacterials, General
    B. Sulfamethoxydiazine (Sulfameter, Sulla) IX. TOXICITY AND SIDE EFFECTS: C. Sulfadimethoxine (Madribon) A. Fever D. Sulphormethoxine-Very long-acting; thera- B. Rash, urticaria peutic blood levels for 1 week. C. Cyanosis, methemoglobinemia D. Nausea, vomiting, diarrhea V. POORLY ABSORBED SULFONAMIDES: E. Hepatitis, jaundice for local use in the intestinal tract only. F. Hematuria, albuminuria, crystalluria, toxic A. Succinylsulfathiazole (Sulfasuxidine): nephritis. 1. Dosage-3.0 Gm q 4 h p.o. G. Headache, mental depression, psychosis, 2. Maximum effect usually not achieved un- peripheral neuritis. til 7th day of therapy. H. Leukopenia, agranulocytosis, purpura, aplas- B. Phthalylsulfathiazole (Sulfathalidine): tic anemia, hypoprothrombinemia, hemolytic ane- 1. Dosage-1.5 Gmq4hp.o. mia. 2. Double this dosage in the presence of I. Severe hypersensitivity reactions - anaphy- diarrhea. laxis, periarteritis nodosa and other collagen dis- 3. Effect produced in 5-7 days. eases, Stevens-Johnson syndrome. C. Para-nitrosulfathiazole (Nisulfazole): Used X. only for intrarectal instillation in treatment of PRECAUTIONS: proctitis or non-specific colitis. A. Keep careful record of urine output - try to maintain output of at least 1200-1500 ml/24 VI. TOPICAL SULFONAMIDES: hrs. B. Alkalinization of urine-sodium bicarbonate A. Mafenide (Sulfamylon): Used on skin as (12-15 Gm/day) may be used for this purpose 10% cream. Unlike other sulfonamides, effective when full systemic doses of sulfonamides are used, in presence of pus and necrotic tissue and does not when there is difficulty in being sure of adequate sensitize readily when used topically. Of value in fluid intake and output, and when such adjunctive prevention and therapy of burn infection due to therapy is not contraindicated.
    [Show full text]
  • A Screening-Based Approach to Circumvent Tumor Microenvironment
    JBXXXX10.1177/1087057113501081Journal of Biomolecular ScreeningSingh et al. 501081research-article2013 Original Research Journal of Biomolecular Screening 2014, Vol 19(1) 158 –167 A Screening-Based Approach to © 2013 Society for Laboratory Automation and Screening DOI: 10.1177/1087057113501081 Circumvent Tumor Microenvironment- jbx.sagepub.com Driven Intrinsic Resistance to BCR-ABL+ Inhibitors in Ph+ Acute Lymphoblastic Leukemia Harpreet Singh1,2, Anang A. Shelat3, Amandeep Singh4, Nidal Boulos1, Richard T. Williams1,2*, and R. Kiplin Guy2,3 Abstract Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Polystyrene Microplastics Do Not Affect Juvenile Brown Trout (Salmo Trutta F
    Schmieg et al. Environ Sci Eur (2020) 32:49 https://doi.org/10.1186/s12302-020-00327-4 RESEARCH Open Access Polystyrene microplastics do not afect juvenile brown trout (Salmo trutta f. fario) or modulate efects of the pesticide methiocarb Hannah Schmieg1*, Sven Huppertsberg2, Thomas P. Knepper2, Stefanie Krais1, Katharina Reitter1, Felizitas Rezbach1, Aki S. Ruhl3,4, Heinz‑R. Köhler1 and Rita Triebskorn1,5 Abstract Background: There has been a rising interest within the scientifc community and the public about the environmen‑ tal risk related to the abundance of microplastics in aquatic environments. Up to now, however, scientifc knowledge in this context has been scarce and insufcient for a reliable risk assessment. To remedy this scarcity of data, we inves‑ tigated possible adverse efects of polystyrene particles (10 4 particles/L) and the pesticide methiocarb (1 mg/L) in juvenile brown trout (Salmo trutta f. fario) both by themselves as well as in combination after a 96 h laboratory expo‑ sure. PS beads (density 1.05 g/mL) were cryogenically milled and fractionated resulting in irregular‑shaped particles (< 50 µm). Besides body weight of the animals, biomarkers for proteotoxicity (stress protein family Hsp70), oxidative stress (superoxide dismutase, lipid peroxidation), and neurotoxicity (acetylcholinesterase, carboxylesterases) were analyzed. As an indicator of overall health, histopathological efects were studied in liver and gills of exposed fsh. Results: Polystyrene particles by themselves did not infuence any of the investigated biomarkers. In contrast, the exposure to methiocarb led to a signifcant reduction of the activity of acetylcholinesterase and the two carboxy‑ lesterases. Moreover, the tissue integrity of liver and gills was impaired by the pesticide.
    [Show full text]
  • Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-Α
    biomedicines Article Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-α Elisa Rossini 1,†, Edoardo Giacopuzzi 2,3,† , Fabrizio Gangemi 4,† , Mariangela Tamburello 1, Deborah Cosentini 5, Andrea Abate 1, Marta Laganà 5, Alfredo Berruti 5 , Salvatore Grisanti 5,‡ and Sandra Sigala 1,*,‡ 1 Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] (E.R.); [email protected] (M.T.); [email protected] (A.A.) 2 Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; [email protected] 3 National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX4 2PG, UK 4 Unit of Physics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] 5 Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at A.S.S.T. Spedali Civili di Brescia, 25123 Brescia, Italy; [email protected] (D.C.); [email protected] (M.L.); [email protected] (A.B.); [email protected] (S.G.) * Correspondence: [email protected] † These Authors equally contributed to this paper. ‡ These authors are co-senior authors of this paper. Citation: Rossini, E.; Giacopuzzi, E.; Abstract: Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic- Gangemi, F.; Tamburello, M.; like side effects frequently occur in patients, and previous studies explored the chemical nature Cosentini, D.; Abate, A.; Laganà, M.; of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD Berruti, A.; Grisanti, S.; Sigala, S.
