Refine the Ride

Total Page:16

File Type:pdf, Size:1020Kb

Refine the Ride Refine the Ride Do drivetrains fitted with thrust bearings (and associated joints) reduce noise and vibration? Indeed they do—provided the mechanical connections are properly specified, installed, and maintained. Text and photographs What can I do to make my boat a compression of air, creating waves. by Steve D’Antonio quieter? So, many onboard sources from audio It’s a question I’ve been asked many speakers to diesel engine blocks, have times in my years as a boatyard man- the capacity to make noise in the form ager, technical writer, and marine of compression waves that reach your industry consultant. ear directly; or to cause other objects Insulation, perhaps the first thought, aboard the boat to resonate in sym- is not the answer. Granted, the more pathetic vibration, and thus generate you surround noisy engines, generators, their own sound waves. Isolating such pumps, and compressors with sound- sources of vibration gets challenging, absorbing material, the less noise will especially in the confined space of an reach your ear. But where noise and engineroom, where drive components vibration are concerned, isolation is must be hard-mounted to a vessel’s Above–A good thrust-bearing system— even better than sound containment, structure. like this one supported by a substantial and that’s where thrust-bearing drive- metal “bridge” that spans the vessel’s trains come into play. Traditional Running Gear stringers—can effectively absorb all Isolating rather than absorbing The following traditional approach propeller thrust and vibration, reducing vibration minimizes noise from the to running gear has worked exception- wear on the transmission. outset. Perceptible sound is simply ally well for decades. We’ll begin at the 42 PROFESSIONAL BOATBUILDER propeller: it’s attached to the shaft, sole connection between the thrust Far left—A vibration-damping propulsion- which is supported by at least one, of the propeller and the vessel it pro- system mount from Barry Controls. and often several, water-lubricated, pels. Think of it this way: the propel- Designed to absorb thrust loads as well fluted rubber Cutless bearings. These ler, shaft, transmission, and engine as vibration, these mounts must be “set bearings do a remarkable job, consid- combination are collectively pushing up” in accordance with the manufactur- ering the circumstances under which the boat along with them through er’s guidelines. Absent a thrust-bearing they operate: supporting a shaft turn- the motor mounts. Herein lies the system, mounts of this type are the next ing at a thousand or more rpm problem: isolation of vibration and best thing. Top—Another vibration- through salt- and silt-laden water. efficient transfer of forward and damping mount, this one from Lo-Rez. If the shaft is properly aligned reverse thrust are all but mutually Like the Barry Controls mount, it within the supports and the engine, exclusive. As the thrust of the pro- requires proper set up to be effective at Cutless bearings can be expected to peller pushes the engine forward, it absorbing vibration. It, too, is designed last for hundreds of hours without compresses a portion of the rubber or to carry thrust load without “locking up” maintenance or adjustment. silicone vibration-damping medium vibration isolation. Bottom—A motor The thrust and vibration from the within the mounts. Once compressed, mount from Bushings Inc. Mounts of this propeller transmit axially through the rubber’s ability to absorb vibra- sort are simple, inexpensive, and moder- the shaft to the coupling, through the tion is diminished. The mount itself ately effective. They do “capture” the transmission, and then to the engine. must be flexible enough to absorb engine, keeping it bolted to the boat; At that point, isolation of drivetrain vibration, strong enough to stand up however, their ability to effectively vibrations becomes difficult. To move to tons of thrust, and mechanically absorb vibration and thrust is limited. the boat, propeller thrust on the order sound enough to hold the engine’s of several thousand pounds must be mass in place even if the vessel were transferred from the engine to the to roll onto its beam ends. hull. A 100-hp (75-kW) engine, for The motor mounts on one side of the instance, pushing a displacement ves- engine are consistently compressed by sel at 11 knots is generating nearly a the rotational force, or torque, opposed ton of thrust. to that of the propeller, while the cor- Motor mounts come in numerous responding mounts on the engine’s shapes, sizes, and designs with vary- other side are lifted, or in tension. ing degrees of effectiveness, qual- That switches when the transmission is ity, and expense, but they all have thrown into reverse and the propeller one thing in common: they are the turns in the opposite direction. AUGUST/SEPTEMBER 2009 43 Aside from the torque, there’s the bolts into