Cdx2 Protein Expression in Normal and Malignant Human Tissues: an Immunohistochemical Survey Using Tissue Microarrays Christopher A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Te2, Part Iii
TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS -
Acinic Cell Carcinoma with Extensive Neuroendocrine Differentiation: a Diagnostic Challenge
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Head and Neck Pathol (2009) 3:163–168 DOI 10.1007/s12105-009-0114-5 CASE REPORT Acinic Cell Carcinoma with Extensive Neuroendocrine Differentiation: A Diagnostic Challenge Somak Roy Æ Kajal Kiran Dhingra Æ Parul Gupta Æ Nita Khurana Æ Bulbul Gupta Æ Ravi Meher Received: 30 January 2009 / Accepted: 11 March 2009 / Published online: 26 March 2009 Ó Humana 2009 Abstract Primary salivary gland carcinoma with neuro- Keywords Neuroendocrine Á Acinic cell Á Warthin’s Á endocrine differentiation is of rare occurrence, especially Chromogranin Á Carcinoma Á Parotid so in the parotid gland. Amongst the various reported pri- mary tumors with neuroendocrine differentiation, acinic cell carcinoma (ACC) one such tumor. A 48 year old lady Introduction presented with a gradually increasing right infra-auricular swelling for a period of 1 year which enlarged suddenly in Primary salivary gland carcinomas with neuroendocrine a short period. Contrast Enhanced Computed Tomography differentiation are rare accounting for 3.5% of all malig- (CECT) suggested diagnosis of Pleomorphic Adenoma. nant tumors and less than 1% of all carcinomas of parotid Fine Needle Aspiration Cytology (FANC) yielded a cystic gland [1]. Nicod reported the first case of carcinoid tumor fluid suggesting a possibility of Warthin’s tumor or of the parotid gland in a 51 year old lady [2]. Following Oncocytic lesion. Intraoperative findings were suggestive this there have been occasional reports of round cell tumors of a Warthin’s tumor. Initial histopathological examination of the parotid gland and minor salivary glands with very of the tumor was suggestive of neuroendocrine carcinoma. -
Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells. -
Reciprocal Regulation of TEAD4 and CCN2 for the Trophectoderm Development of the Bovine Blastocyst
155 6 REPRODUCTIONRESEARCH Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst Hiroki Akizawa1,2, Ken Kobayashi3, Hanako Bai1, Masashi Takahashi1, Shinjiro Kagawa1, Hiroaki Nagatomo1,† and Manabu Kawahara1 1Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 2Japan Society for the Promotion of Science (JSPS Research Fellow), Tokyo, Japan and 3Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan Correspondence should be addressed to M Kawahara; Email: [email protected] †(Hiroaki Nagatomo is now at Department of Biotechnology, Faculty of Life and Environmental Science, University of Yamanashi, Kofu, Japan) Abstract The first segregation at the blastocyst stage is the symmetry-breaking event to characterize two cell components; namely, inner cell mass (ICM) and trophectoderm (TE). TEA domain transcription factor 4 (TEAD4) is a well-known regulator to determine TE properties of blastomeres in rodent models. However, the roles of bovine TEAD4 in blastocyst development have been unclear. We here aimed to clarify the mechanisms underlining TE characterization by TEAD4 in bovine blastocysts. We first found that the TEAD4 mRNA expression level was greater in TE than in ICM, which was further supported by TEAD4 immunofluorescent staining. Subsequently, we examined the expression patterns of TE-expressed genes; CDX2, GATA2 and CCN2, in the TEAD4-knockdown (KD) blastocysts. These expression levels significantly decreased in the TEAD4 KD blastocysts compared with controls. Of these downregulated genes, the CCN2 expression level decreased the most. We further analyzed the expression levels of TE-expressed genes; CDX2, GATA2 and TEAD4 in the CCN2 KD blastocysts. -
Regulation of the Tumor Suppressor Homeogene Cdx2 by Hnf4a in Intestinal Cancer
