Series 3000 Reference Manua

Total Page:16

File Type:pdf, Size:1020Kb

Series 3000 Reference Manua inter Series 3000 Family Of Computing Elements - The Total System Solution. Since its introduction in September, 1974, the Series 3000 family of computing elements has found acceptance in a wide range of high performance applications from disk controllers to airborne CPU's. The Series 3000 family represents more than a simple collection of bipolar components, it is a complete family of computing elements and hardware/software support that greatly simplifies the task of transforming a design from concept to production. The Series 3000 Component Family A complete set of computing elements that are designed as a system requiring a minimum amount of ancillary circuitry. 3001 Microprogram Control Unit. 3002 Central Processing Element. 3003 . Look-Ahead Carry Generator. 3212 Multi-Mode Latch Buffer. 3214 Interrupt Control Unit. 3216/26 Parallel Bi-directional Bus Driver. ROMs/PROMs A complete set of bipolar ROMs and PROMs. RAMs A Complete family of MOS and bipolar RAMs. rhe Series 3000 Support A comprehensive support system that assists the designer in writing microprograms, debugging hardware and microcode, and programming prototype and production PROMs. CROMIS Cross microprogram assembler. MDS-800 Microcomputer development system with TTY/CRT, line printer, diskette, PROM programmer and high speed paper tape reader facilities. ICE-30 In-circuit emulation for the 3001 MCU. ROM-SIM ROM simulation for all of Intel's Bipolar ROMs and PROMs. Application Central processor and disk controller designs and Notes system timing considerations. Customer Comprehensive 3 day course covering the component Course family, CPU and controller designs, microprogramming and the MDS-800, ICE-30 and ROM-SIM operation. The Series 3000 family is designed to provide a Total System Solution: high performance, minimum package count and total commitment to support. Contents INTRODUCTION ........................ 1-1 Series 3000 COMPONENT FAMILY .................. 2-1 Reference 3001 Microprogram Control Unit ....... 2-1 3002 Central Processing Element ...... 2-15 Manual 3003 Look-Ahead Carry Generator .... 2-31 3212 Multi-Mode Latch Buffer ......... 2-39 3214 Interrupt Control Unit . .. .. 2-49 3216/3226 Parallel Bi-Directional Bus Driver. .. 2-61 APPLICATIONS ......................... 3-1 3000 Family System Timing ............ 3-1 Disk Controller Designed With Series 3000 Computing Elements. .. 3-9 Central Processor Designs Using The Intel® Series 3000 Computing Elements . .. 3-19 ORDERING AND PACKAGING INFORMATION ......................... 4-1 Ordering Information .................. 4-1 Package Outlines ...................... 4-2 Series 3000 Family INTRODUCTION A family architecture To reduce component count as far as practical, a busses to be formed simply by connecting inputs and multi-chip LSI microcomputer set must be designed as a outputs together. complete, compatible family of devices. The omission of Each CPE represents a complete two-bit slice through a bus or a latch or the lack of drive current can multiply the data-processing section of a computer. Several CPES the number of miscellaneous SSI and MSI packages to a may be arrayed in parallel to form a processor of any dismaying extent-witness the reputedly LSI mini­ desired word length. The MCU, which together with the computers now being offered which need over a hun­ microprogram memory, controls the step-by-step oper­ dred extra TIL packages on their processor boards to ation of the processor, is itself a powerful micro­ support one or two custom LSI devices. Successful inte­ programed state sequencer. gration should .result in a minimum of extra packages, Enhancing the performance and capabilities of these and that includes the interrupt and the input/output two components are a number of compatible computing systems. elements. These include a fast look-ahead carry gener­ With this objective in mind, the Intel Schottky bipo­ ator, a priority interrupt unit, and a multimode latch lar LSI microcomputer chip set was developed. Its two buffer. A complete summary of the first available mem­ major components, the 3001 Microprogram Control bers of this family of LSI computing elements and mem­ Unit (MCU) and the 3002 Central Processing Element ories is given in the table on this page. (CPE), may be combined by the digital designer with standard bipolar LSI memory to construct high-per­ 3001 Microprogram control unit formance controller-processors (Fig.!) with a minimum 3002 Central processing element of ancillary logic. 3003 Look.