stringers. Lag bolts are bearings. Ball bearings are capable propeller thrust pushing forward or notorious for failing in the presence of carrying moderate loads, usually aft. If you doubt how much thrust of soft or rotten stringer or engine-bed up to about 100 hp (75 kW) when is absorbed and transmitted by the core material, or because the threads employed as marine thrust bearings. mounts, spend a few minutes in of what is essentially a large tapping Larger loads call for tapered roller the engineroom of a moderately screw are not substantial enough to bearings—the type in most automo- sized vessel as it maneuvers around maintain contact under heavy cycli- tive wheel bearings. The carrier is a dock. You’ll notice that the engine cal loads. The 100-hp, 2,000-lb thrust cone-shaped, while the bearings look will often move as much as half an loads mentioned above are impressive like a series of miniature rolling pins. inch (12.7mm) forward or aft each enough in their own right; but when a As part of a thrust-bearing drive- time the shift is moved into gear. 900-hp (671-kW) engine is pushing a train isolated from the vessel’s Under full load, the engine is strain- vessel at 15 knots, those thrust loads engine (i.e., not as part of the trans- ing at the mounts, wanting to tear jump to 9,000 lbs (4,082 kg). The solid mission), a thrust bearing offers several free and leap ahead of the vessel. structural connection between engine advantages: (I’ve seen the results when an engine and hull necessitated by these cir- has broken the bonds of the motor cumstances makes effective vibration • The motor mounts are no longer mounts. It’s not pretty.) Look at the isolation almost impossible in a con- transmitting propeller thrust to the propeller shafts of vessels where they ventional engine installation. hull. Motor mounts in conjunction pass through Cutless bearings. You’ll with thrust-bearing systems can be notice a polished ring-shaped section Thrust Bearings especially “soft” and markedly more on the surface of the shaft just aft As reliable and well understood as effective at absorbing engine vibra- of the Cutless bearing. The width of traditional running gear may be, there tion. If a vessel with a traditional this shiny section represents the dis- is a more effective approach for bet- drivetrain setup is retrofitted with a tance the engine moves forward on its ter vibration isolation along with less thrust-bearing system, the motor mounts when the vessel is under way. wear on the engine and transmission. mount specification should also Manufacturers have worked to cre- This involves two key components: be changed to significantly reduce ate motor mounts that will absorb a hull-mounted thrust bearing, and a vibration. engine vibration while supporting the constant-velocity or universal joint. • In addition to reducing vibration, compression created by the propel- In every automobile several thrust remote-mounted thrust bearings can ler’s torque and thrust. Considering bearings support the crankshaft, extend the life of the transmission, the demands involved, the manu- clutch, and wheels; a thrust bearing in which no longer needs to support facturers have done well, but their every marine transmission carries the axial loads from the propeller. Absent advances are only as good as the load imparted by the propeller. Its the secondary thrust bearing, these builders who install the mounts. primary function is to support the fore- loads wear the transmission’s own Loads imparted by the engine… and-aft or axial thrust from the pro- thrust bearing more rapidly, generate through the mounts…to the ves- peller, as well as the spinning loads heat, shed metal particles, and stress sel are transmitted through fasten- imparted by the rotating shaft, at the the transmission’s lubricating fluid ers. Through-bolting with machine same time allowing the shaft to spin in the process. screws (see “Nuts. Bolts. Screws.”— with minimal friction. • Because an engine with a thrust Professional BoatBuilder No. 118) Thrust bearings come in two varie- bearing is separated from the pro- is always preferable to screwing lag ties: ball bearings and tapered roller peller shaft by an intermediate shaft, Transmission CV Joints Thrust bearing Above—A thrust-bearing system partially decouples the propeller from the engine by transferring propulsive thrust to structural members in the bilge, without interfering with the rotational force from the engine driving the propeller. Right—A cutaway of a traditional thrust bearing housed in a marine transmission. Note the tapered roller bearings and cone-shaped carrier that absorb thrust while allowing the driveshaft to spin with minimal friction. 44 PROFESSIONAL BOATBUILDER Because the thrust-bearing support driving and driven shafts are in line or truss must withstand cyclical or parallel, they rotate at the same and reversing loads, carefully con- angular speed; when an angle is sider its design and construction.
