Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-Α

Total Page:16

File Type:pdf, Size:1020Kb

Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-Α biomedicines Article Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-α Elisa Rossini 1,†, Edoardo Giacopuzzi 2,3,† , Fabrizio Gangemi 4,† , Mariangela Tamburello 1, Deborah Cosentini 5, Andrea Abate 1, Marta Laganà 5, Alfredo Berruti 5 , Salvatore Grisanti 5,‡ and Sandra Sigala 1,*,‡ 1 Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] (E.R.); [email protected] (M.T.); [email protected] (A.A.) 2 Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; [email protected] 3 National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX4 2PG, UK 4 Unit of Physics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] 5 Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at A.S.S.T. Spedali Civili di Brescia, 25123 Brescia, Italy; [email protected] (D.C.); [email protected] (M.L.); [email protected] (A.B.); [email protected] (S.G.) * Correspondence: [email protected] † These Authors equally contributed to this paper. ‡ These authors are co-senior authors of this paper. Citation: Rossini, E.; Giacopuzzi, E.; Abstract: Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic- Gangemi, F.; Tamburello, M.; like side effects frequently occur in patients, and previous studies explored the chemical nature Cosentini, D.; Abate, A.; Laganà, M.; of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD Berruti, A.; Grisanti, S.; Sigala, S. derivatives. We used molecular docking and molecular dynamics (MD) simulations to explore the Estrogen-Like Effect of Mitotane possible interaction between mitotane and the ER-α receptor and the induced conformational changes. Explained by Its Agonist Activity on The ER-α expressing MCF-7 cells were exposed to mitotane with/without tamoxifen, and the cell Estrogen Receptor-α. Biomedicines α 2021, 9, 681. https://doi.org/ viability/proliferation was evaluated by MTT assay and direct count. The transient ER- silencing 10.3390/biomedicines9060681 was performed using two ER-α siRNA (50 nM) and verified by Western blot. MDA-MB-231 cells were used as a negative control. Mitotane showed a similar docking configuration to 17β-estradiol and Academic Editors: Anna Angelousi bisphenol A (BPA) and a significant binding affinity to ER-α. MD simulations showed that mitotane and Danae Delivanis preserves the active conformation of ER-α more than both BPA and Bisphenol C, classifying it as an agonist. Exposure of MCF-7 cells to mitotane led to the concentration-dependent increase Received: 29 May 2021 of cell viability and proliferation, which was reduced in the presence of tamoxifen and nullified Accepted: 14 June 2021 by the transient ER-α knock-down. Integrating bioinformatics approaches with cell biology and Published: 16 June 2021 pharmacological methods, we demonstrated that mitotane directly binds and activates ER-α. Publisher’s Note: MDPI stays neutral Keywords: estrogen receptor α; mitotane; adrenocortical carcinoma; bioinformatics analysis with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Adrenocortical carcinoma (ACC) is a rare malignancy with a reported incidence of 0.7–2 cases per million population per year [1,2]. It is more frequent in females and can Copyright: © 2021 by the authors. occur at any age, with a peak in the fifth and sixth decades of life. As a result of cancer- Licensee MDPI, Basel, Switzerland. specific altered transcriptional modules [3], about 50–60% of ACCs are hormone functioning This article is an open access article at presentation. Hypercortisolism (Cushing’s syndrome) or mixed Cushing’s and virilizing distributed under the terms and conditions of the Creative Commons syndromes are observed in 50–80% of hormone-secreting ACCs [1,2]. In patients with Attribution (CC BY) license (https:// resected ACC, the presence of clinical signs of cortisol excess is an independent poor creativecommons.org/licenses/by/ prognostic factor [4]. 