Differential Effects of Climate Warming on Reproduction and Functional Responses on Insects in the Fourth Trophic Level
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zackenberg Ecological Research Operations, 15Th Annual Report, 2009
Aarhus University Aarhus Annual Report 2009 th National Environmental Research Institute Research National Environmental 15 ZERO – 15h Annual Report 2009 ZACKENBERG ECOLOGICAL RESEARCH OPERATIONS 15th Annual Report 2009 Data sheet Title: Zackenberg Ecological Research Operations Subtitle: 15th Annual Report 2009 Editors: Lillian Magelund Jensen and Morten Rasch Publisher: National Environmental Research Institute© Aarhus University – Denmark URL: http://www.neri.dk Year of publication: 2010 Please cite as: Jensen, L.M. and Rasch, M. (eds.) 2010. Zackenberg Ecological Research Operations, 15th Annual Report, 2009. National Environmental Research Institute, Aarhus University, Denmark. 134 pp. Reproduction permitted provided the source is explicitly acknowledged. Layout and drawings: Tinna Christensen Front cover photo: Arctic hares Lepus arcticus at Zackenberg, July 2009. Photo: Lars Holst Hansen. Back cover photos: Jannik Hansen counting musk oxen from the roof top of House no. 4 at Zackenberg, July 2009. Photo: Lars Holst Hansen. ISSN: 1397-4262 ISBN: 978-87-7073-208-6 Paper quality: Paper 80 g Cyclus offset Printed by: Schultz Grafi sk A/S Number of pages: 134 Circulation: 650 Internet version: The report is available in electronic format (pdf) on www.zackenberg.dk/Publications and on www.dmu.dk/pub Supplementary notes: This report is free of charge and may be ordered from National Environmental Research Institute Aarhus University P. O. Box 358 Frederiksborgvej 399 DK-4000 Roskilde E-mail: [email protected] Phone: +45 46301917 Zackenberg Ecological Research Operations (ZERO) is together with Nuuk Ecological Research Operations (NERO) operated as a centre without walls with a number of Danish and Greenlan- dic institutions involved. The two programmes are gathered under the umbrella organization Greenland Ecosystem Monitoring (GEM). -
15Th Annual Report 2009
Downloaded from orbit.dtu.dk on: Oct 07, 2021 Zackenberg Basic: The BioBasis programme Hansen, Jannik; Holst Hansen, Lars; Boesgaard, Kristine; Albert, Kristian Rost; Svendsen, Sarah; Hoffmann Hansen, Sonja; Michelsen, Anders; Anker Kyhn, Line; Christoffersen, Kirsten S.; Schmidt, Niels Martin Published in: Zackenberg Ecological Reserach Operations Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hansen, J., Holst Hansen, L., Boesgaard, K., Albert, K. R., Svendsen, S., Hoffmann Hansen, S., Michelsen, A., Anker Kyhn, L., Christoffersen, K. S., & Schmidt, N. M. (2010). Zackenberg Basic: The BioBasis programme. In L. Magelund Jensen, & M. Rasch (Eds.), Zackenberg Ecological Reserach Operations: 14th Annual Report 2009 (pp. 46-81). National Environmental Research Institute, Aarhus University. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing -
Biodiversity and Arthropod Abundance in the Upland of Leyte, Philippines
FACULTY OF AGRICULTURAL SCIENCES (Dr. sc. agr.) Institute of Plant Production and Agroecology in the Tropics and Subtropics University of Hohenheim Agroecology in the Tropics and Subtropics Prof. Dr. J. Sauerborn Biodiversity and arthropod abundance in the upland of Leyte, Philippines Dissertation Submitted in fulfilment of the requirements for the degree “Doktor der Agrarwissenschaften” (Dr.sc.agr. / Ph.D. in Agricultural Sciences) to the Faculty of Agricultural Sciences presented by Gundula Szinicz München 2005 This thesis was accepted as a doctoral dissertation in the fulfilment of the requirements for the degree “Doktor der Agrarwissenschaften” by the Faculty Agricultural Sciences at the University of Hohenheim, on 23.05. 2005. Date of oral examination: 15. June 2005 Examination Commitee Supervisor and Review Prof. Dr. J. Sauerborn Co-Reviewer Prof. Dr. R. Böcker Additional examiner Prof. Dr. H.