Oncogene (2013) 32, 3782–3788 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc SHORT COMMUNICATION Regulation of the tumor suppressor homeogene Cdx2 by HNF4a in intestinal cancer T Saandi1,2, F Baraille3,4,5, L Derbal-Wolfrom1,2, A-L Cattin3,4,5, F Benahmed1,6, E Martin1,2, P Cardot3,4,5, B Duclos1,2,7, A Ribeiro3,4,5, J-N Freund1,2,8 and I Duluc1,2,8 The gut-specific homeotic transcription factor Cdx2 is a crucial regulator of intestinal development and homeostasis, which is downregulated in colorectal cancers (CRC) and exhibits a tumor suppressor function in the colon. We have previously established that several endodermal transcription factors, including HNF4a and GATA6, are involved in Cdx2 regulation in the normal gut. Here we have studied the role of HNF4a in the mechanism of deregulation of Cdx2 in colon cancers. Crossing ApcD14/ þ mice prone to spontaneous intestinal tumor development with pCdx2-9LacZ transgenic mice containing the LacZ reporter under the control of the 9.3-kb Cdx2 promoter showed that this promoter segment contains sequences recapitulating the decrease of Cdx2 expression in intestinal cancers. Immunohistochemistry revealed that HNF4a, unlike GATA6, exhibited a similar decrease to Cdx2 in genetic (Apcmin/ þ and ApcD14/ þ ) and chemically induced (Azoxymethane (AOM) treatment) models of intestinal tumors in mice. HNF4a and Cdx2 also exhibited a comparable deregulated pattern in human CRC. Correlated patterns were observed between HNF4a and Cdx2 in several experimental models of human colon cancer cell lines: xenografts in nude mice, wound healing and glucose starvation. -
Role of Cdx Factors in Early Mesodermal Fate Decisions Tanya E
© 2019. Published by The Company of Biologists Ltd | Development (2019) 146, dev170498. doi:10.1242/dev.170498 RESEARCH ARTICLE Role of Cdx factors in early mesodermal fate decisions Tanya E. Foley, Bradley Hess, Joanne G. A. Savory, Randy Ringuette and David Lohnes* ABSTRACT Cdx1−/− or Cdx2+/− phenotypes, indicative of functional overlap Murine cardiac and hematopoietic progenitors are derived from Mesp1+ between Cdx family members (Faas and Isaacs, 2009; Savory et al., mesoderm. Cdx function impacts both yolk sac hematopoiesis and 2011; van den Akker et al., 2002; van Nes et al., 2006; Young et al., Cdx2 cardiogenesis in zebrafish, suggesting that Cdx family members 2009). The derivation and analysis of conditional mutants regulate early mesoderm cell fate decisions. We found that Cdx2 (Savory et al., 2009a; Stringer et al., 2012) and compound mutant occupies a number of transcription factor loci during embryogenesis, derivatives (van den Akker et al., 2002; Savory et al., 2011; Verzi including key regulators of both cardiac and blood development, and et al., 2011; van Rooijen et al., 2012; Stringer et al., 2012; Grainger that Cdx function is required for normal expression of the cardiogenic et al., 2010; Hryniuk et al., 2012) further substantiated the transcription factors Nkx2-5 and Tbx5. Furthermore, Cdx and Brg1, an functional overlap between family members. Analysis of these ATPase subunit of the SWI/SNF chromatin remodeling complex, co- mutants also revealed a requirement for Cdx genes in diverse occupy a number of loci, suggesting that Cdx family members regulate processes in development and in the adult intestinal track. These target gene expression through alterations in chromatin architecture. -
Epithelium 2 : Glandular Epithelium Histology Laboratory -‐ Year 1, Fall Term Dr
Epithelium 2 : Glandular Epithelium Histology Laboratory -‐ Year 1, Fall Term Dr. Heather Yule ([email protected]) October 21, 2014 Slides for study: 75 (Salivary Gland), 355 (Pancreas Tail), 48 (Atrophic Mammary Gland), 49 (Active Mammary Gland) and 50 (Resting Mammary Gland) Electron micrographs for : study EM: Serous acinus in parotid gland EM: Mucous acinus in mixed salivary gland EM: Pancreatic acinar cell Main Objective: Understand key histological features of glandular epithelium and relate structure to function. Specific Objectives: 1. Describe key histological differences between endocrine and exocrine glands including their development. 2. Compare three modes of secretion in glands; holocrine, apocrine and merocrine. 3. Explain the functional significance of polarization of glandular epithelial cells. 4. Define the terms parenchyma, stroma, mucous acinus, serous acinus and serous a demilune and be able to them identify in glandular tissue. 5. Distinguish exocrine and endocrine pancreas. 6. Compare the histology of resting, lactating and postmenopausal mammary glands. Keywords: endocrine gland, exocrine gland, holocrine, apocrine, merocrine, polarity, parenchyma, stroma, acinus, myoepithelial cell, mucous gland, serous gland, mixed or seromucous gland, serous demilune, exocrine pancreas, endocrine pancreas (pancreatic islets), resting mammary gland, lactating mammary gland, postmenopausal mammary gland “This copy is made solely for your personal use for research, private study, education, parody, satire, criticism, or review -
Report of a Case of Acinic Cell Carcinoma of the Upper Lip and Review of Japanese Cases of Acinic Cell Carcinoma of the Minor Salivary Glands