4.0/). Biomedicines 2021, 9, 681. https://doi.org/10.3390/biomedicines9060681 https://www.mdpi.com/journal/biomedicines Biomedicines 2021, 9, 681 2 of 13 Mitotane (o,p’-DDD) is the cornerstone of medical treatment of ACC, both in adju- vant [5,6] and metastatic settings [7]. The drug has selective cytotoxic activity against cells of the zona reticularis and zona fasciculata of the adrenal cortex, which leads to a marked inhibition of adrenocortical steroid synthesis, resulting in the control of hormone excess-associated syndromes [8]. Mitotane therapy invariably leads to adrenal insufficiency because of the functional suppression of the remaining normal adrenal gland, requiring chronic exogenous cortisol replacement therapy [1,2]. Therefore, patients with ACC re- ceiving long-term mitotane face both direct (mitotane inhibition of steroidogenesis) and indirect (exogenous cortisol replacement therapy) endocrine effects. One common clinical observation in patients undergoing mitotane administration is the high incidence of estrogenic-like side effects. Indeed, approximately one-third of adult male patients develop gynecomastia eventually associated with other signs of secondary hypogonadism such as hair loss, libido loss, muscle mass loss, and psychological alterations [9,10]. In premenopausal fertile women, mitotane induces the formation of benign ovarian cysts, amenorrhea, or abnormal uterine bleeding such as menorrhagia and metrorrhagia [11,12], and it has been associated with increased frequency of peripheral precocious puberty in female children [13]. Early studies demonstrated that most ACC patients treated with mitotane have increased levels of sex hormone-binding globulin (SHBG), a glycoprotein involved in binding and transport of circulating plasma testosterone and 17β-estradiol (E2) to target tissues [9,14]. In an in vitro study, Nader et al. demonstrated that mitotane increases gene expression of SHBG in an estrogen-receptor-α (ER-α)-dependent manner [15]. Thus, it has been postulated that at least some of the estrogen-like effects of mitotane therapy could be explained in terms of ER-α-dependent increase of SHBG and subsequent perturbation of bioavailability of plasma testosterone and E2 for target tissues. ER-α and ER-β have been described in the normal adrenal cortex during fetal de- velopment and in postnatal life [16,17]. ERs are expressed at different intensities in both normal and neoplastic adrenal cortices [17]; however, the pathophysiological relevance of their expression in adrenal cell proliferation is not completely elucidated. The ER-α subtype appears to be generally poorly expressed, while ER-β is expressed mainly in the glomerular and fasciculata areas [18,19]. Data concerning their expression in ACC are controversial, although results obtained with immunohistochemical analyses indicated that ER-α expression is weak/undetectable [17,20]. Contrasting results suggest indeed low ER-β and/or high ER-α expression in ACC, leading to an increase in the ER-α/ER-β ratio, compared to that observed in healthy tissue [19]. Previous studies suggested that mitotane could bind the human ER-α with a relative binding affinity of about 1000-fold weaker than the natural ligand, E2 [21–23]. However, these studies mainly explored the chemical nature of the interaction between ER-α and potential environmental toxic compounds. At physiological conditions, ER-α exists as a dimer and can present itself in different conformations stabilized by the binding of either agonists or antagonists [24]. Five distinct functional domains can be identified in the ER-α protein moving from the N-terminus to the C-terminus, namely, the N-terminal domain (NTD), the DNA-binding domain (DBD), the D domain, the ligand-binding domain (LBD), and the F domain. The crystal structure of DBD and LBD have been determined by crystallographic studies [25–27]. Besides the natural ligand E2, several molecules have been identified that can interact with ER-α, providing either agonist or antagonist effect, with tamoxifen and fulvestrant representing the prototype for selective estrogen receptor modulators (SERM) and selective estrogen receptor degraders (SERD), respectively [28]. Several of these receptor–ligand complexes have been also studied at the structural level, leading to the identification of the main conformational changes involved in the activation and inactivation of the receptor [24] and providing a strong background to predict the effect of new ligands based on molecular docking and dynamic simulations. Biomedicines 2021, 9, 681 3 of 13 In this study, integrating bioinformatics approach with cell biology and pharmaco- logical methods, we demonstrated that mitotane directly bounds ER-α as a direct agonist, inducing cell proliferation of the ER-α positive breast cancer cell line MCF-7 cells. These results provide the biological and pharmacological basis of the clinically observed estrogen- like effect of mitotane. 