Disruption of Glucocorticoid and Mineralocorticoid Receptor-Mediated Responses by Environmental Chemicals

Total Page:16

File Type:pdf, Size:1020Kb

Disruption of Glucocorticoid and Mineralocorticoid Receptor-Mediated Responses by Environmental Chemicals ENDOCRINE DISRUPTORS: BASIC RESEARCH AND METHODS 335 doi:10.2533/chimia.2008.335 CHIMIA 2008, 62, No. 5 Chimia 62 (2008) 335–339 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Disruption of Glucocorticoid and Mineralocorticoid Receptor-Mediated Responses by Environmental Chemicals Alex Odermatt* and Christel Gumy Abstract: Glucocorticoids and mineralocorticoids are key endocrine hormones modulating essential physiological processes such as energy metabolism, cell growth and differentiation, maintenance of blood pressure and immune responses. Despite their importance and the fact that their impaired function has been associated with various diseases, there are only few studies on the potential disruption of glucocorticoid and mineralocorticoid action by xenobiotics. To facilitate the identification and characterization of such chemicals, we established cell-based as- says to determine the impact of xenobiotics on different steps of corticosteroid hormone action. Screening of a small library of chemicals led to the identification of several compounds inhibiting the 11β -hydroxysteroid dehy- drogenase (11β -HSD) prereceptor enzymes 11β -HSD1 and/or 11β -HSD2 and of chemicals blocking the function of glucocorticoid receptors (GR) and mineralocorticoid receptors (MR). These findings build a basis to extend the search for chemicals acting on additional targets of the corticosteroid hormone pathway and to apply in silico prediction tools in combination with biological testing to screen large numbers of chemicals. The identification of chemicals interfering with corticosteroid action and the elucidation of the underlying molecular mechanisms are relevant with respect to the potential contribution to common diseases such as metabolic syndrome, immune diseases, brain disorders and cancer. Keywords: Cortisol · Endocrine disruptor · Glucocorticoid receptor · Glucocorticoid · 11β -Hydroxysteroid dehydrogenase · Mineralocorticoid receptor · Xenobiotics 1. Physiological Role cell cycle control, and modulation of stress are produced in the adrenal cortex involv- of Glucocorticoids and and inflammatory responses (Fig. 1).[1] An ing several steroidogenic enzymes, and Mineralocorticoids impaired regulation of glucocorticoid ac- the synthesis of these hormones is tightly tion has been associated with various com- regulated by corticotrophin releasing fac- Corticosteroid hormones are divided into plications including metabolic and cardio- tor (CRF) and adrenocorticotrophic hor- glucocorticoids (cortisol in humans and vascular diseases, osteoporosis, cataracts, mone (ACTH) via the hypothalamus-pitu- corticosterone in rodents) and mineralocor- immune diseases, mood and cognitive dis- itary-adrenal (HPA) axis. Glucocorticoids ticoids (aldosterone). They are involved in orders and cancer. [2− 5] Disturbances of min- control their own synthesis by a negative the regulation of many physiological pro- eralocorticoid action have been linked to feedback response mediated by inhibition cesses, including energy metabolism, elec- the occurrence of hypertension and cardio- of CRF and ACTH. Upon release into the trolyte and blood pressure control, bone vascular diseases.[6,7] The incidence of these blood stream, corticosteroid hormones are metabolism, regulation of brain function, complex diseases increases with increasing mainly bound to carrier proteins (transcor- age, and in addition to genetic predispo- tin, albumin) and reach cells in peripheral sition, factors including life style and the tissues. exposure to xenobiotics are likely to play At the cellular level, cortisol or corti- a role in these pathological processes. In de- costerone exert their action through GR and veloped countries, the exposure to chemi- aldosterone acts by activating MR. Impor- cals from the environment may contribute tantly, the local activation of the receptors is to the high incidence of allergic diseases, controlled by two distinct 11β -HSD prere- cancer and metabolic disturbances.[8− 10] ceptor enzymes.[11] 11β -HSD1 is expressed ubiquitously and catalyzes predominantly * Correspondence: Dr. A. Odermatt the reduction of inactive 11-ketoglucocor- Molecular and Systems Toxicology 2. Major Targets of the ticoids (cortisone, 11-dehydrocortisone) Department of Pharmaceutical Sciences University of Basel Corticosteroid Hormone Pathway into active 11β -hydroxyglucocorticoids Klingelbergstrasse 50 (cortisol, corticosterone).