Recommended publications
  • 2016 GKN Holdings Plc Annual Report
    GKN HOLDINGS PLC Registered Number: 66549 ANNUAL REPORT 31 DECEMBER 2016 GKN HOLDINGS PLC Registered Number: 66549 Strategic Report The Directors present their strategic report for the year ended 31 December 2016. 1. Business Review 2016 was another year of encouraging progress for GKN. Management profit before tax grew 12%, helped by favourable currency effects and the first full year contribution from Fokker. We also made good progress in executing our strategy, sharpening our focus and building momentum as we enter 2017. We continued to invest in technology, reinforcing our market leading positions in automotive and aerospace. This included developing our expertise in eDrive and additive manufacturing (AM), also known as 3D printing, both of which we see as offering excellent opportunities for GKN’s future success. Financially the year could have been even better, but for the impact of operational issues in one of our North American Driveline plants which incurred significant cost over-runs on new product launches. GKN puts great emphasis on operational excellence and we have strengthened our processes in programme management to ensure all our locations consistently achieve the demanding standards required. Sharpening our focus In July, we announced a sharpening of our focus and we enter 2017 with a new structure of three divisions, with GKN Land Systems’ industrial business Stromag now sold and the rest of the division moved to other parts of the Group. The GKN Land Systems’ team has worked hard over the last few years, improving their operations around the world. But their markets have been tough, shrinking their sales and the size of the potential opportunity.
    [Show full text]
  • Hardy Spicer B2 Catalogue 2019-10
    INDEX SECTION B:2 HARDY SPICER SERIES SECTION 500 ..............................................................................................B:2-1 1000 ............................................................................................B:2-3 1140 ............................................................................................B:2-9 1210 ............................................................................................B:2-15 1300 ............................................................................................B:2-17 1310 ............................................................................................B:2-21 1330 ............................................................................................B:2-33 1350 ............................................................................................B:2-39 1410 ............................................................................................B:2-53 1480 ............................................................................................B:2-61 1510 ............................................................................................B:2-67 1550 ............................................................................................B:2-71 1610 ............................................................................................B:2-79 1710 ............................................................................................B:2-85 1760 ............................................................................................B:2-95
    [Show full text]
  • Vardhman Bearings
    VARDHMAN BEARINGS www.vardhmanbearings.com Universal Joints Universal Joints A Comprehensive range of Precision Universal Joints for specific applications is available * to the Indian Industry. From manually operated Friction bearing joints to Bracket version for medium * torque / speed characteristics & Needle bearing mounted joints for high speed applications (up to 4000 rpm) * Stainless Steel joints also available These Joints can be machined to accommodate Bores, Keyways, Square & * Hexagonal holes, as standard Range covers outside diameters from 10 to 95 mm - all confirming to DIN * standards. Single, double & extendable type joints are available in all 3 varieties. * Single Joint * Double Joint * Static Breaking * Seri. B A BORE SIZE C N.m. SERI No. B A BROE SIZE C E N.m. No. STAN- WITH KEY STAN- WITH DARD WAY DARD KEY WAY SJ1 9.5 44 6 - 13 21 DJ1 13 71.5 8 - 15 21.5 44 SJ2 13 50 8 - 15 44 DJ2 16 81 10 7.5 16 25 75 SJ3 16 58 10 7.5 17 75 DJ3 19 91 12 8.5 19 27 89 SJ4 19 64 12 8.5 19 89 DJ4 22.5 111 14 11 21 35 135 SJ5 22.5 76 14 11 21 135 DJ5 25.5 122 16 12 25 36 193 SJ6 25.5 86 16 12 25 193 DJ6 29 133 18 14 26 43 331 SJ7 29 90 18 14 26 331 DJ7 32 143 20/22 16 26.5 48 600 SJ8 32 95 20/22 16 26.5 600 DJ8 38.5 162 25 19 30 54 910 SJ9 38.5 108 25 19 30 910 DJ9 44.5 194 30 22.5 34.5 67 1230 SJ10 44.5 127 30 22.5 34.5 1230 DJ10 51 218 35 27.5 38 78 1790 SJ11 51 140 35 27.5 38 1790 DJ11 57.5 245 40 32 47.5 80 2850 SJ12 57.5 165 40 32 47.5 2860 DJ12 63.5 267 45 36.5 50 89 3810 SJ13 63.5 178 45 36.5 50 3810 DJ13 76.5 318 50 44.5 56 96 7510 SJ14 76.5 222 50 44.5 66 7510 DJ14 89 365 65 53 78 111 11010 SJ15 89 254 65 53 78.5 111010 DJ15 102 410 70 62 94 118 15850 SJ16 102 292 70 62 94 15850 - - - - - - - - All Dimensions in mm Introduction : OKI Universal Joints provide a simple & economic method of connecting two shafts whose axes are inclined at an angle.