-ahead carry generator Among the features that minimize package count and 3212 Multimode latch buffer improve performance are: the multiple independent 3214 Priority interrupt unit 3216 Noninverting bidirectional bus driver data and address busses that eliminate time multiplex­ 3226 Inverting bidirectional bus driver ing and the need for external latches; the three-state 3601 256-by-4-bit programable read-only memory output buffers with high fanout that make bus drivers 3604 512-by-8-bit programable read-only memory unnecessary except in the largest systems, and the sepa­ 3301 A 256-by-4-bit read-only memory rate output-enable logic that permits bidirectional 3304A 512-by-8-bit read-only memory . CONTROL TO MEMORY DATA BUS MEMORY 110 AOORESS BUS TO MEMORY MICRO NE~T PROGRAM ADDRESS MEMORY CONTROL CLOCK 181T 1 BIT 8 BITS FROM EXTERNAL DATA IN FROM 110 DEVICES MEMORY 1. Bipolar microcomputer. Block diagram shows how to implement a typical 16-bit controller-processor with new family of bipolar computer elements. An array of eight central processing elements (CPEs} is governed by a microprogram control unit (MCU} through a separate read-only memory that carries the microinstructions for the various processing elements. This ROM may be a fast, off-the-shelf unit. Intll Corporation ...mll no responsibility for the u. of any circuitry or microprogram other than circuitry or microprograms embodied in an Intel product. No other circuit patent licenas Ire implied. 1-1 Series 3000 Family ePEs form a processor Each CPE (Fig. 2) carries two bits of five independent Unlike earlier MSI arithmetic-iogic units, which con­ busses. The three input busses can be used in several tain many functions that are rarely used, the micro­ different ways. Typically, the K-bus is used for micro­ function decoder selects only useful CPE operations. program mask or literal (constant) value input, while Standard carry look-ahead outputs, X and y, are gener­ the other two input busses, M and I, carry data from ex­ ated by the CPE for use with available look-ahead de­ ternal memory or input/output devices. D-bus outputs vices or the Intel 3003 Look-ahead Carry Generator. In­ are connected to the CPE accumulator; A-bus outputs dependent carry input, carry output, shift input, and are connected to the CPE memory address register. As shift output lines are also available. the CPES are wired together, all the data paths, registers, What's more, since the K-bus inputs are always and busses expand accordingly. ANDed with the B-multiplexer outputs into the arith­ Certain data operations can be performed simply by metic function section, a number of useful functions connecting the busses in a particular fashion. For ex­ that in conventional MSI ALUs would require several ample, a byte exchange operation, often used in data­ cycles are generated in a single CPE microcycle. The communications processors, may be carried out by wir­ type of bit masking frequently done in computer control ing the D-bus outputs back to the I-bus inputs, ex­ systems can be performed with the mask supplied to the changing the high-order outputs and low-order inputs. K-bus directly from the microinstruction. Several other discretionary shifts and rotates can be Placing the K-bus in either the aU-one or all-zero accomplished in this manner. state wiU, in most cases, select or deselect the accumula­ A sixth CPE bus, the seven-line microfunction bus, tor in the operation, respectively. This toggling effect of controls the internal operation of the CPE by selecting the K-bus on the accumulator nearly doubles the CPE's the operands and the operation to be performed. The repertoire of microfunctions. For instance, with the arithmetic function section, under control of the micro­ K-bus in the all-zero state, the data on the M-bus may function bus decoder, performs over 40 Boolean and be complemented and loaded into the CPE's accumula­ binary functions, including 2's complement arithmetic tor. The same function selected with the K-bus in the and logical AND, OR, NOT, and exclusive-NOR. It incre­ all-one state will exclusive-NOR the data on the M-bus ments, decrements, shifts left or right, and tests for zero. with the accumulator contents. MEMORY AOORESS BUS OUTPUTS MEMORY DATA BUS MEMORY ADDRESS EA ENABLE CARRYLOOK-AHEAD {_jx __ --========~lL-l=t:==~==TTll OUTPUTS y --:-------------1 !+--+-+--+-+--j:>---CARRY INPUT RIPPLE CARRY -- CLIO-~-----------+t"'T'"T""" _____ SHIFT RIGHT OUTPUT ./ -r-.-J OUTPUT SHIFT RIGHT./" CLK.....I I INPUT vee .-J MICRO- {;;O-i II FUNCTION;' FUM~g~N INPUTSBUS F,' DECOOER I F, ~ I L __ _ __.-J M, Mo ~ ~--.--­ MEMORY OATA EXTERNAL MASK BUS BUS INPUTS BUS I NPUTS INPUTS 2. Central processing element. This element contains all the circuits representing a two-bit-wide slice through a small com­ puter's central processor. To build a processor of word width N, all that's necessary is to connect an array of NI2 CPEs together. 1-2 Series 3000 Family Threelnnovatlonl The power and versatility of the CPE are increased by other approach would require some type of program three rather novel techniques. The first of these is the counter. To simplify its logic, the MCV (Fig. 4) uses the use of the carry lines and logic during non-arithmetic classic approach and requires address control informa­ operations for bit testing and zero detection. The carry tion from each microinstruction. This information is circuits during these operations perform a word-wide not, however, simply the next microprogram address.