[12] This enzyme CH-4056 Basel Exogenous chemicals can cause distur- has a crucial role in potentiating local GR Tel.: +41 61 267 1530 Fax: +41 61 267 1515 bances of corticosteroid hormone action activation in metabolic processes and in the E-mail: [email protected] at several steps (Fig. 2). Corticosteroids immune system. ENDOCRINE DISRUPTORS: BASIC RESEARCH AND METHODS 336 CHIMIA 2008, 62, No. 5 fact that they belong to different classes of proteins and share very low sequence simi- larity. This suggests that the binding pockets of these proteins share structural similarity and that the chemicals mimicking corticos- teroid molecules might interact with more than one of these proteins. Thus, to assess the potential disruption of corticosteroid hormone action by exogenous chemicals, suitable bioassays are required to measure the activities of the different proteins, with roles in regulation, biosynthesis, transport, intracellular metabolism, receptor and deg- radation. 3. Bioassays Compared to the extensively studied field of estrogen- and androgen-like ac- tions by environmentally relevant chemi- cals, there are only few studies focusing on corticosteroid hormones.[16] As a start- ing point to identify chemicals that act on Fig. 1. Overview of physiological functions that are regulated by corticosteroid hormones different steps of glucocorticoid and min- eralocorticoid regulation, we established assays to measure the function of human corticosteroid hormone receptors (GR and MR) and glucocorticoid metabolizing en- zymes (11β -HSD1 and 11β -HSD2). To distinguish between different steps of re- ceptor activation, the HEK-293 cell line was selected that is devoid of endogenous expression of corticosteroid receptors and hormone metabolizing enzymes.[17] Other cells that are suitable alternatives include COS-1 and CV-1 cells,[18] but they are not of human origin. Receptor activity was measured in intact cells transiently expressing recombinant receptor or a green-fluorescence (GFP)- chimeric receptor. This allowed the assess- ment of the effect of a given chemical on ligand binding to the receptor, subsequent translocation of the receptor into the nucle- us and receptor-mediated transcriptional activation of a reporter gene. It is important to distinguish the different steps of recep- tor activation to understand the inhibitory Fig. 2. Schematic overview of targets of corticosteroid hormone action mechanism of a chemical. Spironolactone, as an example, efficiently binds to MR and induces translocation of the receptor into the nucleus. It acts as a partial agonist and The second enzyme, 11β -HSD2, is tects the fetus from high maternal gluco- therefore antagonizes the potent agonist expressed in cortical collecting ducts corticoid concentrations.[15] effect of aldosterone. The bile acid cheno- and distal tubules in the kidney and The tissue-dependent responses upon deoxycholic acid inhibits 11β -HSD2 and in distal colon, where it protects MR activation of GR and MR strongly depend leads to glucocorticoid-induced activation from glucocorticoids by converting on the presence of coactivator and corepres- of MR. Although it also induces nuclear 11β -hydroxyglucocorticoids into 11-keto- sor proteins that interact with the receptor translocation of MR in the absence of glucocorticoids.[13] The MR has similar complex, as well as on post-translational 11β -HSD2, chenodeoxycholic acid neither affinities to bind aldosterone and cortisol modifications of both receptor and associ- activates nor antagonizes MR activation by and circulating concentrations of the latter ated proteins. Finally, enzymes responsible cortisol or aldosterone.[19,20] are 100− 1000 times higher, thus, the close for the degradation and excretion of the ste- To assess the effect of chemicals on proximity of 11β -HSD2 to the receptor al- roid hormones are important to terminate 11β -HSD prereceptor enzyme function, lows aldosterone to bind.[14] 11β -HSD2 is hormone action. the conversion of cortisone to cortisol or the also expressed in the syncytiotrophoblast The proteins described above all recog- reverse reaction was measured in lysates or layer of the human placenta, where it pro- nize corticosteroid molecules despite the intact HEK-293 cells stably expressing C- ENDOCRINE DISRUPTORS: BASIC RESEARCH AND METHODS 337 CHIMIA 2008, 62, No. 5 terminally FLAG-tagged human 11β -HSD1 identified, compounds are responsible for with 11β -HSD2 function by modification or 11β -HSD2.