2. Material and Methods 2.1. Ligand Docking Experiments To investigate the interaction between mitotane and ER-α and whether this ligand would act as an agonist or antagonist, we compared the behavior of this simulated ligand- protein complex with those containing bisphenol
Recommended publications
  • Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant
    Author Manuscript Published OnlineFirst on December 19, 2016; DOI: 10.1158/1078-0432.CCR-16-2054 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Characterization of an Abiraterone Ultraresponsive Phenotype in Castration-Resistant 2 Prostate Cancer Patient-Derived Xenografts 3 4 Hung-Ming Lam1,2*, Ryan McMullin3*†, Holly M. Nguyen1, Ilsa Coleman4, Michael Gormley5, 5 Roman Gulati4, Lisha G. Brown1, Sarah K. Holt1, Weimin Li5, Deborah S. Ricci6, Karin 6 Verstraeten7, Shibu Thomas5, Elahe A. Mostaghel4, 8, Peter S. Nelson4, 8, Robert L. Vessella1, 7 9, and Eva Corey1 8 9 Affiliation of authors: 1Department of Urology, University of Washington School of 10 Medicine, Seattle, Washington; 2State Key Laboratory of Quality Research in Chinese 11 Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of 12 Science and Technology, Macau (SAR), China; 3LabConnect, Seattle, Washington; 4Fred 13 Hutchinson Cancer Research Center, Seattle, Washington; 5Janssen Research & 14 Development, Spring House, Pennsylvania; 6Janssen Research & Development, Raritan, 15 New Jersey; 7Janssen Research & Development, Beerse, Belgium; 8Department of 16 Medicine, University of Washington, Seattle, Washington; 9Department of Veterans Affairs 17 Medical Center, Seattle, Washington 18 19 *Co-primary lead authors 20 †Current affiliation: Janssen Research & Development, Spring House, Pennsylvania 21 22 23 Running title (60 characters max): Abiraterone Response and Resistance 24 25 Keywords: abiraterone acetate, prostate cancer, xenografts, biomarkers, androgen 26 receptor, glucocorticoid receptor, castration resistance 27 28 Grant/funding support: The work was supported by The Richard M. Lucas Foundation, the 29 Prostate Cancer Foundation, SU2C, a NIH PO1 CA085859, and the PNW Prostate Cancer 1 Downloaded from clincancerres.aacrjournals.org on September 23, 2021.
    [Show full text]
  • Pesticides Reduce Symbiotic Efficiency of Nitrogen-Fixing Rhizobia and Host Plants
    Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants Jennifer E. Fox*†, Jay Gulledge‡, Erika Engelhaupt§, Matthew E. Burow†¶, and John A. McLachlan†ʈ *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403; †Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699; ‡Department of Biology, University of Louisville, Louisville, KY 40292 ; §University of Colorado, Boulder, CO 80309; and ¶Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699 Edited by Christopher B. Field, Carnegie Institution of Washington, Stanford, CA, and approved May 8, 2007 (received for review January 8, 2007) Unprecedented agricultural intensification and increased crop by plants, in rotation with non-N-fixing crops (8, 15). The yield will be necessary to feed the burgeoning world population, effectiveness of this strategy relies on maximizing symbiotic N whose global food demand is projected to double in the next 50 fixation (SNF) and plant yield to resupply organic and inorganic years. Although grain production has doubled in the past four N and nutrients to the soil. The vast majority of biologically fixed decades, largely because of the widespread use of synthetic N is attributable to symbioses between leguminous plants (soy- nitrogenous fertilizers, pesticides, and irrigation promoted by the bean, alfalfa, etc.) and species of Rhizobium bacteria; replacing ‘‘Green Revolution,’’ this rate of increased agricultural output is this natural fertilizer source with synthetic N fertilizer would cost unsustainable because of declining crop yields and environmental Ϸ$10 billion annually (16, 17).