-P. Liebig Vice-Dean and head of the Commitee Prof. Dr. K. Stahr 1 1. Introduction 4 2. Leyte overview 13 2.1 Geography, geology 13 2.2 Climate 14 3. Material and methods, site description 15 3.1 Material and methods 15 3.1.1 Site selection 15 3.1.2 Soil analysis 15 3.1.3 Vegetation analysis 16 3.1.4 Insects inventory 17 3.2 Description of Leyte upland 21 3.2.1 Socio-economic situation 21 3.2.2 Description of the landscape 22 4. Arthropod diversity and community composition along a transect from natural through cultural habitats in the upland of Leyte, Philippines 26 4.1 Introduction 27 4.2 Material and methods 28 4.3 Results 31 4.4 Discussion 36 5. -
An Annotated List of Insects and Other Arthropods
This file was created by scanning the printed publication. Text errors identified by the software have been corrected; however, some errors may remain. Invertebrates of the H.J. Andrews Experimental Forest, Western Cascade Range, Oregon. V: An Annotated List of Insects and Other Arthropods Gary L Parsons Gerasimos Cassis Andrew R. Moldenke John D. Lattin Norman H. Anderson Jeffrey C. Miller Paul Hammond Timothy D. Schowalter U.S. Department of Agriculture Forest Service Pacific Northwest Research Station Portland, Oregon November 1991 Parson, Gary L.; Cassis, Gerasimos; Moldenke, Andrew R.; Lattin, John D.; Anderson, Norman H.; Miller, Jeffrey C; Hammond, Paul; Schowalter, Timothy D. 1991. Invertebrates of the H.J. Andrews Experimental Forest, western Cascade Range, Oregon. V: An annotated list of insects and other arthropods. Gen. Tech. Rep. PNW-GTR-290. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 168 p. An annotated list of species of insects and other arthropods that have been col- lected and studies on the H.J. Andrews Experimental forest, western Cascade Range, Oregon. The list includes 459 families, 2,096 genera, and 3,402 species. All species have been authoritatively identified by more than 100 specialists. In- formation is included on habitat type, functional group, plant or animal host, relative abundances, collection information, and literature references where available. There is a brief discussion of the Andrews Forest as habitat for arthropods with photo- graphs of representative habitats within the Forest. Illustrations of selected ar- thropods are included as is a bibliography. Keywords: Invertebrates, insects, H.J. Andrews Experimental forest, arthropods, annotated list, forest ecosystem, old-growth forests. -
The Distribution of Insects, Spiders, and Mites in the Air
TECHNICAL BULLETIN NO. 673 MAY 1939 THE DISTRIBUTION OF INSECTS, SPIDERS, AND MITES IN THE AIR BY P. A. CLICK Assistant Entomolo^ist Division of Cotton Insect In^^estigations Bureau of Entomology and Plant Quarantine UNITED STATES DEPARTMENT OF AGRICULTUREJWAVSHINGTON, D. C. somi )r sale by the Superintendent of Documents, Washington, D. C. Price 25 ccntt Technical Bulletin No. 673 May 1939 UNJIED STATES DEPARTMENT OF AQRIQULTURE WASHINGTON, D. C n THE DISTRIBUTION OF INSECTS, SPIDERS, AND MITES IN THE AIR ' By P. A. GLICK Assistant entomologist, Division of CMçtn Insect Investigations, Bureau of Ento- mology hndWlant Quarantine 2 CONTENTS Page Pasrt Introduction 1 Meteorological data—Continued Scope of the work '_l_^ Absolute humidity 101 The collecting ground ""' '" g Vapor pressure 102 Airplane insect traps ...... 6 Barometric pressure. _. .1 104 Operation and efläciency of the traps ' 8 Air currents---._._ "" log Seasonal distribution of insects 9 Light intensity "" 122 Altitudinal distribution of insects 12 Cloud conditions _ 126 Day collecting 12 Precipitation . _" 128 Night collecting 16 Electrical state of the atmosphere 129 Notes on the insects collected * 16 Effects of the Mississippi River flood of 1927 \Yinged forms _ 59 on the insect population of the air ISO Size, weight, and buoyancy _ 84 Seeds collected in the upper air __.. 132 Wingless insects 87 Collection of insects in Mexico 133 Immature stages _ 90 Sources of insects and routes of migration 140 Insects taken alive 91 Aircraft as insect carriers.-.-.. 141 Meteorological data _ 93 Collecting insects in the upper air 142 Temperature _.. 93 Summary 143 Dew point _ 98 Literature cited... -