[21] The impact of 11β -HSD inhibition of 11β -HSD2. Additional com- of cysteine residues. Dithiothreitol, but enzyme inhibition on receptor function pounds of the triterpenoid and flavonoid not glutathione, protected from organotin- was determined in cells cotransfected with class of chemicals that inhibited 11β -HSD2 dependent inhibition. Enhanced glucocor- 11β -HSD1 and GR or 11β -HSD2 and MR, include abietic acid, gossypol, magnolol ticoid concentrations, due to disruption of respectively. As controls for 11β -HSD1 and and tea polyphenols. However, their rela- 11β -HSD2 function, may contribute to the 11β -HSD2 the well
Recommended publications
  • Endosulfan and Endocrine Disruption: Human Risk Characterization
    ENDOSULFAN AND ENDOCRINE DISRUPTION: HUMAN RISK CHARACTERIZATION Prepared by Laura M. Plunkett, Ph.D., DABT Integrative Biostrategies, LLC Houston, Texas Prepared for Makhteshim-Agan of North America, Inc. Raleigh, North Carolina June 23, 2008 1 I. Overview of Endocrine Disruption as an Endpoint of Concern in Pesticide Risk Assessment The endocrine system is one of the basic systems in mammalian physiology that is involved in variety of body functions including such functions as growth, development, reproduction, and behavior. The activity of the endocrine system involves endocrine glands which are collections of specialized cells in various tissues of the body that synthesize, store and release substances into the bloodstream. These substances are known as hormones. Hormones act as chemical messengers, traveling through the bloodstream to distant organs and tissues where they can bind to receptors located on those tissues and organs and as a result of receptor binding trigger a physiological response. The major endocrine glands include the pituitary gland, the thyroid gland, the pancreas, the adrenal gland, the testes, and the ovary. “Endocrine disruption”1 is a term that has arisen in human health risk assessment and is defined as the action of an external agent, such as a chemical, to interfere with normal activity of circulating hormones. This “interference” would include altering the synthesis, storage, release, or degradation of hormones, as well as actions at hormone receptors such as stimulating receptor activity (receptor agonist activity) or inhibiting receptor activity (receptor antagonist activity). The potential effects of chemicals, including pesticides, as endocrine disruptors have been a focus of recent regulatory actions.
    [Show full text]
  • Indoor Dust Poses Significant Endocrine Disruptor Risk
    9 October 2008 Indoor dust poses significant endocrine disruptor risk The risks from exposure to outdoor pollution or sources like tobacco smoke are well known, but indoor dust can also pose health risks, especially to young children. New evidence shows that indoor dust is highly contaminated by persistent and endocrine-disrupting chemicals, including some chemicals such as polychlorinated biphenyls (PCBs) which have been banned since the 1970s. Endocrine disruptors are substances which disrupt the body’s natural hormonal system. Some endocrine- disrupting chemicals can persist for many years. These include PCBs, polybrominated diphenyl ethers (PBDEs), pyrethroids, dichlorodiphenyltrichloroethane (DDT), chlorodanes and phthalates. These chemicals and others are found in indoor dust, which can be eaten or breathed in. Endocrine disrupters may be responsible for declining sperm counts, genital malformations, cancers and impaired neural development and sexual behaviour. Dust collected from vacuum cleaners used in apartments and a community hall was highly contaminated with endocrine disruptors, in particular phthalates and PBDEs. The levels of PCBs were high enough in some cases to be a health concern, illustrating that these chemicals continue to persist in the environment and pose risks. Although the use of some PBDEs is being phased out in some parts of the US and they have been banned in EU Member States since 2004, this trend may apply to PBDEs as well. PBDEs are flame retardants used on soft furnishings, and so as long as items such as mattresses, carpets and sofas treated with the chemical are used then exposure will continue. Because young children spend a lot of time indoors, often at floor level, and put objects in their mouths, they are particularly at risk from pollutants in indoor dust.