    [Show full text]
  • Universal Joints and Driveshafts H.Chr.Seherr-Thoss · F.Schmelz · E.Aucktor H.Chr
    Universal Joints and Driveshafts H.Chr.Seherr-Thoss · F.Schmelz · E.Aucktor H.Chr. Seherr-Thoss · F.Schmelz · E. Aucktor Universal Joints and Driveshafts Analysis, Design, Applications Second, enlarged edition with 267 Figures and 72 Tables Translated by J. A.Tipper and S. J. Hill 2 3 Authors: Hans Christoph Seherr-Thoss, Dipl.-Ing. Holder of the Graf Seherr Archives, Unterhaching Friedrich Schmelz, Dipl.-Ing. Test- and Computing Engineer, Ingolstadt Erich Aucktor, Dipl.-Ing. Development- and Design-Engineer, Offenbach a.M. Translators: Mrs. Jennifer A. Tipper B.A. Hons., Lichfield Dr. Stuart J. Hill,B.A.(Eng.) Hons. Ph. D., British Railways Board, London ISBN-10 3-540-30169-0 Springer-Verlag Berlin Heidelberg New York ISBN-13 978-3-540-30169-1 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging-in-Publication Data [Gelenke and Gelenkwellen. English] Universal joints and driveshafts: analysis, design, applications/F.Schmelz H. Chr. Seherr-Thoss, E. Aucktor: translated by S. J. Hill and J. A. Tipper. p. cm. Translation of: Gelenke und Gelenkwellen. Includes indexes. ISBN 3-540-41759-1 1. Universal joints. 2. Automobiles – Powertrains. I. Seherr-Thoss, H.-Chr. (Hans-Christoph), Count, II. Schmelz, F. (Friedrich), III. Aucktor, E. (Erich), 1913–98. TJ1059.S3613 1992 621.8’25—dc20 90-28614 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag.Violations are liable for prosecution under the German Copyright Law.
    [Show full text]
  • Subject-Automobile Engineering TOPIC
    BY-JITENDRA KUMAR Date-25/03/2020 Diploma Mechanical 3rd Year (6th Sem) ​ Subject-Automobile Engineering TOPIC:-PROPELLER SHAFT AND REAR AXLE Propeller shaft: The propeller shaft is a driving shaft which connects the transmission main shaft to the differential of the real axle. It transmits the power from gear box to rear axle with the help of universal joints. ... This changes the angle of drive between the propeller shaft and the transmission shaft. Main components Vehicle components and their functions. the essential vehicle components are: a)engines b)flywheel & clutch c)gearbox d)propeller shafts and universal joints (in RWD) e)drive shafts f)final drive g) steering RWD Engine Power Units engine is a machine that takes in a mixture of combustible air and fuel, burns it and convert heat energy released into mechanical energy which rotates then a crankshaft. Gearbox machine that takes engine power from a crankshaft and through a relay of gearwheels. allowing to change the speed of the vehicle. Flywheel the flywheel attached to the end of the crankshaft performs the task of absorbing excess energy while the crankshaft is accelerating on it’s power stroke and automatically transfer this stored kinetic energy to the crankshaft to overcome the resisting motion of the other cycles of the engine that will be described later. Clutch device that is used to separate the engine power unit while running from the final drive allowing the driver to change gears smoothly and bring the vehicle to standstill without engine stalling. Propeller shaft a hollow shaft that is used to transmit gearbox output to the final drive.