J Clin Exp Dent-AHEAD OF PRINT Acinic cell carcinoma of the minor salivary glands Journal section: Oral Surgery doi:10.4317/jced.53049 Publication Types: Case Report http://dx.doi.org/10.4317/jced.53049 Report of a case of acinic cell carcinoma of the upper lip and review of Japanese cases of acinic cell carcinoma of the minor salivary glands Shigeo Ishikawa 1, Hitoshi Ishikawa 2, Shigemi Fuyama 3, Takehito Kobayashi 4, Takayoshi Waki 5, Yukio Taira 4, Mitsuyoshi Iino 1 1 Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery, Faculty of Medicine, Yamagata University, 2-2-2 Iida-nishi, Yamagata 990-9585, Japan 2 Yamagata Saisei Hospital, Department of Health Information Management, 79-1 Oki-machi, Yamagata 990-8545, Japan 3 Department of Diagnostic Pathology, Okitama Public General Hospital, 2000 Nishi-Otsuka, Kawanishi, Higashi-Okitama-gun, Yamagata 992-0601, Japan 4 Department of Dentistry, Oral and Maxillofacial Surgery, Okitama Public General Hospital, 2000 Nishi-Otsuka, Kawanishi, Higashi-Okitama-gun, Yamagata 992-0601, Japan 5 Department of Otolaryngology and Head and Neck Surgery, Okitama Public General Hospital, 2000 Nishi-Otsuka, Kawanishi, Higashi-Okitama-gun, Yamagata 992-0601, Japan Correspondence: Department of Dentistry, Oral and Maxillofacial Plastic and Reconstructive Surgery Faculty of Medicine, Yamagata University 2-2-2 Iida-nishi, Yamagata 990-9585, Japan [email protected] Please cite this article in press as: Ishikawa S, Ishikawa H, Fuyama S, Received: 17/02/2016 Kobayashi T, Waki T, Taira Y, Iino M. ������������������������������������Report of a case of acinic cell car- Accepted: 15/04/2016 cinoma of the upper lip and review of japanese cases of acinic cell carci- noma of the minor salivary glands. -
CDX2 As a Useful Marker of Colorectal Adenocarcinoma Metastases to Lung in Pre-Operative Biopsy Specimens
87-92 1/6/07 12:56 Page 87 ONCOLOGY REPORTS 18: 87-92, 2007 87 CDX2 as a useful marker of colorectal adenocarcinoma metastases to lung in pre-operative biopsy specimens SHIGEBUMI TANAKA1, KANA SAITO1,2, TOMOKAZU ITO1, KOHEI TAJIMA3, AKIRA MOGI3, YOSHINORI SHITARA4, TAKAAKI SANO2 and HIROYUKI KUWANO1 Departments of 1General Surgical Science, 2Tumor Pathology, Gunma Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511; 3Department of Surgery, Fujioka General Hospital, 942-1 Fujioka, Fujioka, Gunma 375-8503; 4Department of Surgery, Isesaki General Hospital, 12-1 Tsunatorihoncho, Isesaki, Gunma 372-0821, Japan Received January 12, 2007; Accepted April 17, 2007 Abstract. Although distinguishing metastatic colorectal as a solitary nodule. Differential diagnosis between metastatic adenocarcinoma from primary lung adenocarcinoma is often adenocarcinoma of colorectal origin and primary lung adeno- difficult, pre- or intra-operative identification is very important, carcinoma using imaging techniques such as chest computed as the resection areas for each diagnosis differ substantially. tomography (CT) is thus often difficult in patients with a CDX2, a recently cloned homeobox gene, represents a highly history of colorectal cancer. However, this differentiation is specific and sensitive marker of colorectal adenocarcinoma. crucial for therapeutic and prognostic purposes (1). Particularly We evaluated CDX2 expression using pre- and intra-operative in cases with operative indications, pre- or intra-operative biopsy specimens. The study examined 50 consecutive colo- identification is very important, as the resection areas differ rectal adenocarcinoma metastases to the lung, including 20 substantially between the diagnoses. If the tumor is a solitary biopsy specimens and 66 resected specimens, and 21 primary metastatic colorectal carcinoma to the lung, partial lung lung adenocarcinomas. -
An Analysis of Benign Human Prostate Offers Insights Into the Mechanism
www.nature.com/scientificreports OPEN An analysis of benign human prostate ofers insights into the mechanism of apocrine secretion Received: 12 March 2018 Accepted: 22 February 2019 and the origin of prostasomes Published: xx xx xxxx Nigel J. Fullwood 1, Alan J. Lawlor2, Pierre L. Martin-Hirsch3, Shyam S. Matanhelia3 & Francis L. Martin 4 The structure and function of normal human prostate is still not fully understood. Herein, we concentrate on the diferent cell types present in normal prostate, describing some previously unreported types and provide evidence that prostasomes are primarily produced by apocrine secretion. Patients (n = 10) undergoing TURP were prospectively consented based on their having a low risk of harbouring CaP. Scanning electron microscopy and transmission electron microscopy was used to