    [Show full text]
  • Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-Α
    biomedicines Article Estrogen-Like Effect of Mitotane Explained by Its Agonist Activity on Estrogen Receptor-α Elisa Rossini 1,†, Edoardo Giacopuzzi 2,3,† , Fabrizio Gangemi 4,† , Mariangela Tamburello 1, Deborah Cosentini 5, Andrea Abate 1, Marta Laganà 5, Alfredo Berruti 5 , Salvatore Grisanti 5,‡ and Sandra Sigala 1,*,‡ 1 Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] (E.R.); [email protected] (M.T.); [email protected] (A.A.) 2 Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; [email protected] 3 National Institute for Health Research Oxford Biomedical Research Centre, Oxford OX4 2PG, UK 4 Unit of Physics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; [email protected] 5 Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at A.S.S.T. Spedali Civili di Brescia, 25123 Brescia, Italy; [email protected] (D.C.); [email protected] (M.L.); [email protected] (A.B.); [email protected] (S.G.) * Correspondence: [email protected] † These Authors equally contributed to this paper. ‡ These authors are co-senior authors of this paper. Citation: Rossini, E.; Giacopuzzi, E.; Abstract: Mitotane is the cornerstone of medical treatment of adrenocortical carcinoma. Estrogenic- Gangemi, F.; Tamburello, M.; like side effects frequently occur in patients, and previous studies explored the chemical nature Cosentini, D.; Abate, A.; Laganà, M.; of the interaction between estrogen receptor-α (ER-α) and toxic compounds, including the DDD Berruti, A.; Grisanti, S.; Sigala, S.
    [Show full text]
  • HPD V2.2 Created Via HPDC Builder Page 1 of 17 VOLATILE ORGANIC COMPOUND (VOC) CONTENT CERTIFICATIONS and COMPLIANCE See Section 3 for Additional Listings
    M2.1 Health Product by Humanscale Declaration v2.2 created via: HPDC Online Builder HPD UNIQUE IDENTIFIER: 21096 CLASSIFICATION: 12 51 00.00 Furnishings: Office Furniture PRODUCT DESCRIPTION: In today’s fast-paced, agile work environment, there’s no time for discomfort. M2.1, part of Humanscale’s revolutionary new monitor arm line, instantly improves the comfort, health and productivity of any workspace. Fully compatible with traditional desks and sit/stand workstations alike, M2.1 meets a variety of configuration needs for lighter monitors up to 15.5 lbs. Featuring innovations like Humanscale’s patented Weight-Compensating Spring Technology and Smart Stop functionality, M2.1 enables the personalization and flexibility needed for today’s evolving workplaces. Section 1: Summary Nested Method / Product Threshold CONTENT INVENTORY Inventory Reporting Format Threshold level Residuals/Impurities All Substances Above the Threshold Indicated Are: Nested Materials Method 100 ppm Residuals/Impurities Characterized Yes Ex/SC Yes No Basic Method 1,000 ppm Considered in 6 of 13 Materials % weight and role provided for all substances. Per GHS SDS Explanation(s) provided Threshold Disclosed Per Other for Residuals/Impurities? Screened Yes Ex/SC Yes No Material Yes No All substances screened using Priority Hazard Lists with Product results disclosed. Identified Yes Ex/SC Yes No One or more substances not disclosed by Name (Specific or Generic) and Identifier and/ or one or more Special Condition did not follow guidance. CONTENT IN DESCENDING ORDER OF QUANTITY Number of Greenscreen BM-4/BM3 contents ... 0 Summary of product contents and results from screening individual chemical Contents highest concern GreenScreen substances against HPD Priority Hazard Lists and the GreenScreen for Safer Benchmark or List translator Score ..
