Purification and Some Properties of Alcohol Oxidase from Alkane-Grown Candida Tropicalis

Total Page:16

File Type:pdf, Size:1020Kb

Purification and Some Properties of Alcohol Oxidase from Alkane-Grown Candida Tropicalis Biochem. J. (1992) 282, 325-331 (Printed in Great Britain) 325 Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis Francis M. DICKINSON and Catherine WADFORTH Department of Applied Biology, University of Hull, Cottingham Road, Hull HU6 7RX, U.K. Alcohol oxidase was purified to homogeneity from membrane fractions obtained from alkane-grown Candida tropicalis. The enzyme appears to be a dimer ofequal-sized subunits of Mr 70000. The purified enzyme is photosensitive and contains flavin-type material which is released by a combination of boiling and proteolytic digestion. The identity of the flavin material is not yet known, but it is not FMN, FAD or riboflavin. The enzyme is most active with dodecan-l-ol, but other long-chain alcohols are also attacked. The enzyme shows a weak, but significant activity towards long-chain aldehydes. Detailed kinetic studies with decan-1-ol as substrate suggest a group-transfer (Ping-Pong)-type mechanism of catalysis. INTRODUCTION portions of this culture were inoculated into each of six 3-litre conical flasks containing 500 ml of minimal salts Work from this laboratory has shown that growth of the yeast medium, which contained (g/l) KH2PO4, 7.0; Na2HPO4, 2.0; MgSO4, 1.5; yeast Candida tropicalis on long-chain alkane substrates induces the extract, 1.5; CaCI2, 0.1; FeCl2, 0.008; ZnSO4, 0.0001; synthesis of a long-chain-specific alcohol oxidase (Kemp et al., diammonium tartrate, 15; in distilled water at pH 6.5. The 1988). The enzyme presumably catalyses one of the steps in the pathway in which alkanes undergo monoterminal oxidation carbon source was hexadecane (1 %). The cultures were incubated on an orbital shaker for 50 h at 30 °C before harvesting. and are converted into long-chain fatty acids before f-oxidation. Our early work established that the enzyme is membrane-bound, Preparation of microsomal membranes but no attempt was made to purify it. Later work showed that The procedure was that described by Kemp et al. (1988) with the enzyme in crude preparations is light-sensitive: activity was only minor alterations. These were that the harvested cells were completely lost in a few minutes on exposure to a blue light washed in 50 mM-Hepes buffer, pH 7.5, and that the membrane source (Kemp et al., 1990). It was not, of course, clear whether fraction, obtained after cell breakage in the French pressure cell this lability was due to an intrinsic property of the enzyme or to the generation of harmful radicals in the membranes under and differential centrifugation, was washed with 50 mM-Hepes bright illumination. Other work established that freeze-dried buffer, pH 8.0, containing 0.15 M-KCI. The latter step removed membrane preparations could be suspended in organic solvents some weakly associated protein before the membranes were stored as a suspension in 50 mM-Hepes buffer, pH 8.0, in liquid (e.g. octane), with the enzyme still showing good activity (Kemp N2. et al., 1991). As oxygen is the electron acceptor in the oxidation reaction, this result suggested that the enzyme might have a Enzyme activity and protein assays commercial application in the synthesis of long-chain aldehydes. Alcohol were The results referred to above indicated that purification and oxidase-catalysed reactions routinely performed spectrophotometrically at 405 nm in coupled assays with ABTS further characterization of the enzyme was necessary. Certainly and peroxidase as described by Kemp et al. (1988), but modified questions about the mechanism of action of the enzyme, the by using 20 mM-glycine/NaOH buffer, pH 9.0. Occasionally prosthetic group involved in catalysis and the light-sensitivity of enzyme activity was measured directly by using an oxygen the enzyme could not be resolved by using