    [Show full text]
  • Driveshafts for Industrial Applications
    J3314-15 January 2015 Supercedes J3314 Released March 2010 Driveshafts for Industrial Applications Table of Contents 1 Dana: Driveshaft engineering experts 4 Survey of GWB® driveshaft series with design features and preferred applications 8 Special designs of GWB® driveshafts and additional equipment 10 Notations for reviewing data sheets Data sheets 12 Series 687/688 16 Series 587 18 Series 390 20 Series 392/393 22 Series 492 24 Series 498 26 Series 587/190 Super short designs 28 Series 330 Quick release couplings 29 Series 230 Quick release couplings 30 Journal cross assemblies 31 Flange connection with serration 32 Face key connection series 687/688/587/390 33 Standard companion flanges 34 Design features Series 687/688/587 and series 390/392/393 36 General theoretical instructions 38 Technical instructions for application 48 Selection of GWB® driveshafts 51 Additional information and ordering instructions 52 After-sales service Dana: Driveshaft engineering experts For more than 100 years, Dana’s expertise and worldwide network of manufacturing partnerships have sustained its ability to supply economically ef- ficient, high-performance products to original equipment manu- facturers (OEMs) in changing market environments. With a focus on technical innovati- were the first to be developed leader throughout the world. on, quality performance, reliability, specifically for diesel locomotives. and flexibility, Dana engineers con- In the 1950s, GWB® driveshafts GWB® driveshafts include a tinue to provide customers with the were the largest available at that wide range of products for same quality and support they’ve time, and were followed several multiple applications, covering come to expect. decades later by the first mainte- a torque range from 2,400 to nance-free driveshaft.
    [Show full text]
  • Automobile Engineering
    A Course Material on Automobile Engineering By Mr. T.Manokaran ME,MBA ASSISTANT PROFESSOR DEPARTMENT OF MECHANICAL ENGINEERING SASURIE COLLEGE OF ENGINEERING VIJAYAMANGALAM – 638 056 Author Page At first I like to submit my sincere thanks to GOD, PARENTS and FRIENDS who have helped and encouraged me to prepare this entire course material for the subject of Automobile Engineering. Automobile Engineering is a vast field encompassing different types of vehicles used for transportation of people and materials. It is very difficult to cover all the aspects of automobile engineering in single notes, because vehicles are being refined and improved day by day. However an attempt is made in this course material to give the maximum possible details of fundamentals of the automobile vehicles. It is always challenging to decide whether historical notes should come before or after the description and interpretation of the state of the art. Arguing for the second alternative is the fact that readers should already have understood the motivations that drive a design decision. We begin this chapter with basis of automobile, and through by the transmissions and steering systems, going on later to describe wheels, tires and braking & suspension systems. This emphasis is solely due to the larger impact that suspensions and steering systems have on vehicle architecture and its consequent evolution; steering systems will be described together with suspensions because these two systems are indissoluble from the point of view of designers. Knowing is not enough, We must apply. Willing is not enough, We must do. ALL the BEST T.Manokaran ME,MBA Assistant Professor Department of Mech.Engg.