    [Show full text]
  • BPA and Endocrine Disruption
    www.bisphenol-a-europe.org Questions and answers about Endocrine Disruption and Bisphenol A There is an ongoing debate and public concern about effects of endocrine disruptors (EDs) on human health and the environment. Endocrine active Endocrine disrupting In that context, the substance Bisphenol A (BPA) is often mentioned substances substances as an example; the public seems to be convinced that “BPA is an interaction with the causing an adverse ED”. This document provides factual background and explains hormone system effect by interacting with the hormonal why Bisphenol A in realistic exposure levels is not a threat to the there are many system endocrine (hormonal) system. naturally occurring endocrine active hormonal contra- substances humans cep tives are a well What is the endocrine system? take in on a daily basis known example as The endocrine system is commonly known as since thousands of they inter fere with the the hormonal system. Hormones are important years, without known hormonal system to negative health effects prevent pregnancy. In messenger-substances produced in the body´s this case the adverse glands. Hormones regulate, among others, metabolic effect is intended and processes, growth, reproduction and development (if desired) limited in in a very complex way. The endocrine system is time naturally prepared to cope with the various external and internal factors influencing the hormonal system. What are endocrine active substances? What are endocrine disrupting substances? Substances that can interact with the hormonal There are some endocrine active substances which system are called endocrine active substances. Such can induce an adverse effect by influencing the substances naturally occur e.g.
    [Show full text]
  • Performance-Based Test Guideline for Stably Transfected Transactivation in Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists
    OECD/OCDE 455 Adopted: XXX OECD GUIDELINE FOR THE TESTING OF CHEMICALS Draft Performance-Based Test Guideline for Stably Transfected Transactivation In Vitro Assays to Detect Estrogen Receptor Agonists and Antagonists GENERAL INTRODUCTION Performance-Based Test Guideline 1. This Performance-Based Test Guideline (PBTG) describes the methodology of Stably Transfected Transactivation In Vitro Assays to detect Estrogen Receptor Agonists and Antagonists (ER TA assays). It comprises several mechanistically and functionally similar test methods for the identification of estrogen receptor (i.e, ER, and/or ER) agonists and antagonists and should facilitate the development of new similar or modified test methods in accordance with the principles for validation set forth in the OECD Guidance Document (GD) on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment (1). The fully validated reference test methods (Annex 2 and Annex 3) that provide the basis for this PBTG are: The Stably Transfected TA (STTA) assay (2) using the (h) ERα-HeLa-9903 cell line; and The BG1Luc ER TA assay (3) using the BG1Luc-4E2 cell line which predominately expresses hERα with some contribution from hER(4) (5). Performance standards (PS) (6) (7) are available to facilitate the development and validation of similar test methods for the same hazard endpoint and allow for timely amendment of this PBTG so that new similar test methods can be added to an updated PBTG; however, similar test methods will only be added after review and agreement that performance standards are met. The test methods included in this Test Guideline can be used indiscriminately to address countries’ requirements for test results on estrogen receptor transactivation while benefiting from the Mutual Acceptance of Data.
    [Show full text]
  • Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer
    International Journal of Molecular Sciences Review Exposure to Endocrine Disrupting Chemicals and Risk of Breast Cancer Louisane Eve 1,2,3,4,Béatrice Fervers 5,6, Muriel Le Romancer 2,3,4,* and Nelly Etienne-Selloum 1,7,8,* 1 Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France; [email protected] 2 Université Claude Bernard Lyon 1, F-69000 Lyon, France 3 Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 4 CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France 5 Centre de Lutte Contre le Cancer Léon-Bérard, F-69000 Lyon, France; [email protected] 6 Inserm UA08, Radiations, Défense, Santé, Environnement, Center Léon Bérard, F-69000 Lyon, France 7 Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, F-67000 Strasbourg, France 8 CNRS UMR7021/Unistra, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, F-67000 Strasbourg, France * Correspondence: [email protected] (M.L.R.); [email protected] (N.E.-S.); Tel.: +33-4-(78)-78-28-22 (M.L.R.); +33-3-(68)-85-43-28 (N.E.-S.) Received: 27 October 2020; Accepted: 25 November 2020; Published: 30 November 2020 Abstract: Breast cancer (BC) is the second most common cancer and the fifth deadliest in the world. Exposure to endocrine disrupting pollutants has been suggested to contribute to the increase in disease incidence. Indeed, a growing number of researchershave investigated the effects of widely used environmental chemicals with endocrine disrupting properties on BC development in experimental (in vitro and animal models) and epidemiological studies.