crude enzyme electrode (Rank Brothers, Cambridge, U.K.). The conditions for preparations. We have now developed a reliable purification this assay were as for the spectrophotometric assay, but ABTS method, and this, and some observations on the properties of the and peroxidase were omitted. The spectrophotometric assay is purified preparations, are presented here. based on the methanol oxidase assay of Haywood & Large MATERIALS AND METHODS (1981). The absorption coefficient for the radical cation of ABTS was taken to be e = 18400 M-l cm-' (Werner et al., 1970) with Materials 2 mol of radical cation being formed per mol of substrate Long-chain alcohols, diols, aldehydes, wo-hydroxy-fatty acids oxidized. and cholic acid were obtained from Aldrich Chemical Co., Substrates were prepared as solutions in acetone or in 1,4- Gillingham, Dorset, U.K. NAD+ was from Boehringer Mann- dioxan. A 20 Isl portion of substrate solution was added per 3 ml heim UK, Lewes, Sussex, U.K. 2,2'-Azino-bis-(3-ethylbenz- assay volume via a calibrated glass micro-syringe. For assays thiazoline-6-sulphonic acid) (ABTS), catalase, peroxidase, glu- where the oxygen concentration was varied, the range of con- cose oxidase and CHAPS were from Sigma Chemical Co., Poole, centrations was obtained by mixing appropriate volumes of Dorset, U.K. Bincinchoninic acid reagent was from Pierce assay mixture previously bubbled with N2 or 02 for 10 min. The Europe B.V., BA Oud Beijerland, The Netherlands. bubbling was done in graduated glass syringes held vertically in a retort stand. After gassing, the syringes were capped either with Yeast growth conditions a rubber seal or by mounting the needle. Liquid could then be Candida tropicalis was grown up in 100 ml starter cultures on transferred from one syringe to another under positive pressure. an orbital shaker at 30 °C on a medium containing (g/l) yeast The final mixture was transferred to an N2-filled 3 ml cuvette extract 5.0, malt extract 20.0 and glucose 5.0. After 2 days, 10 ml through a narrow sleeve in the cap. The reaction was then Abbreviation used: ABTS, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid). Vol. 282 326 F. M. Dickinson and C. Wadforth initiated by adding enzyme and substrate through the same including detergent in the eluting buffer. However, in this case capillary from calibrated micro-syringes. the overall yield from the step was decreased to about 500 of Protein determinations were by the method of Smith et al. that when detergent was present. (1985), using bincinchoninic acid. Gel filtration Purity of substrates Experiments were conducted on a 30 cm x 1.5 cm column of The purity of long-chain alcohols and aldehydes was assessed Sephacryl S-300 SF (Pharmacia, Uppsala, Sweden) equilibrated by g.l.c. at 140 or 160°C by using a Pye-Unicam PU 4500 with 50 mM-sodium phosphate buffer, pH 7.6, containing 0.5 % chromatograph fitted with a 1 % diethyleneglycol succinate sodium cholate. Samples (0.2 ml) of proteins (approx. 1.5 mg/ml.) column. All samples, except dodecane- 1,1 2-diol (which was were applied to the column. The column was connected to an dissolved in ethanol), were dissolved in n-hexane. LKB h.p.l.c apparatus (LKB, Bromma, Sweden). The proteins used to calibrate the column were /8-amylase (Mr = 200000), Purification of the enzyme yeast alcohol dehydrogenase (Mr = 150000), BSA (Mr = 66000), All steps were carried out at 0-4 'C and, because of the light- ovalbumin (Mr = 45000) and cytochrome c (Mr = 12400). sensitivity of the enzyme (Kemp et al., 1990), extracts were protected from the light. Chromatography of flavin samples The microsomal membranes from 3 litres of culture medium T.l.c. Samples were run at room temperature on 20 cm x 20 cm were suspended in 100 ml of 50 mM-Hepes buffer, pH 8.0, con- 100,tm-thick layers of Whatman Gel 300 DEAE-cellulose plates. taining 1 % (w/v) sodium cholate. The suspension was then The moving phase was 4% (w/v)Na2HPO4. immediately