    [Show full text]
  • Endosulfan and Endocrine Disruption: Human Risk Characterization
    ENDOSULFAN AND ENDOCRINE DISRUPTION: HUMAN RISK CHARACTERIZATION Prepared by Laura M. Plunkett, Ph.D., DABT Integrative Biostrategies, LLC Houston, Texas Prepared for Makhteshim-Agan of North America, Inc. Raleigh, North Carolina June 23, 2008 1 I. Overview of Endocrine Disruption as an Endpoint of Concern in Pesticide Risk Assessment The endocrine system is one of the basic systems in mammalian physiology that is involved in variety of body functions including such functions as growth, development, reproduction, and behavior. The activity of the endocrine system involves endocrine glands which are collections of specialized cells in various tissues of the body that synthesize, store and release substances into the bloodstream. These substances are known as hormones. Hormones act as chemical messengers, traveling through the bloodstream to distant organs and tissues where they can bind to receptors located on those tissues and organs and as a result of receptor binding trigger a physiological response. The major endocrine glands include the pituitary gland, the thyroid gland, the pancreas, the adrenal gland, the testes, and the ovary. “Endocrine disruption”1 is a term that has arisen in human health risk assessment and is defined as the action of an external agent, such as a chemical, to interfere with normal activity of circulating hormones. This “interference” would include altering the synthesis, storage, release, or degradation of hormones, as well as actions at hormone receptors such as stimulating receptor activity (receptor agonist activity) or inhibiting receptor activity (receptor antagonist activity). The potential effects of chemicals, including pesticides, as endocrine disruptors have been a focus of recent regulatory actions.
    [Show full text]
  • Indoor Dust Poses Significant Endocrine Disruptor Risk
    9 October 2008 Indoor dust poses significant endocrine disruptor risk The risks from exposure to outdoor pollution or sources like tobacco smoke are well known, but indoor dust can also pose health risks, especially to young children. New evidence shows that indoor dust is highly contaminated by persistent and endocrine-disrupting chemicals, including some chemicals such as polychlorinated biphenyls (PCBs) which have been banned since the 1970s. Endocrine disruptors are substances which disrupt the body’s natural hormonal system. Some endocrine- disrupting chemicals can persist for many years. These include PCBs, polybrominated diphenyl ethers (PBDEs), pyrethroids, dichlorodiphenyltrichloroethane (DDT), chlorodanes and phthalates. These chemicals and others are found in indoor dust, which can be eaten or breathed in. Endocrine disrupters may be responsible for declining sperm counts, genital malformations, cancers and impaired neural development and sexual behaviour. Dust collected from vacuum cleaners used in apartments and a community hall was highly contaminated with endocrine disruptors, in particular phthalates and PBDEs. The levels of PCBs were high enough in some cases to be a health concern, illustrating that these chemicals continue to persist in the environment and pose risks. Although the use of some PBDEs is being phased out in some parts of the US and they have been banned in EU Member States since 2004, this trend may apply to PBDEs as well. PBDEs are flame retardants used on soft furnishings, and so as long as items such as mattresses, carpets and sofas treated with the chemical are used then exposure will continue. Because young children spend a lot of time indoors, often at floor level, and put objects in their mouths, they are particularly at risk from pollutants in indoor dust.