Wide DNA Barcode Library As a New Tool for Arctic Research
Molecular Ecology Resources (2016) 16, 809–822 doi: 10.1111/1755-0998.12489 Establishing a community-wide DNA barcode library as a new tool for arctic research H. WIRTA,1 G. VARKONYI,2 C. RASMUSSEN,3 R. KAARTINEN,4 N. M. SCHMIDT,5 P. D. N. HEBERT,6 M. BARTAK,7 G. BLAGOEV,6 H. DISNEY,8 S. ERTL,9 P. GJELSTRUP,10 D. J. GWIAZDOWICZ,11 12 13 14 15 € € 12 € € 1 L. HULDEN, J. ILMONEN, J. JAKOVLEV, M. JASCHHOF, J. KAHANPAA, T. KANKAANPAA, P. H. KROGH,10 R. LABBEE,6 C. LETTNER,9 V. MICHELSEN,16 S. A. NIELSEN,17 € T. R. NIELSEN,18 L. PAASIVIRTA,19 S. PEDERSEN,6 J. POHJOISMAKI,20 J. SALMELA,21 € P. VILKAMAA,12 H. VARE,22 M. VON TSCHIRNHAUS23 and T. ROSLIN 1,4 1Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, 00790 Helsinki, Finland, 2Finnish Environment Institute, Natural Environment Centre, Friendship Park Research Centre, Lentiirantie 342B, 88900 Kuhmo, Finland, 3Department of Bioscience, Aarhus University, Ny Munkegade 114, DK–8000 Aarhus, Denmark, 4Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden, 5Arctic Research Centre, Department of Bioscience, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark, 6Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada, 7Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 21 Praha 6 - Suchdol, Czech Republic, 8Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK, 9Division of Conservation -
Evolutionary Opportunities and Constraints
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wageningen University & Research Publications DOI: 10.1111/j.1570-7458.2009.00882.x Life-history traits in closely related secondary parasitoids sharing the same primary parasitoid host: evolutionary opportunities and constraints Jeffrey A. Harvey1*, Roel Wagenaar1 & T. Martijn Bezemer1,2 1Department of Multitrophic Interactions, Netherlands Institute of Ecology, PO Box 40, 6666 ZG Heteren, The Netherlands, and 2Laboratory of Nematology, Wageningen University and Research Centre, PO Box 8123, 6700 ES Wageningen, The Netherlands Accepted: 7 May 2009 Key words: Acrolyta nens, Cotesia glomerata, Gelis agilis, Lysibia nana, parallel evolution, reproduc- tive success, trade-off, Hymenoptera, Ichneumonidae, Braconidae Abstract Thus far, few studies have compared life-history traits amongst secondary parasitoids attacking and developing in cocoons of their primary parasitoid hosts. This study examines development and reproduction in Lysibia nana Gravenhorst and Acrolyta nens Hartig (both Hymenoptera: Ichneu- monidae), two related and morphologically similar secondary parasitoids that attack pupae of the gregarious endoparasitoid, Cotesia glomerata L. (Hymenoptera: Braconidae). On black mustard, Brassica nigra L. (Brassicaceae) plants in a field plot, adults of L. nana and A. nens frequently emerged from the same cocoon broods of C. glomerata. Based on similarities in their phylogeny and morphol- ogy, it was hypothesized that both species would exhibit considerable overlap in other life-history traits. In both L. nana and A. nens, adult wasp size increased with host cocoon mass at parasitism, although L. nana wasps were slightly larger than A. nens wasps, and completed their development ear- lier. -
Hymenoptera: Ichneumonidae) Türkiye Cryptinae (Hymenopera: Ichneumonidae) Altfamilyası Üzerinde Taksonomik Ve Biocoğrafik Değerlendirmeler