supplemented by addition of 2 ml of 50 mm- H.p.l.c. Samples were run on a Spherisorb S 50 D52 column phenylmethanesulphonyl fluoride. After a few minutes (25 cm x 4.6 cm) with the solvent methanol/2M-ammonium (NH4)2SO4 (240 g/l) was added to the membrane suspension, acetate (7:3, v/v). and the precipitated material was removed by centrifugation and discarded. Extraction for a longer period did not yield signific- RESULTS AND DISCUSSION antly more solubilized activity, and exposed the enzyme to a greater risk of proteolysis. More (NH4)2SO4 (55 g/l) was added, Homogeneity, stability and Mr of the purified enzyme and the precipitated material was then collected by centrifugation The results of a typical purification procedure are shown in and dissolved in 10 mM-NaHCO3 buffer, pH 9.2, containing Table 1. Only 1-2 mg quantities of enzyme are obtained from the 0.5 % (w/v) CHAPS. Phenylmethanesulphonyl fluoride was standard 3-litre culture of yeast. The purified enzyme is essentially added to the solution to give a final concentration of 1 mm, and homogeneous as judged by SDS/PAGE (Fig. 1). It is noteworthy the fraction was then dialysed for 2 h against 10 mM-NaHCO3 that, although detergent is essential to solubilize the enzyme buffer, pH 9.2, containing 0.5 % CHAPS. from microsomal membranes, in the last stages of purification The dialysed fraction was supplemented with I mM-phenyl- the detergent can be removed and the enzyme remain in solution methanesulphonyl fluoride and applied to a column of QAE- and fully active at concentrations of approx. 0.5 mg/ml. This cellulose (2.2 cm x 24 cm) equilibrated with 10 mM-NaHCO3 suggests that in its natural environment the enzyme makes buffer, pH 9.2, containing 0.5 % CHAPS.
Recommended publications
  • Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
    ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of
    [Show full text]
  • Engineering Alcohol Oxidases for Substrate Scope and Their Application in Flow and Cascade Biocatalysis
    ENGINEERING ALCOHOL OXIDASES FOR SUBSTRATE SCOPE AND THEIR APPLICATION IN FLOW AND CASCADE BIOCATALYSIS Rachel Heath, University of Manchester [email protected] Matthew Thompson, EnginZyme Jeremy Ramsden, University of Manchester Sebastian Cosgrove, University of Manchester William Finnigan, University of Manchester Nicholas Turner, University of Manchester Key Words: oxidation, primary alcohol, secondary alcohol, high-throughput screening, thermostability Alcohol oxidases have significant advantages over alcohol dehydrogenases (ADHs) for biocatalytic oxidation of alcohols: they don’t require addition of (expensive) nicotinamide cofactors (or a recycling system for cofactor regeneration) and the catalytic reaction is irreversible. Although alcohol oxidases generate hydrogen peroxide when they turn over, this issue can be alleviated by addition of catalase, which, not only removes the peroxide, but also creates more oxygen for cofactor regeneration. Alcohol oxidases are perceived to have a limited substrate scope preventing their wider use in synthesis. Thus, we present the engineering of two alcohol oxidases for increased substrate scope, one for the selective oxidation of primary alcohols and one for secondary alcohol oxidation. Arthrobacter chlorophenolicus choline oxidase and Streptomyces hygroscopicus cholesterol oxidase were selected as the primary and secondary alcohol oxidase, respectively. Examination of crystal structures of homologous alcohol oxidases revealed positions in the active site and entrance channel to target for saturation mutagenesis. Libraries were screened using a high-throughput assay based on the detection of hydrogen peroxide using hexanol as the substrate for evolution of choline oxidase and cyclohexanol for evolution of cholesterol oxidase. Mutations from positive hits were combined and, in these cases, resulted in variants with further improvements in both kcat and conversion to the carbonyl in biotransformations.