Recommended publications
  • System Design for a Computational-RAM Logic-In-Memory Parailel-Processing Machine
    System Design for a Computational-RAM Logic-In-Memory ParaIlel-Processing Machine Peter M. Nyasulu, B .Sc., M.Eng. A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy Ottaw a-Carleton Ins titute for Eleceical and Computer Engineering, Department of Electronics, Faculty of Engineering, Carleton University, Ottawa, Ontario, Canada May, 1999 O Peter M. Nyasulu, 1999 National Library Biôiiothkque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 39S Weiiington Street 395. nie WeUingtm OnawaON KlAW Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, ban, distribute or seU reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microficbe/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Abstract Integrating several 1-bit processing elements at the sense amplifiers of a standard RAM improves the performance of massively-paralle1 applications because of the inherent parallelism and high data bandwidth inside the memory chip.
    [Show full text]
  • Dop – a Cpu Core for Teaching Basics of Computer Architecture
    DOP – A CPU CORE FOR TEACHING BASICS OF COMPUTER ARCHITECTURE Milos Becvar, Alois Pluhacek and Jiri Danecek Department of Computer Science and Engineering Faculty of Electrical Engineering Czech Technical University in Prague, Abstract: A simple 16-bit processor core called DOP and its teaching environment is presented. The DOP processor illustrates the basic principles of computer organization and is therefore used in the introductory hardware course. Its major features are simplicity, availability of an FPGA implementation and a C compiler. This paper presents the description of the core, HW and SW tools and teaching methodology. computing performance. The DOP processor core was 1. INTRODUCTION developed at our department together with various SW and HW visualization tools (Danecek et al., 1994a). An introductory computer hardware course should teach students to the fundamental principles of computer The goal of this paper is to describe this processor core internal functionality. Students, who are familiar with and its learning environment for teaching basics of programming in high-level languages, are required to computer organization. The paper is organized as understand the interaction between a processor, a follows - section 2 outlines the introductory course and memory and I/O devices, an internal organization of characterizes the students, section 3 describes the DOP processor, computer arithmetic and basics of digital processor core, section 4 describes the SW and HW design. Our experience has shown that it is not an easy tools supporting this processor and finally section 5 task for most of them. The functionality of the processor outlines the use of the DOP in our introductory course.