Türk. entomol. derg., 2019, 43 (3): 313-337 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.520717 E-ISSN 2536-491X Original article (Orijinal araştırma) Taxonomic and biogeographic evaluations of the subfamily Cryptinae (Hymenoptera: Ichneumonidae) Türkiye Cryptinae (Hymenopera: Ichneumonidae) altfamilyası üzerinde taksonomik ve biocoğrafik değerlendirmeler Saliha ÇORUH1* Abstract The taxonomic and biogeographic data of specimens belonging to the subfamily Cyrptinae (Hymenoptera: Ichneumonidae) collected from different regions in Turkey between 1990 and 2018 were studied. An additional 13 samples collected before 1990 were also included. Three tribes, 61 genera and 187 species were identified. Most of samples were collected during last 25 years or recorded in this time from seven different regions of Turkey by researchers. Among the species listed, Agrothereutes tiloidalis Kolarov & Beyaslan, 1994, Stilpnus adanaensis Kolarov & Beyaslan, 1994 and Aptesis cavigena Kolarov & Gürbüz, 2009 were described from Turkey. Also, these species are endemic to Anatolia. Detailed composition, biogeographic and zoogeographic data, vertical distribution, seasonal dynamics, individual diversity, available host data and plants visited by adults are given. Keywords: Cryptinae, Hymenoptera, Ichneumonidae, Turkey Öz Türkiye’nin farklı bölgelerinden 1990 ve 2018 yılları arasında toplanan Cyrptinae (Hymenoptera: Ichneumonidae) altfamilyasına ait türleri içeren bu çalışma, taksonomik ve biocoğrafik değerlendirmeleri amaçlamıştır. Buna ek olarak 1990 -
(Hymenoptera, Diptera) Associated with Limacodidae (Lepidoptera) in North America, with a Key to Genera
PROC. ENTOMOL. SOC. WASH. 114(1), 2012, pp. 24–110 REVIEW OF PARASITOID WASPS AND FLIES (HYMENOPTERA, DIPTERA) ASSOCIATED WITH LIMACODIDAE (LEPIDOPTERA) IN NORTH AMERICA, WITH A KEY TO GENERA MICHAEL W. GATES,JOHN T. LILL,ROBERT R. KULA,JAMES E. O’HARA,DAVID B. WAHL, DAVID R. SMITH,JAMES B. WHITFIELD,SHANNON M. MURPHY, AND TERESA M. STOEPLER (MWG, RRK, DRS) Systematic Entomology Laboratory, USDA, ARS, PSI, c/o National Museum of Natural History, Washington, DC 20013-7012, U.S.A. (e-mail: MWG [email protected], RRK [email protected], DRS dave. [email protected]); (JTL, TMS) The George Washington University, Department of Biological Sciences, 2023 G Street, NW, Suite 340, Washington, DC 20052, U.S.A. (e-mail: JTL [email protected], TMS [email protected]); (JEO) Canadian National Collection of Insects, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada K1A 0C6 (e-mail: [email protected]); (DBW) American Entomological Institute, 3005 SW 56th Ave., Gainesville, Florida 32608 U.S.A. (e-mail: [email protected]); (JBW) Department of Entomology, University of Illinois, Urbana-Champaign, Illinois 61801, U.S.A. (e-mail: jwhitfie@ life.uiuc.edu); (SMM) Department of Biological Sciences, University of Denver, F. W. Olin Hall, 2190 E. Iliff Ave., Denver, Colorado 80208, U.S.A. (e-mail: Shannon. [email protected]) Abstract.—Hymenopteran and dipteran parasitoids of slug moth caterpillars (Lepidoptera: Limacodidae) from North America are reviewed, and an illustrated key to 23 genera is presented. Limacodid surveys and rearing were conducted during the summer months of 2004–2009 as part of research on the ecology and natural history of Limacodidae in the mid-Atlantic region of the U.S.A. -
Subfamily ACAENITINAE Förster, 1869
1 Family-group names of Ichneumonidae (adapted from Fitton & Gauld (1976, 1978)) Subfamily ACAENITINAE Förster, 1869. Acoenitoidea Förster, 1869: 142, 167. Type-genus: Acoenites Latreille, an unjustified emendation of Acaenitus Latreille. Acaenitini Förster; Szépligeti, 1908b: 94. Corrected spelling -- Articles 32 (c) & 33 (b) of the Code. Coleocentrini Clément, 1938: 506. Type-genus: Coleocentrus Gravenhorst. ******************** Subfamily ADELOGNATHINAE Thomson, 1888. Adelognathides Thomson, 1888: 1271, 1272. Type-genus: Adelognathus Holmgren. ******************** Subfamily AGRIOTYPINAE Haliday, 1838. Agriotypidae Haliday, 1838: 212. Type-genus: Agriotypus Curtis. ******************** Subfamily ANOMALONINAE Viereck, 1918 (1900) [= Anomalinae of Townes]. 1. Tribe Anomalonini Viereck, 1918 (1900) [= Anomalini of Townes] [Trachynotoidae Förster, 1869: 140, 147. Invalid proposal based on Trachynotus Gravenhorst, junior homonym of Trachynotus Latreille.] Nototrachiina Woldstedt, 1877: 4. Type-genus: Nototrachys Marshall (= Anomalon Panzer). Incorrectly formed stem. Nototrachini Ashmead, 1900a: 580. Justified emendation. Anomaloninae Viereck, 1918: 72. Type-genus: Anomalon Panzer. Correctly formed stem? Names based on Anomalon rather than Nototrachys have been in general use since 1918 and Ashmead's name is therefore not given priority (Article 40 (a) and (b) of the Code). Anomalina Viereck; Townes, 1945: 708. This form, with an incorrect stem, is a junior homonym of Anomalitae Blanchard, 1851. 2. Tribe Gravenhorstiini Enderlein, 1912 [includes -