    [Show full text]
  • Solarbio Catalogue with PRICES
    CAS Name Grade Purity Biochemical Reagent Biochemical Reagent 75621-03-3 C8390-1 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS Ultra Pure Grade 1g 75621-03-3 C8390-5 3-((3-Cholamidopropyl)dimethylammonium)-1-propanesulfonateCHAPS 5g 57-09-0 C8440-25 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 25g 57-09-0 C8440-100 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 100g 57-09-0 C8440-500 Cetyl-trimethyl Ammonium Bromide CTAB High Pure Grade ≥99.0% 500g E1170-100 0.5M EDTA (PH8.0) 100ml E1170-500 0.5M EDTA (PH8.0) 500ml 6381-92-6 E8030-100 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 100g 6381-92-6 E8030-500 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 500g 6381-92-6 E8030-1000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 1kg 6381-92-6 E8030-5000 EDTA disodium salt dihydrate EDTA Na2 Biotechnology Grade ≥99.0% 5kg 60-00-4 E8040-100 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 100g 60-00-4 E8040-500 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 500g 60-00-4 E8040-1000 Ethylenediaminetetraacetic acid EDTA Ultra Pure Grade ≥99.5% 1kg 67-42-5 E8050-5 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 5g 67-42-5 E8050-10 Ethylene glycol-bis(2-aminoethylether)-N,N,NEGTA′,N′-tetraacetic acid Ultra Pure Grade ≥97.0% 10g 50-01-1 G8070-100 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 100g 50-01-1 G8070-500 Guanidine Hydrochloride Guanidine HCl ≥98.0%(AT) 500g 56-81-5
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Zheng Zhao, Delft University of Technology Marcel A. van den Broek, Delft University of Technology S. Aljoscha Wahl, Delft University of Technology Wilbert H. Heijne, DSM Biotechnology Center Roel A. Bovenberg, DSM Biotechnology Center Joseph J. Heijnen, Delft University of Technology An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Marco A. van den Berg, DSM Biotechnology Center Peter J.T. Verheijen, Delft University of Technology Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. PchrCyc: Penicillium rubens Wisconsin 54-1255 Cellular Overview Connections between pathways are omitted for legibility. Liang Wu, DSM Biotechnology Center Walter M. van Gulik, Delft University of Technology L-quinate phosphate a sugar a sugar a sugar a sugar multidrug multidrug a dicarboxylate phosphate a proteinogenic 2+ 2+ + met met nicotinate Mg Mg a cation a cation K + L-fucose L-fucose L-quinate L-quinate L-quinate ammonium UDP ammonium ammonium H O pro met amino acid a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar a sugar K oxaloacetate L-carnitine L-carnitine L-carnitine 2 phosphate quinic acid brain-specific hypothetical hypothetical hypothetical hypothetical
    [Show full text]
  • Alcohol Oxidase from Hansenula Polymorpha
    Alcohol Oxidase from Hansenula polymorpha Catalog Number A0438 Storage Temperature –20 C CAS RN 9073-63-6 Molecular mass:6 670 kDa (octomer, gel filtration) EC 1.1.3.13 Synonym: Alcohol:oxygen oxidoreductase Alcohol oxidase is a homooctomeric flavoprotein with eight equal subunits of 83 kDa; each of which contains Product Description a flavin adenine dinucleotide (FAD) molecule.6 Alcohol oxidase catalyzes the oxidation of short-chain, primary, aliphatic alcohols to the respective aldehydes. Cofactor:4 FAD, one molecule/subunit 7 RCH2OH + O2 RCHO + H2O2 Isoelectric point: 6.1 The enzyme has the highest affinity for methanol with pH Range:8 6.7–9.8 the affinity decreasing with increasing chain length of the alkyl (R) group. pH Optimum:8 8.5 5 Alcohol oxidase plays a major role in the metabolism of Ki (mM): methanol resulting in the formation of formaldehyde and methanol 6,500 has been detected in several genera of yeasts, such as Candida, Pichia, and Hansenula, that utilize methanol Inhibitors:3,8 as a sole carbon and energy source.1,2 1,4-butynediol (irreversible) 4-hydroxy-2- butynal Primarily localized in the peroxisome, alcohol oxidase cyclopropanol has also been found in the cytoplasm. Monomers are cyclopropanone (suicide substrate) synthesized in the cytosol and assembled into octomers formaldehyde, H2O2 (5–10 mM) in the peroxisome. Octomerization is thought to be hydroxylamine, KBr, KCN chaparone mediated.3 Alcohol oxidase is of interest for sodium azide, urea the study of protein translocation into peroxisomes.4 This product is purified from Hansenula polymorpha 4,5 KM (mM): and is supplied as an orange vacuum-dried powder.