    [Show full text]
  • Abiraterone and MDV3100 Inhibits the Proliferation and Promotes The
    Han et al. Cancer Cell Int (2019) 19:332 https://doi.org/10.1186/s12935-019-1021-9 Cancer Cell International PRIMARY RESEARCH Open Access Abiraterone and MDV3100 inhibits the proliferation and promotes the apoptosis of prostate cancer cells through mitophagy Jingli Han1† , Junhua Zhang1†, Wei Zhang2, Dalei Zhang3, Ying Li1, Jinsong Zhang2, Yaqun Zhang3, Tongxiang Diao3, Luwei Cui3, Wenqing Li1, Fei Xiao1,2,4, Ming Liu3* and Lihui Zou1* Abstract Background: Abiraterone and MDV3100 are two efective anticancer agents for prostate cancer, however, the mechanism of their downstream action remains undefned. Methods: A dual fuorescent biosensor plasmid was transfected in LNCaP cells to measure mitophagy. The DNA of LNCaP cells was extracted and performed with quantitative real-time PCR to detect mitochondrial DNA copy number. JC-1 staining was utilized to detect the mitochondrial membrane potential and electron microscope was performed to analyze mitochondrial morphology. Moreover, the protein levels of mitochondrial markers and apoptotic markers were detected by western blot. At last, the proliferation and apoptosis of LNCaP cells were analyzed with CCK-8 assay and fow cytometry after abiraterone or MDV3100 treatment. Results: Mitophagy was induced by abiraterone and MDV3100 in LNCaP cells. The low expression level of mito- chondrial DNA copy number and mitochondrial depolarization were further identifed in the abiraterone or MDV3100 treatment groups compared with the control group. Besides, severe mitochondria swelling and substantial autophagy-lysosomes were observed in abiraterone- and MDV3100-treated LNCaP cells. The expression of mito- chondria-related proteins, frataxin, ACO2 and Tom20 were signifcantly downregulated in abiraterone and MDV3100 treated LNCaP cells, whereas the expression level of inner membrane protein of mitochondria (Tim23) was signif- cantly upregulated in the same condition.
    [Show full text]
  • Toxicological and Health Aspects of Bisphenol A
    Toxicological and Health Aspects of Bisphenol A Report of Joint FAO/WHO Expert Meeting 2–5 November 2010 and Report of Stakeholder Meeting on Bisphenol A 1 November 2010 Ottawa, Canada Food and Agriculture Organization of the United Nations WHO Library Cataloguing-in-Publication Data Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada. 1.Phenols - toxicity. 2.Food contamination. 3.Food packing. I.World Health Organization. II.Food and Agriculture Organization of the United Nations. ISBN 978 92 14 156427 4 (NLM classification: QV 223) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer
    International Journal of Molecular Sciences Review Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer Louisane Eve 1,2,3,4,Béatrice Fervers 5,6, Muriel Le Romancer 2,3,4,* and Nelly Etienne-Selloum 1,7,8,* 1 Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France; [email protected] 2 Université Claude Bernard Lyon 1, F-69000 Lyon, France 3 Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 4 CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 5 Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France; [email protected] 6 Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France 7 Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France 8 CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France * Correspondence: [email protected] (M.L.R.); [email protected] (N.E.-S.); Tel.: +33-4-(78)-78-28-22 (M.L.R.); +33-3-(68)-85-43-28 (N.E.-S.) Received: 27 October 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies.
    [Show full text]
  • Bisphenol a (BPA) Description/Chemical Forms: Sources/Routes of Exposure: Health Effects
    Bisphenol A (BPA) Description/Chemical Forms: Sources/Routes of Exposure: Health Effects: BPA is a synthetic compound derived Sources: There are no natural sources of Animal studies have shown the ability of from diphenylmethane that is used to BPA and since this compound is used in this chemical to cause harmful make polycarbonate, a rigid plastic used polycarbonate production, it can be endocrine effects, including decreased in a variety of industrial and house-hold found in food can linings, plastic water sperm production/fertility, mammary products. It has been in production bottles, dental sealants, Tupperware, gland development, and lowered since the 1960s and is still used by many disposable food packages, medical antioxidant enzymes. In addition, early industries today. devices, ink on receipts, and some onset puberty, and behavioral changes, appliances. Also, landfill leachate can like aggression and hyperactivity can seep into waterways and adversely occur with exposure. affect aquatic species. Young children and infants may also be exposed Fetal exposure is also a concern due to through baby bottles and plastic food BPA crossing the placenta and causing containers. development effects both in the womb and later stages of life. Young children Main Route of Exposure: and infants may also be exposed through baby bottles and plastic food Ingestion-the chemical has been containers. shown to leach into foods and beverages that are stored with packaging containing BPA; fish and seafood due to biomagnification Bisphenol A (BPA) Diagnosis/Treatment Options: Prevention Strategies: Links for Additional Information: BPA is poorly soluble in water and is Advise patients to purchase BPA- More information concerning BPA therefore most effectively detected in free containers, especially baby exposure and health effects can be urine.
    [Show full text]