    [Show full text]
  • 10. Assembly Language, Models of Computation
    10. Assembly Language, Models of Computation 6.004x Computation Structures Part 2 – Computer Architecture Copyright © 2015 MIT EECS 6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #1 Beta ISA Summary • Storage: – Processor: 32 registers (r31 hardwired to 0) and PC – Main memory: Up to 4 GB, 32-bit words, 32-bit byte addresses, 4-byte-aligned accesses OPCODE rc ra rb unused • Instruction formats: OPCODE rc ra 16-bit signed constant 32 bits • Instruction classes: – ALU: Two input registers, or register and constant – Loads and stores: access memory – Branches, Jumps: change program counter 6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #2 Programming Languages 32-bit (4-byte) ADD instruction: 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 opcode rc ra rb (unused) Means, to the BETA, Reg[4] ß Reg[2] + Reg[3] We’d rather write in assembly language: Today ADD(R2, R3, R4) or better yet a high-level language: Coming up a = b + c; 6.004 Computation Structures L10: Assembly Language, Models of Computation, Slide #3 Assembly Language Symbolic 01101101 11000110 Array of bytes representation Assembler 00101111 to be loaded of stream of bytes 10110001 into memory ..... Source Binary text file machine language • Abstracts bit-level representation of instructions and addresses • We’ll learn UASM (“microassembler”), built into BSim • Main elements: – Values – Symbols – Labels (symbols for addresses) – Macros 6.004 Computation Structures L10: Assembly Language, Models
    [Show full text]
  • Programmable Digital Microcircuits - a Survey with Examples of Use
    - 237 - PROGRAMMABLE DIGITAL MICROCIRCUITS - A SURVEY WITH EXAMPLES OF USE C. Verkerk CERN, Geneva, Switzerland 1. Introduction For most readers the title of these lecture notes will evoke microprocessors. The fixed instruction set microprocessors are however not the only programmable digital mi• crocircuits and, although a number of pages will be dedicated to them, the aim of these notes is also to draw attention to other useful microcircuits. A complete survey of programmable circuits would fill several books and a selection had therefore to be made. The choice has rather been to treat a variety of devices than to give an in- depth treatment of a particular circuit. The selected devices have all found useful ap• plications in high-energy physics, or hold promise for future use. The microprocessor is very young : just over eleven years. An advertisement, an• nouncing a new era of integrated electronics, and which appeared in the November 15, 1971 issue of Electronics News, is generally considered its birth-certificate. The adver• tisement was for the Intel 4004 and its three support chips. The history leading to this announcement merits to be recalled. Intel, then a very young company, was working on the design of a chip-set for a high-performance calculator, for and in collaboration with a Japanese firm, Busicom. One of the Intel engineers found the Busicom design of 9 different chips too complicated and tried to find a more general and programmable solu• tion. His design, the 4004 microprocessor, was finally adapted by Busicom, and after further négociation, Intel acquired marketing rights for its new invention.
    [Show full text]
  • The Hpc C Compiler 2.1 Introduction
    ™ MICROCONTROLLER DEVELOPMENT SUPPORT ( MOLE HPC™ C COMPILER USER'S MANUAL ( ( ( ( ~ National Semiconductor Corporation Customer Order Number 424410883-001 NSC Publication Number 424410883-001C October 1988 HPC™ C Compiler User's Manual @l 1988 National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara. California 95052-8090 CONTENTS Chapter 1 OVERVIEW 1.1 INTRODUCTION............................. 1-1 1.2 MANUAL ORGANIZATION. .. 1-2 1.3 DOCUMENTATION CONVENTIONS. .. 1-2 1.3.1 General Conventions . .. 1-2 1.3.2 Conventions in Syntax Descriptions ............. 1-2 1.3.3 Example Conventions. .. 1-3 1.3.4 Additional Conventions .................... 1-3 Chapter 2 THE HPC C COMPILER 2.1 INTRODUCTION............................. 2-1 2.2 COMPILER COMMAND SYNTAX 2-1 Chapter 3 BASIC DEFINITIONS 3.1 INTRODUCTION............................. 3-1 3.2 NAMES.................................. 3-1 3.3 CONSTANTS............................... 3-1 3.4 ESCAPE SEQUENCES . .. 3-2 3.5 COMMENTS............................... 3-3 3.6 DATA TYPES. .. 3-3 3.7 PREPROCESSOR DIRECTIVES . .. 3-4 3.8 PROGRAM ORGANIZATION. .. 3-4 3.9 INITIALIZATION OF VARIABLES . .. 3-4 3.10 OPERATORS . .. 3-5 3.11 IN-LINE MICROASSEMBLER CODE . .. 3-5 Chapter 4 IMPLEMENTATION-DEPENDENT CONSIDERATIONS 4.1 INTRODUCTION............................. 4-1 4.2 MEMORy................................. 4-1 4.3 STORAGE CLASSES . .. 4-1 4.3.1 Storage Class Modifiers. .. 4-1 4.4 C STACK FORMAT . .. 4-3 4.5 USING IN-LINE MICROASSEMBLER CODE. .. 4-4 4.6 EFFICIENCY CONSIDERATIONS . .. 4-6 4.6.1 Declaration Syntax . .. 4-9 4.7 STATEMENTS AND IMPLEMENTATION .............. 4-10 4.8 RUN-TIME NOTES ........................... 4-11 v Appendix A CCHPC SPECIFICATIONS Appendix B CONVERTING BETWEEN STANDARD C AND CCHPC Appendix C INVOCATION LINE SYNTAX C.l INTRODUCTION............................