    [Show full text]
  • Journal of Microbiological Methods a Rapid Method to Detect and Estimate
    Journal of Microbiological Methods 158 (2019) 71–79 Contents lists available at ScienceDirect Journal of Microbiological Methods journal homepage: www.elsevier.com/locate/jmicmeth A rapid method to detect and estimate the activity of the enzyme, alcohol oxidase by the use of two chemical complexes - acetylacetone (3,5-diacetyl- T 1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4- dihydrolutidine) ⁎ Balaji Venkatesagowda , Robert F.H. Dekker Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada ARTICLE INFO ABSTRACT Keywords: A rapid and sensitive method has been devised in order to detect and estimate the synthesis of the enzyme Acetylacetanilide alcohol oxidase (AOX) by fungi, by way of the use of two chemical complexes, namely, acetylacetone (3,5- Acetylacetone diacetyl-1,4-dihydrolutidine) and acetylacetanilide (3,5-di-N-phenylacetyl-1,4-dihydrolutidine). This method Alcohol oxidase involves the use of the AOX enzyme that could specifically oxidize methanol, giving rise to equimolar equiva- H O 2 2 lents each of formaldehyde (HCHO) and hydrogen peroxide (H O ) as the end products. Further, the for- HCHO 2 2 maldehyde, thus produced was allowed to interact with the neutral solutions of acetylacetone and the ammo- O-demethylase Lignin demethylation nium salt, gradually developing a yellow color, owing to the synthesis and release of 3,5-diacetyl-1,4- dihydrolutidine (yellow product; λ = 420 nm; λex/em = 390/470 nm) and the product, so generated was quantified spectrophotometrically by measureing its absorbance at 412 nm. In another set up, the amount of formaldehyde produced as a sequel to the oxidation of methanol by the AOX enzyme was determined by al- lowing it to react with the acetylacetanilide reagent, after which the volume of the fluorescent product - 3,5-di- N-phenylacetyl-1,4-dihydrolutidine (colorless product; λex/em = 390/470 nm) that was generated was estimated by measuring its emission at 460 nm (excitation wavelength at 360 nm) in a spectrophotometer.