    [Show full text]
  • Polystyrene Microplastics Do Not Affect Juvenile Brown Trout (Salmo Trutta F
    Schmieg et al. Environ Sci Eur (2020) 32:49 https://doi.org/10.1186/s12302-020-00327-4 RESEARCH Open Access Polystyrene microplastics do not afect juvenile brown trout (Salmo trutta f. fario) or modulate efects of the pesticide methiocarb Hannah Schmieg1*, Sven Huppertsberg2, Thomas P. Knepper2, Stefanie Krais1, Katharina Reitter1, Felizitas Rezbach1, Aki S. Ruhl3,4, Heinz‑R. Köhler1 and Rita Triebskorn1,5 Abstract Background: There has been a rising interest within the scientifc community and the public about the environmen‑ tal risk related to the abundance of microplastics in aquatic environments. Up to now, however, scientifc knowledge in this context has been scarce and insufcient for a reliable risk assessment. To remedy this scarcity of data, we inves‑ tigated possible adverse efects of polystyrene particles (10 4 particles/L) and the pesticide methiocarb (1 mg/L) in juvenile brown trout (Salmo trutta f. fario) both by themselves as well as in combination after a 96 h laboratory expo‑ sure. PS beads (density 1.05 g/mL) were cryogenically milled and fractionated resulting in irregular‑shaped particles (< 50 µm). Besides body weight of the animals, biomarkers for proteotoxicity (stress protein family Hsp70), oxidative stress (superoxide dismutase, lipid peroxidation), and neurotoxicity (acetylcholinesterase, carboxylesterases) were analyzed. As an indicator of overall health, histopathological efects were studied in liver and gills of exposed fsh. Results: Polystyrene particles by themselves did not infuence any of the investigated biomarkers. In contrast, the exposure to methiocarb led to a signifcant reduction of the activity of acetylcholinesterase and the two carboxy‑ lesterases. Moreover, the tissue integrity of liver and gills was impaired by the pesticide.
    [Show full text]
  • HPD V2.2 Created Via HPDC Builder Page 1 of 17 VOLATILE ORGANIC COMPOUND (VOC) CONTENT CERTIFICATIONS and COMPLIANCE See Section 3 for Additional Listings
    M2.1 Health Product by Humanscale Declaration v2.2 created via: HPDC Online Builder HPD UNIQUE IDENTIFIER: 21096 CLASSIFICATION: 12 51 00.00 Furnishings: Office Furniture PRODUCT DESCRIPTION: In today’s fast-paced, agile work environment, there’s no time for discomfort. M2.1, part of Humanscale’s revolutionary new monitor arm line, instantly improves the comfort, health and productivity of any workspace. Fully compatible with traditional desks and sit/stand workstations alike, M2.1 meets a variety of configuration needs for lighter monitors up to 15.5 lbs. Featuring innovations like Humanscale’s patented Weight-Compensating Spring Technology and Smart Stop functionality, M2.1 enables the personalization and flexibility needed for today’s evolving workplaces. Section 1: Summary Nested Method / Product Threshold CONTENT INVENTORY Inventory Reporting Format Threshold level Residuals/Impurities All Substances Above the Threshold Indicated Are: Nested Materials Method 100 ppm Residuals/Impurities Characterized Yes Ex/SC Yes No Basic Method 1,000 ppm Considered in 6 of 13 Materials % weight and role provided for all substances. Per GHS SDS Explanation(s) provided Threshold Disclosed Per Other for Residuals/Impurities? Screened Yes Ex/SC Yes No Material Yes No All substances screened using Priority Hazard Lists with Product results disclosed. Identified Yes Ex/SC Yes No One or more substances not disclosed by Name (Specific or Generic) and Identifier and/ or one or more Special Condition did not follow guidance. CONTENT IN DESCENDING ORDER OF QUANTITY Number of Greenscreen BM-4/BM3 contents ... 0 Summary of product contents and results from screening individual chemical Contents highest concern GreenScreen substances against HPD Priority Hazard Lists and the GreenScreen for Safer Benchmark or List translator Score ..