characterise cell types and modes of secretion. Zinc levels were determined using Inductively Coupled Plasma Mass Spectrometry. Although merocrine secretory cells were noted, the majority of secretory cells appear to be apocrine; for the frst time, we clearly show high-resolution images of the stages of aposome secretion in human prostate. We also report a previously undescribed type of epithelial cell and the frst ultrastructural image of wrapping cells in human prostate stroma. The zinc levels in the tissues examined were uniformly high and X-ray microanalysis detected zinc in merocrine cells but not in prostasomes. We conclude that a signifcant proportion of prostasomes, possibly the majority, are generated via apocrine secretion. This fnding provides an explanation as to why so many large proteins, without a signal peptide sequence, are present in the prostatic fuid. Tere are many complications associated with the prostate from middle age onwards, including benign prostatic hyperplasia (BPH) and prostate cancer (PCa). -
Evaluation of PAX2 and PAX8 Expression in Salivary Gland Neoplasms
Head and Neck Pathol (2015) 9:47–50 DOI 10.1007/s12105-014-0546-4 ORIGINAL PAPER Evaluation of PAX2 and PAX8 Expression in Salivary Gland Neoplasms Randall T. Butler • Megan A. Alderman • Lester D. R. Thompson • Jonathan B. McHugh Received: 3 March 2014 / Accepted: 16 April 2014 / Published online: 26 April 2014 Ó Springer Science+Business Media New York 2014 Abstract PAX2 and PAX8 are transcription factors Introduction involved in embryogenesis that have been utilized as immunohistochemical indicators of tumor origin. Specifi- The PAX genes encode a family of nine transcription fac- cally, PAX2 is a marker of neoplasms of renal and tors, defined by the presence of a 128-amino acid DNA- mu¨llerian origin, while PAX8 is expressed by renal, binding sequence called the ‘‘paired domain,’’ that have mu¨llerian, and thyroid tumors. While studies examining been shown to play integral roles in development and these transcription factors in a variety of tumors have been maintenance of pluripotent stem cells [1]. PAX2 and PAX8 published, data regarding their expression in salivary gland are members of the same subfamily and are involved in neoplasms are limited. The goal of this study was to assess organogenesis of the central nervous, genitourinary, and expression of PAX2 and PAX8 in a large cohort of salivary mu¨llerian systems, with PAX8 additionally involved in gland tumors. Utilizing tissue microarrays, samples of development of the thyroid gland [1]. Correspondingly, normal salivary glands (n = 68) and benign and malignant immunohistochemical detection of PAX2 and/or PAX8 salivary gland neoplasms (n = 442) were evaluated for expression has emerged as an important diagnostic tool in nuclear immunoreactivity with PAX2 and PAX8. -
Epithelium and Glands
EPITHELIUM AND GLANDS OBJECTIVES: After completing this exercise, students should be able to do the following: 1. Identify glands. 2. Classify glands based on secretory type. ASSIGNMENT FOR TODAY'S LABORATORY GLASS SLIDES SL 111 (Trachea) cilia and unicellular glands (goblet cells) SL 019 (Jejunum, PAS) unicellular glands SL 092 (Submandibular gland) serous, mucous and demilune secretory units SL 093 (Sublingual gland) mucous secretory units POSTED ELECTRON MICROGRAPHS # 7 Organelles # 11 Desmosomes # 12 Epithelium # 13 Freeze-fracture Lab 5 Posted EMs; Lab 5 Posted EMs with some yellow labels SUPPLEMENTAL MATERIAL: SUPPLEMENTARY ELECTRON MICROGRAPHS Rhodin, J. A.G., An Atlas of Histology. Glands pp. 46 - 52 Copies of this text are on reserve in the HSL. Glandular epithelium is specialized for the production and secretion of products. The cells that form glands are usually cuboidal or columnar in shape. In this exercise we are emphasizing morphological differences in glands with respect to secretory products. A. UNICELLULAR GLANDS: SL 111 (low, high), (Trachea, H&E); SL 019 (oil), (Jejunum, PAS), for review. Goblet cells may be few or numerous and are found in epithelia of the respiratory and alimentary systems. The secretory product is emptied into the lumen of the organ rather than into ducts (J. Fig. 4-18, 15-24; R. 5.38, Plate 60) B. MULTICELLULAR GLANDS: In general these glands are formed by invagination, proliferation, and differentiation of the epithelium from which they are derived. Glands that maintain a connection with the surface epithelium through ducts are termed exocrine glands, whereas glands that have lost this connection, and secrete instead to blood vessels, are called endocrine glands (see J.