    [Show full text]
  • Electrochemical Tuning of Alcohol Oxidase and Dehydrogenase Catalysis Via Biosensing Towards Butanol-1 Detection in Fermentation Media
    Revised Version Click here to view linked References Electrochemical tuning of alcohol oxidase and dehydrogenase catalysis via biosensing towards butanol-1 detection in fermentation media Authors Daria Semenovaa,*, , Tiago Pintoa, Marcus Kochb, Krist V. Gernaeya and Helena Junickea a Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228A, 2800 Kgs. Lyngby, Denmark b INM – Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany *e-mail: [email protected] Keywords Amperometric biosensors; Butanol determination; Biobutanol production; Alcohol oxidase ; Alcohol dehydrogenase; Pd-NPs Abstract A novel approach for electrochemical tuning of alcohol oxidase (AOx) and alcohol dehydrogenase (ADH) biocatalysis towards butanol-1 oxidation by incorporating enzymes in various designs of amperometric biosensors is presented. The biosensors were developed by using commercial graphene oxide-based screen-printed electrodes and varying enzyme producing strains, encapsulation approaches (layer-by-layer (LbL) or one-step electrodeposition (EcD)), layers composition and structure, operating conditions (applied potential values) and introducing mediators (Meldola Blue and Prussian Blue) or Pd-nanoparticles (Pd-NPs). Simultaneous analysis/screening of multiple crucial system parameters during the enzyme engineering process allowed to identify within a period of one month that four out of twelve proposed designs demonstrated a good
    [Show full text]
  • Structure and Function of Biotin-Dependent Carboxylases
    Cell. Mol. Life Sci. (2013) 70:863–891 DOI 10.1007/s00018-012-1096-0 Cellular and Molecular Life Sciences REVIEW Structure and function of biotin-dependent carboxylases Liang Tong Received: 22 May 2012 / Revised: 7 July 2012 / Accepted: 9 July 2012 / Published online: 7 August 2012 Ó Springer Basel AG 2012 Abstract Biotin-dependent carboxylases include acetyl- Metabolic syndrome Á Obesity Á Diabetes Á Cancer Á CoA carboxylase (ACC), propionyl-CoA carboxylase Drug discovery Á Antibiotics Á Propionic acidemia Á (PCC), 3-methylcrotonyl-CoA carboxylase (MCC), gera- 3-methylcrotonylglycinuria Á Lactic acidemia nyl-CoA carboxylase, pyruvate carboxylase (PC), and urea carboxylase (UC). They contain biotin carboxylase (BC), Abbreviations carboxyltransferase (CT), and biotin-carboxyl carrier pro- ACC Acetyl-CoA carboxylase tein components. These enzymes are widely distributed in BC Biotin carboxylase nature and have important functions in fatty acid metabo- BCCP Biotin carboxyl carrier protein lism, amino acid metabolism, carbohydrate metabolism, BT BC-CT interaction polyketide biosynthesis, urea utilization, and other cellular CT Carboxyltransferase processes. ACCs are also attractive targets for drug dis- GCC Geranyl-CoA carboxylase covery against type 2 diabetes, obesity, cancer, microbial GCD Glutaconyl-CoA decarboxylase infections, and other diseases, and the plastid ACC of HCS Holocarboxylase synthase grasses is the target of action of three classes of commer- MCC 3-methylcrotonyl-CoA carboxylase cial herbicides. Deficiencies in the activities of PCC, MCC, MCG 3-methylcrotonylglycinuria or PC are linked to serious diseases in humans. Our PA Propionic acidemia understanding of these enzymes has been greatly enhanced PC Pyruvate carboxylase over the past few years by the crystal structures of the PCC Propionyl-CoA carboxylase holoenzymes of PCC, MCC, PC, and UC.