    [Show full text]
  • Dynamics of Universal Joints, Its Failures and Some Propositions For
    Journal of Mechanical Science and Technology 26 (8) (2012) 2439~2449 www.springerlink.com/content/1738-494x DOI 10.1007/s12206-012-0622-1 Dynamics of universal joints, its failures and some propositions for practically improving its performance and life expectancy† Farzad Vesali, Mohammad Ali Rezvani* and Mohammad Kashfi School of Railway Engineering, Iran University of Science and Technology, Tehran, 16845-13114, Iran (Manuscript Received July 11, 2011; Revised February 25, 2012; Accepted March 13, 2012) ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Abstract A universal joint also known as universal coupling, U joint, Cardan joint, Hardy-Spicer joint, or Hooke’s joint is a joint or coupling in a rigid rod that allows the rod to ‘bend’ in any direction, and is commonly used in shafts that transmit rotary motion. It consists of a pair of hinges located close together, oriented at 90o to each other, connected by a cross shaft. The Cardan joint suffers from one major prob- lem: even when the input drive shaft rotates at a constant speed, the output drive shaft rotates at a variable speed, thus causing vibration and wear. The variation in the speed of the driven shaft depends on the configuration of the joint. Such configuration can be specified by three variables. The universal (Cardan) joints are associated with power transmission systems. They are commonly used when there needs to be angular deviations in the rotating shafts. It is the purpose of this research to study the dynamics of the universal joints and to propose some practical methods for improving their performance. The task is performed by initially deriving the motion equations asso- ciated to the universal joints.
    [Show full text]
  • Institution Agricultural Engineers
    JOURNAL AND PROCEEDINGS OF THE m INSTITUTION OF AGRICULTURAL ENGINEERS JULY 1960 -- <.v VJ HYPOID AND SPIRAL BEVEL GEARS UP TO U" dia. High qtudity gears produced on the latest machines up to 24" dia. for all vehicles and locomotives. silent, longer-lasting... Axle shafis ofall types. Spccial induction hardening process cuts cost, saves weight, and permits higher loadings. SALISBURY gears are smooth, silent and longer-lasting because of their SALISBURY TRANSMISSION LTD exceptionally good finish— the result shares in the joint technical, research of the most recent manufacturing and productive resources of more than techniques and ofconstantattention 20 famous firms, such as Laycock Engineering Ltd., Forgings and to detail. Presswork Ltd., Hardy Spicer Ltd., THERE ARE Other benefits of this The Phosphor Bronze Co. Ltd., and others, RevacycieRevacycl am! Couijlex low- who constitute the Birfield Group careful quantity-production on the cost geaigears, for car and light commercial differentials up to of Companies. mostmodern machines... excellent 41" pitchpjfch cone distance. quality in every v^'ay ... less H servicing ... a really competitive price . and, most important, deliveryon timeI SALISBURY make most kinds of gears, axle That's why Salisbury gears are increasingly shafts and transmissions for industry and specified by designers and manufacturers ... commerce. And Salisbury technicians are for cars such as Jaguar and Aston Martin, for always glad to co-operate on new projects the new diesel locomotives, for the tough work and problems. Perhaps they can help you too? of building and agricultural machinery. Please write for further details. SALISBURY TRANSMISSION LTD BIRCH ROAD • WITTON • BIRMINGHAM 6 Member of the vLUJj Birffleld Group S^iSPf fonr SLCfric 13.1t-u.r e Our range of industrial engines are a practical Take your choice from a wide power range ..
    [Show full text]
  • 750-115 Driveshafts R2 2021-03-09.Pdf
    750-115 Driveshaft Table of Contents Updated 2021/03/09 1 Revision History ......................................................................................... 1 16.7 Section Assembly .......................................................................... 62 2 Giving Credit Where Credit Is Due ............................................................ 1 16.8 Lubrication .................................................................................... 62 3 Source of Information ................................................................................ 2 17 Installation ................................................................................................ 63 4 Preemptive Warning ................................................................................... 3 17.1 Alignment ...................................................................................... 63 5 Terminology ............................................................................................... 3 17.2 Balancing ....................................................................................... 66 6 Driveshaft Manufacturer ............................................................................ 6 17.3 Flexible Joint ................................................................................. 66 6.1 750-101............................................................................................ 6 18 Hardware .................................................................................................. 67 6.2 105-115...........................................................................................