Hymenoptera) of the Canadian Prairies Ecozone: a Review
317 Chapter 9 Ichneumonidae (Hymenoptera) of the Canadian Prairies Ecozone: A Review Marla D. Schwarzfeld* Department of Biological Sciences, CW 405 Biological Sciences Centre, University of Alberta, Edmonton, AB, T6G 2E9 Email: [email protected] Abstract. The parasitoid family Ichneumonidae is the largest family in the order Hymenoptera. This chapter provides a checklist of 1,160 ichneumonid species (299 genera) known from the Canadian Prairies Ecozone. The list is primarily drawn from literature records and also includes 35 newly recorded species from the ecozone. The number of species on the list is a vast underestimate of the number of ichneumonid species present, as many genera lack revisions and few biodiversity surveys have been conducted. Most species recorded from this ecozone are only known from the Nearctic region, but are not restricted to the Prairies Ecozone. Little is known about the ecology, habitat requirements, or host associations of most ichneumonid species, with 43% of the species on the checklist lacking any host records. Future research should include revisions of the many genera that have not been studied in the Nearctic region, as well as biodiversity surveys in prairie habitats, rearing of potential host species, and the creation of user-friendly identification resources. Résumé. Les guêpes parasitoïdes de la famille des Ichneumonidae forment la plus grande famille de l’ordre des hyménoptères. Le présent chapitre dresse la liste des 1 160 espèces de cette famille, réparties en 299 genres, présentes dans l’écozone des prairies. Cette liste, établie principalement à partir de sources documentaires, fait état de 35 nouvelles mentions provenant de l’écozone. -
Ant-Like Traits in Wingless Parasitoids Repel Attack from Wolf Spiders
Journal of Chemical Ecology (2018) 44:894–904 https://doi.org/10.1007/s10886-018-0989-2 Ant-like Traits in Wingless Parasitoids Repel Attack from Wolf Spiders Jeffrey A. Harvey1,2 & Bertanne Visser3 & Marl Lammers2 & Janine Marien2 & Jonathan Gershenzon4 & Paul J. Ode5 & Robin Heinen1 & Rieta Gols6 & Jacintha Ellers2 Received: 15 February 2018 /Revised: 4 July 2018 /Accepted: 6 July 2018 /Published online: 31 July 2018 # The Author(s) 2018 Abstract A recent study showed that a wingless parasitoid, Gelis agilis, exhibits a suite of ant-like traits that repels attack from wolf spiders. When agitated, G. agilis secreted 6-methyl-5-hepten-2-one (sulcatone), which a small number of ant species produce as an alarm/panic pheromone. Here, we tested four Gelis parasitoid species, occurring in the same food chain and microhabitats, for the presence of sulcatone and conducted two-species choice bioassays with wolf spiders to deter- mine their degree of susceptibility to attack. All four Gelis species, including both winged and wingless species, produced sulcatone, whereas a closely related species, Acrolyta nens, and the more distantly related Cotesia glomerata, did not. In two-choice bioassays, spiders overwhelmingly rejected the wingless Gelis species, preferring A. nens and C. glomerata. However, spiders exhibited no preference for either A. nens or G. areator, both of which are winged. Wingless gelines exhibited several ant-like traits, perhaps accounting for the reluctance of spiders to attack them. On the other hand, despite producing sulcatone, the winged G. areator more closely resembles other winged cryptines like A. nens, making it harder for spiders to distinguish between these two species.