    [Show full text]
  • Features CHEMICAL EXPOSURES of WOMEN WORKERS in THE
    NEW SOLUTIONS, Vol. 22(4) 427-448, 2012 Features CHEMICAL EXPOSURES OF WOMEN WORKERS IN THE PLASTICS INDUSTRY WITH PARTICULAR REFERENCE TO BREAST CANCER AND REPRODUCTIVE HAZARDS* ROBERT DEMATTEO ANNE ROCHON FORD MARGARET M. KEITH MICHAEL GILBERTSON JAMES T. BROPHY JYOTI PHARITYAL ANNE WORDSWORTH MAGALI ROOTHAM ANDREW E. WATTERSON DAYNA NADINE SCOTT MATTHIAS BECK ABSTRACT Despite concern about the harmful effects of substances contained in various plastic consumer products, little attention has focused on the more heavily exposed women working in the plastics industry. Through a review of the toxicology, industrial hygiene, and epidemiology literatures in conjunction with qualitative research, this article explores occupational exposures in pro- ducing plastics and health risks to workers, particularly women, who make up a large part of the workforce. The review demonstrates that workers are exposed to chemicals that have been identified as mammary carcinogens and endocrine disrupting chemicals, and that the work environment is heavily contaminated with dust and fumes. Consequently, plastics workers have a body burden that far exceeds that found in the general public. The nature *This research was funded by Health Canada in the form of a grant to the National Network on Environments and Women’s Health at York University and the Canadian Breast Cancer Foundation–Ontario Region. 427 Ó 2012, Baywood Publishing Co., Inc. doi: http://dx.doi.org/10.2190/NS.22.4.d http://baywood.com 428 / DEMATTEO ET AL. of these exposures in the plastics industry places women at disproportionate risk, underlining the importance of gender. Measures for eliminating these exposures and the need for regulatory action are discussed.
    [Show full text]
  • Endocrine Disruptor Compounds (Edcs) and Agriculture: the Case of Pesticides Yves Combarnous
    Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides Yves Combarnous To cite this version: Yves Combarnous. Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides. Comptes Rendus Biologies, Elsevier Masson, 2017, 340 (9-10), pp.1-4. 10.1016/j.crvi.2017.07.009. hal-01605710 HAL Id: hal-01605710 https://hal.archives-ouvertes.fr/hal-01605710 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License C. R. Biologies 340 (2017) 406–409 Contents lists available at ScienceDirect Comptes Rendus Biologies w ww.sciencedirect.com Endocrine disruptors Endocrine Disruptor Compounds (EDCs) and agriculture: The case of pesticides a,b, Yves Combarnous * a INRA, CNRS, universite´ de Tours, UMR « Physiologie de la reproduction & des comportements », 37380 Nouzilly, France b Acade´mie d’agriculture de France, 75015 Paris, France A R T I C L E I N F O A B S T R A C T Article history: A number of pesticides are suspected or proved to act as endocrine disruptor compounds Received 29 November 2016 (EDCs).
    [Show full text]
  • Systematic Review of Exposure to Bisphenol a Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish
    applied sciences Review Systematic Review of Exposure to Bisphenol A Alternatives and Its Effects on Reproduction and Thyroid Endocrine System in Zebrafish Jiyun Lee 1,2 , Kyong Whan Moon 1,2 and Kyunghee Ji 3,* 1 Department of Health and Safety Convergence Science, Graduate School at Korea University, Seoul 02841, Korea; [email protected] (J.L.); [email protected] (K.-W.M.) 2 BK21 FOUR R&E Center for Learning Health System, Graduate School at Korea University, Seoul 02841, Korea 3 Department of Occupational and Environmental Health, Yongin University, Yongin 17092, Korea * Correspondence: [email protected]; Tel.: +82-31-8020-2747 Abstract: Bisphenol A (BPA), which is widely used for manufacturing polycarbonate plastics and epoxy resins, has been banned from use in plastic baby bottles because of concerns regarding endocrine disruption. Substances with similar chemical structures have been used as BPA alternatives; however, limited information is available on their toxic effects. In the present study, we reviewed the endocrine disrupting potential in the gonad and thyroid endocrine system in zebrafish after exposure to BPA and its alternatives (i.e., bisphenol AF, bisphenol C, bisphenol F, bisphenol S, bisphenol SIP, and bisphenol Z). Most BPA alternatives disturbed the endocrine system by altering the levels of genes and hormones involved in reproduction, development, and growth in zebrafish. Changes in gene expression related to steroidogenesis and sex hormone production were more prevalent in males than in females. Vitellogenin, an egg yolk precursor produced in females, was also detected in males, confirming that it could induce estrogenicity. Exposure to bisphenols in the parental Citation: Lee, J.; Moon, K.W.; Ji, K.