    [Show full text]
  • A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions
    Faculty of Engineering & Information Technology A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions A thesis submitted for degree of Doctor of Philosophy Mohamed Mahmoud Zakaria Awadallah December 2017 School of Mechanical and Mechatronic Engineering (MME) Faculty of Engineering & Information Technology (FEIT) A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions The UTS Centre for Green Energy and Vehicle Research Centre: Innovations (GEVI) Done by: Mohamed Mahmoud Zakaria Awadallah UTS student number: 11576079 Supervisor: Prof. Nong Zhang Co-supervisors: Dr. Paul Walker Peter Tawadros Course code: C02018 Subject Number: 49986 Doctor of Philosophy (PhD) Date: 01/07/2013 to 20/12/2017 University of Technology Sydney (UTS) P.O. Box 123, Broadway, Ultimo, N.S.W. 2007 Australia CERTIFICATE I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Student: Production Note: Signature removed prior to publication. Date: 31 July 2018 A Mild Hybrid Vehicle Control Unit Capable of Torque Hole Elimination in Manual Transmissions i Acknowledgements ﺑِ ْﺴ ِﻢ ﱠﷲِ ﱠﺍﻟﺮ ْﺣ َﻤ ِﻦ ﱠﺍﻟﺮ ِﺣ ِﻴﻢ ﻓَﺈِ ﱠﻥ َﻣ َﻊ ْﺍﻟ ُﻌ ْﺴ ِﺮ ﻳُ ْﺴ ًﺮﺍ (٥) ﺇِ ﱠﻥ َﻣ َﻊ ْﺍﻟ ُﻌ ْﺴ ِﺮ ﻳُ ْﺴ ًﺮﺍ (٦) (ﺳﻮﺭﺓ ﺍﻟﺸﺮﺡ) For indeed, with hardship {will be} ease (5).
    [Show full text]
  • Hardy Spicer • HOSE • FITTINGS • DRIVESHAFTS Certified to AS/NZS ISO 9001:2015 Gulf Western Oil Products
    r y i er ha d sp c • HOSE • FITTINGS • DRIVESHAFTS Certified to AS/NZS ISO 9001:2015 Gulf Western Oil Products Ph: 1300 304 673 www.hardyspicer.com.au Hydraulic Oils Superdraulic ISO 46 Part Number Description Qty / Size OIL-46-20 Superdraulic® Hydraulic Oil ISO 46 20L OIL-46-205 Superdraulic® Hydraulic Oil ISO 46 205L Superdraulic HVI 46 Part Number Description Qty / Size 30581GW Superdraulic® Hydraulic Oil HVI 46 5L Superdraulic ISO 68 Part Number Description Qty / Size OIL-68-20 Superdraulic® Hydraulic Oil ISO 68 20L OIL-68-205 Superdraulic® Hydraulic Oil ISO 68 205L Superdraulic HVI 68 Part Number Description Qty / Size 30565GW Superdraulic® Hydraulic Oil HVI 68 5L 2 Diesel Engine Oils Top Dog SAE 15W-40 Part Number Description Qty / Size 30112GW Top Dog® XDO SAE 15W-40 CI4/SL 1L A heavy duty high performance, OEM approved diesel engine oil meeting the latest in lubrication technology formulated for Australia’s harsh environment meeting OEM requirements from Mack, Volvo, Detroit and Cummins. 30512GW Top Dog® XDO SAE 15W-40 CI4/SL 5L A heavy duty high performance, OEM approved diesel engine oil meeting the latest in lubrication technology formulated for Australia’s harsh environment meeting OEM requirements from Mack, Volvo, Detroit and Cummins. 31012GW Top Dog® XDO SAE 15W-40 CI4/SL 10L A heavy duty high performance, OEM approved diesel engine oil meeting the latest in lubrication technology formulated for Australia’s harsh environment meeting OEM requirements from Mack, Volvo, Detroit and Cummins. 32012GW Top Dog® XDO SAE 15W-40 CI4/SL 20L A heavy duty high performance, OEM approved diesel engine oil meeting the latest in lubrication technology formulated for Australia’s harsh environment meeting OEM requirements from Mack, Volvo, Detroit and Cummins.
    [Show full text]