    [Show full text]
  • BPA and Endocrine Disruption
    www.bisphenol-a-europe.org Questions and answers about Endocrine Disruption and Bisphenol A There is an ongoing debate and public concern about effects of endocrine disruptors (EDs) on human health and the environment. Endocrine active Endocrine disrupting In that context, the substance Bisphenol A (BPA) is often mentioned substances substances as an example; the public seems to be convinced that “BPA is an interaction with the causing an adverse ED”. This document provides factual background and explains hormone system effect by interacting with the hormonal why Bisphenol A in realistic exposure levels is not a threat to the there are many system endocrine (hormonal) system. naturally occurring endocrine active hormonal contra- substances humans cep tives are a well What is the endocrine system? take in on a daily basis known example as The endocrine system is commonly known as since thousands of they inter fere with the the hormonal system. Hormones are important years, without known hormonal system to negative health effects prevent pregnancy. In messenger-substances produced in the body´s this case the adverse glands. Hormones regulate, among others, metabolic effect is intended and processes, growth, reproduction and development (if desired) limited in in a very complex way. The endocrine system is time naturally prepared to cope with the various external and internal factors influencing the hormonal system. What are endocrine active substances? What are endocrine disrupting substances? Substances that can interact with the hormonal There are some endocrine active substances which system are called endocrine active substances. Such can induce an adverse effect by influencing the substances naturally occur e.g.
    [Show full text]
  • Abiraterone and MDV3100 Inhibits the Proliferation and Promotes The
    Han et al. Cancer Cell Int (2019) 19:332 https://doi.org/10.1186/s12935-019-1021-9 Cancer Cell International PRIMARY RESEARCH Open Access Abiraterone and MDV3100 inhibits the proliferation and promotes the apoptosis of prostate cancer cells through mitophagy Jingli Han1† , Junhua Zhang1†, Wei Zhang2, Dalei Zhang3, Ying Li1, Jinsong Zhang2, Yaqun Zhang3, Tongxiang Diao3, Luwei Cui3, Wenqing Li1, Fei Xiao1,2,4, Ming Liu3* and Lihui Zou1* Abstract Background: Abiraterone and MDV3100 are two efective anticancer agents for prostate cancer, however, the mechanism of their downstream action remains undefned. Methods: A dual fuorescent biosensor plasmid was transfected in LNCaP cells to measure mitophagy. The DNA of LNCaP cells was extracted and performed with quantitative real-time PCR to detect mitochondrial DNA copy number. JC-1 staining was utilized to detect the mitochondrial membrane potential and electron microscope was performed to analyze mitochondrial morphology. Moreover, the protein levels of mitochondrial markers and apoptotic markers were detected by western blot. At last, the proliferation and apoptosis of LNCaP cells were analyzed with CCK-8 assay and fow cytometry after abiraterone or MDV3100 treatment. Results: Mitophagy was induced by abiraterone and MDV3100 in LNCaP cells. The low expression level of mito- chondrial DNA copy number and mitochondrial depolarization were further identifed in the abiraterone or MDV3100 treatment groups compared with the control group. Besides, severe mitochondria swelling and substantial autophagy-lysosomes were observed in abiraterone- and MDV3100-treated LNCaP cells. The expression of mito- chondria-related proteins, frataxin, ACO2 and Tom20 were signifcantly downregulated in abiraterone and MDV3100 treated LNCaP cells, whereas the expression level of inner membrane protein of mitochondria (Tim23) was signif- cantly upregulated in the same condition.
    [Show full text]
  • Toxicological and Health Aspects of Bisphenol A
    Toxicological and Health Aspects of Bisphenol A Report of Joint FAO/WHO Expert Meeting 2–5 November 2010 and Report of Stakeholder Meeting on Bisphenol A 1 November 2010 Ottawa, Canada Food and Agriculture Organization of the United Nations WHO Library Cataloguing-in-Publication Data Joint FAO/WHO expert meeting to review toxicological and health aspects of bisphenol A: final report, including report of stakeholder meeting on bisphenol A, 1-5 November 2010, Ottawa, Canada. 1.Phenols - toxicity. 2.Food contamination. 3.Food packing. I.World Health Organization. II.Food and Agriculture Organization of the United Nations. ISBN 978 92 14 156427 4 (NLM classification: QV 223) © World Health Organization 2011 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press through the WHO web site (http://www.who.int/about/licensing/copyright_form/en/index.html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.