    [Show full text]
  • Cyproterone Acetate Acts As a Disruptor of the Aryl Hydrocarbon Receptor
    www.nature.com/scientificreports OPEN Cyproterone acetate acts as a disruptor of the aryl hydrocarbon receptor Chih‑Shou Chen1, Guan‑Lun Gao2,3, Dong‑Ru Ho1, Chih‑Yi Lin2, Yu‑Ting Chou2, Shan‑Chun Chen2, Min‑Cong Huang1, Wen‑Ya Kao2 & Jyan‑Gwo Joseph Su2* Prostate cancer is a major cause of death in males. Cyproterone acetate (CPA), the steroidal anti‑ androgen for part of androgen deprivation therapy, may block the androgen‑receptor interaction and then reduce serum testosterone through its weak anti‑gonadotropic action. In addition to CPA inducing hepatitis, CPA is known to cause liver tumors in rats also. Aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor and regulates multiple physiological functions. CYP1A1 is an AhR‑targeted gene. We found that CPA induced CYP1A1 expression, transcriptional activity of the aryl hydrocarbon response element (AHRE), and the nuclear localization of AhR in mouse Hepa‑1c1c7 cells. However, CPA suppressed CYP1A1 mRNA expression and the transcriptional activity of AHRE in human HepG2 and MCF7 cells, and also decreased AhR ligand‑induced CYP1A1 protein expression and transcriptional activity of AHRE in HepG2 cells. In summary, CPA is an AhR agonist in mouse cells, but an AhR antagonist in human cells. Accordingly, CPA potentially plays a role as an endocrine disruptor of the AhR. This study helps us to understand why CPA induces acute hepatitis, gene mutation, and many other side efects. In addition, it may trigger further studies investigating the relationships between CPA, glucocorticoid receptor and castration‑resistant prostate cancer in the future. Abbreviations AhR Aryl hydrocarbon receptor AHRE Aryl hydrocarbon response element CPA Cyproterone acetate CYP Cytochrome P450 Cyproterone acetate is used in hormone replacement therapy and several diferent types of cancer1,2.
    [Show full text]
  • Endocrine Disruption by Mixtures in Topical Consumer Products
    cosmetics Review Endocrine Disruption by Mixtures in Topical Consumer Products Emiliano Ripamonti *, Elena Allifranchini, Stefano Todeschi and Elena Bocchietto Abich Laboratories, 28924 Verbania, Italy; [email protected] (E.A.); [email protected] (S.T.); [email protected] (E.B.) * Correspondence: [email protected]; Tel.: +39-(0)323-586239 Received: 20 September 2018; Accepted: 12 October 2018; Published: 16 October 2018 Abstract: Endocrine disruption has been gathering increasing attention in the past 25 years as a possible new threat for health and safety. Exposure to endocrine disruptor has been progressively linked with a growing number of increasing disease in the human population. The mechanics through which endocrine disruptors act are not yet completely clear, however a number of pathways have been identified. A key concern is the cumulative and synergic effects that endocrine disruptors could have when mixed in consumer products. We reviewed the available literature to identify known or potential endocrine disruptors, as well as endocrine active substances that could contribute to cumulative effects, in topical consumer products. The number of endocrine actives used daily in consumer products is staggering and even though most if not all are used in concentrations that are considered to be safe, we believe that the possibility of combined effects in mixtures and non-monotonic dose/response is enough to require further precautions. A combined in vitro approach based on existing, validated OECD test methods is suggested to screen consumer products and mixtures for potential interaction with estrogen and androgen hormone receptors, in order to identify products that could have cumulative effects or support their safety concerning direct endocrine disruption capabilities.
    [Show full text]