    [Show full text]
  • Easyselect™ Pichia Expression Kit Contains the Following Components
    ™ EasySelect Pichia Expression Kit For Expression of Recombinant Proteins Using pPICZ and pPICZα in Pichia pastoris Cat. no. K1740-01 Rev. Date 18 June 2010 Manual part no. 25-0172 MAN0000042 User Manual ii Table of Contents Important Information.................................................................................................................................v Accessory Products .................................................................................................................................. viii Introduction ................................................................................................................... 1 Overview .......................................................................................................................................................1 Experimental Outline...................................................................................................................................4 Methods ......................................................................................................................... 7 Pichia Strains.................................................................................................................................................7 E. coli Strains................................................................................................................................................10 Selecting a Pichia Expression Vector .......................................................................................................11
    [Show full text]
  • Pichia Expression Kit, MAN0000012, Reva.00
    user guide Pichia Expression Kit For expression of recombinant proteins in Pichia pastoris Catalog Number K1710-01 Revision A.0 Publication Number MAN0000012 For Research Use Only. Not for diagnostic procedures. Research Use Only. Not for use in diagnostic procedures. The information in this guide is subject to change without notice. DISCLAIMER LIFE TECHNOLOGIES CORPORATION AND/OR ITS AFFILIATE(S) DISCLAIM ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. TO THE EXTENT ALLOWED BY LAW, IN NO EVENT SHALL LIFE TECHNOLOGIES AND/OR ITS AFFILIATE(S) BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF. Important Licensing Information This product may be covered by one or more Limited Use Label Licenses. By use of this product, you accept the terms and conditions of all applicable Limited Use Label Licenses. Trademark The trademarks mentioned herein are the property of Life Technologies Corporation and/or its affiliates or their respective owners. ©2014 Life Technologies Corporation. All rights reserved. ii Contents Kit contents and storage .................................................................................................................................... 2 Required materials not included with
    [Show full text]
  • Expression and Purification of Human Lysosomal Β-Galactosidase from Pichia Pastoris
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses November 2014 Expression and Purification of Human ysosomalL β-galactosidase from Pichia Pastoris Sarah E. Tarullo University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Biochemistry Commons, Molecular Biology Commons, and the Structural Biology Commons Recommended Citation Tarullo, Sarah E., "Expression and Purification of Human ysosomalL β-galactosidase from Pichia Pastoris" (2014). Masters Theses. 118. https://doi.org/10.7275/5970625 https://scholarworks.umass.edu/masters_theses_2/118 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. EXPRESSION AND PURIFICATION OF HUMAN LYSOSOMAL β-GALACTOSIDASE FROM PICHIA PASTORIS A Thesis Presented by SARAH TARULLO Submitted to the Graduate school of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE September 2014 i EXPRESSION AND PURIFICATION OF HUMAN LYSOSOMAL β-GALACTOSIDASE FROM PICHIA PASTORIS A Thesis Presented by SARAH TARULLO Approved as to style and content by: ___________________________________________ Scott C. Garman, chair ___________________________________________ Peter Chien, member ___________________________________________ Elizabeth Vierling, member ___________________________________________ Dominique Alfandari, Associate Director Program in Molecular and Cellular Biology ii ABSTRACT EXPRESSION AND PURIFICATION OF HUMAN LYSOSOMAL β-GALACTOSIDASE FROM PICHIA PASTORIS SEPTEMBER 2014 SARAH TARULLO, B.S UNIVERSITY OF MASSACHUSETTS AMHERST M.S. UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Scott C.
    [Show full text]
  • Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases
    International Journal of Molecular Sciences Review Alteration of Electron Acceptor Preferences in the Oxidative Half-Reaction of Flavin-Dependent Oxidases and Dehydrogenases Kentaro Hiraka 1, Wakako Tsugawa 1 and Koji Sode 2,* 1 Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan; [email protected] (K.H.); [email protected] (W.T.) 2 Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA * Correspondence: [email protected]; Tel.: +1-919-966-3550 Received: 5 May 2020; Accepted: 24 May 2020; Published: 27 May 2020 Abstract: In this review, recent progress in the engineering of the oxidative half-reaction of flavin-dependent oxidases and dehydrogenases is discussed, considering their current and future applications in bioelectrochemical studies, such as for the development of biosensors and biofuel cells. There have been two approaches in the studies of oxidative half-reaction: engineering of the oxidative half-reaction with oxygen, and engineering of the preference for artificial electron acceptors. The challenges for engineering oxidative half-reactions with oxygen are further categorized into the following approaches: (1) mutation to the putative residues that compose the cavity where oxygen may be located, (2) investigation of the vicinities where the reaction with oxygen may take place, and (3) investigation of possible oxygen access routes to the isoalloxazine ring. Among these approaches, introducing a mutation at the oxygen access route to the isoalloxazine ring represents the most versatile and effective strategy.
    [Show full text]