    [Show full text]
  • Disruption of Glucocorticoid and Mineralocorticoid Receptor-Mediated Responses by Environmental Chemicals
    ENDOCRINE DISRUPTORS: BASIC RESEARCH AND METHODS 335 doi:10.2533/chimia.2008.335 CHIMIA 2008, 62, No. 5 Chimia 62 (2008) 335–339 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Disruption of Glucocorticoid and Mineralocorticoid Receptor-Mediated Responses by Environmental Chemicals Alex Odermatt* and Christel Gumy Abstract: Glucocorticoids and mineralocorticoids are key endocrine hormones modulating essential physiological processes such as energy metabolism, cell growth and differentiation, maintenance of blood pressure and immune responses. Despite their importance and the fact that their impaired function has been associated with various diseases, there are only few studies on the potential disruption of glucocorticoid and mineralocorticoid action by xenobiotics. To facilitate the identification and characterization of such chemicals, we established cell-based as- says to determine the impact of xenobiotics on different steps of corticosteroid hormone action. Screening of a small library of chemicals led to the identification of several compounds inhibiting the 11β -hydroxysteroid dehy- drogenase (11β -HSD) prereceptor enzymes 11β -HSD1 and/or 11β -HSD2 and of chemicals blocking the function of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR). These findings build a basis to extend the search for chemicals acting on additional targets of the corticosteroid hormone pathway and to apply in silico prediction tools in combination with biological testing to screen large numbers of chemicals. The identification of chemicals interfering with corticosteroid action and the elucidation of the underlying molecular mechanisms are relevant with respect to the potential contribution to common diseases such as metabolic syndrome, immune diseases, brain disorders and cancer. Keywords: Cortisol · Endocrine disruptor · Glucocorticoid receptor · Glucocorticoid · 11β -Hydroxysteroid dehydrogenase · Mineralocorticoid receptor · Xenobiotics 1.
    [Show full text]
  • Performance-Based Test Guideline for Stably Transfected Transactivation in Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists
    OECD/OCDE 455 Adopted: XXX OECD GUIDELINE FOR THE TESTING OF CHEMICALS Draft Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists GENERAL INTRODUCTION Performance-Based Test Guideline 1. This Performance-Based Test Guideline (PBTG) describes the methodology of Stably Transfected Transactivation In Vitro Assays to detect Estrogen Receptor Agonists and Antagonists (ER TA assays). It comprises several mechanistically and functionally similar test methods for the identification of estrogen receptor (i.e, ER, and/or ER) agonists and antagonists and should facilitate the development of new similar or modified test methods in accordance with the principles for validation set forth in the OECD Guidance Document (GD) on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment (1). The fully validated reference test methods (Annex 2 and Annex 3) that provide the basis for this PBTG are: The Stably Transfected TA (STTA) assay (2) using the (h) ERα-HeLa-9903 cell line; and The BG1Luc ER TA assay (3) using the BG1Luc-4E2 cell line which predominately expresses hERα with some contribution from hER(4) (5). Performance standards (PS) (6) (7) are available to facilitate the development and validation of similar test methods for the same hazard endpoint and allow for timely amendment of this PBTG so that new similar test methods can be added to an updated PBTG; however, similar test methods will only be added after review and agreement that performance standards are met. The test methods included in this Test Guideline can be used indiscriminately to address countries’ requirements for test results on estrogen receptor transactivation while benefiting from the Mutual Acceptance of Data.
    [Show full text]
  • Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer
    International Journal of Molecular Sciences Review Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer Louisane Eve 1,2,3,4,Béatrice Fervers 5,6, Muriel Le Romancer 2,3,4,* and Nelly Etienne-Selloum 1,7,8,* 1 Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France; [email protected] 2 Université Claude Bernard Lyon 1, F-69000 Lyon, France 3 Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 4 CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 5 Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France; [email protected] 6 Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France 7 Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France 8 CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France * Correspondence: [email protected] (M.L.R.); [email protected] (N.E.-S.); Tel.: +33-4-(78)-78-28-22 (M.L.R.); +33-3-(68)-85-43-28 (N.E.-S.) Received: 27 October 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies.
    [Show full text]