    [Show full text]
  • WCAE 2003 Workshop on Computer Architecture Education
    WCAE 2003 Proceedings of the Workshop on Computer Architecture Education in conjunction with The 30th International Symposium on Computer Architecture DQG 2003 Federated Computing Research Conference Town and Country Resort and Convention Center b San Diego, California June 8, 2003 Workshop on Computer Architecture Education Sunday, June 8, 2003 Session 1. Welcome and Keynote 8:45–10:00 8:45 Welcome Edward F. Gehringer, workshop organizer 8:50 Keynote address, “Teaching and teaching computer Architecture: Two very different topics (Some opinions about each),” Yale Patt, teacher, University of Texas at Austin 1 Break 10:00–10:30 Session 2. Teaching with New Architectures 10:30–11:20 10:30 “Intel Itanium floating-point architecture,” Marius Cornea, John Harrison, and Ping Tak Peter Tang, Intel Corp. ................................................................................................................................. 5 10:50 “DOP — A CPU core for teaching basics of computer architecture,” Miloš BeþváĜ, Alois Pluháþek and JiĜí DanƟþek, Czech Technical University in Prague ................................................................. 14 11:05 Discussion Break 11:20–11:30 Session 3. Class Projects 11:30–12:30 11:30 “Superscalar out-of-order demystified in four instructions,” James C. Hoe, Carnegie Mellon University ......................................................................................................................................... 22 11:50 “Bridging the gap between undergraduate and graduate experience in
    [Show full text]
  • Micro Machine·Independent Microassembler
    MICRO MACHINE·INDEPENDENT MICROASSEMBLER 11 July 1980 ... by. Edward Fiala Peter Deutsch Butler Lampson Xerox Palo Alto Research Center 3333 Coyote Hill Rd. Palo Alto, CA. 94304 Filed on: [Maxcl]<AltoDOCS>Micro.Press Sources on: [Ivy]<DoradoSource)MicroMemo.Dm This manual describes a machine-independent microassembly language originally developed for the Maxcl computer and since used for the Maxc2, Dorado, and DO computers as well as for several smaller projects. This manual is the property of Xerox Corporation and is to be used solely for evaluative purposes. No part thereof may be reproduced, stored in a retrieval system transmited, disseminated, or disclosed to others in any form or by any means without prior written permission of Xerox. Micro: Machine-Independent MicroAssembler 11 July 1980 2 TABLE OF CONTENTS 1. Introduction . .. 3 2. Assembly Procedures . .. 3 3. Error Messages. .. 6 4. Assembly Listings ..............'. .. 7 5. Cross Reference Listings. .. 8 6. Comments .................................... 9 7. Statements.................................... 10 7.1 Builtins.................................. 11 7.2 Defining Symbols . ............... 11 7.3 Tokens.................................. 13 7.4 Neutrals and Tails ........................... 14 7.5 Clause Evaluation ........................... 16 7.6 Treatment of Arguments ...................... 16 7.7 Undefined Symbols. .. 17 7.7.1 Destination Addresses .................... 18 7.7.2 Octal Numbers ......................... 18 7.7.3 Literals .............................
    [Show full text]
  • C-Ware Software Toolset Tutorial Workbook
    User Guide C-WARE SOFTWARE TOOLSET TUTORIAL WORKBOOK C-WARE SOFTWARE TOOLSET VERSION 2.2 CSTTW-UG/D Rev 00 C-Ware Software Toolset Tutorial Workbook C-WARE SOFTWARE TOOLSET, VERSION 2.2 CSTTW-UG/D Rev 00 Copyright © 2003 Motorola, Inc. All rights reserved. No part of this documentation may be reproduced in any form or by any means or used to make any derivative work (such as translation, transformation, or adaptation) without written permission from Motorola. Motorola reserves the right to revise this documentation and to make changes in content from time to time without obligation on the part of Motorola to provide notification of such revision or change. Motorola provides this documentation without warranty, term, or condition of any kind, either implied or expressed, including, but not limited to, the implied warranties, terms or conditions of merchantability, satisfactory quality, and fitness for a particular purpose. Motorola may make improvements or changes in the product(s) and/or the program(s) described in this documentation at any time. C-3e, C-5, C-5e, C-Port, C-Ware, Q-3, and Q-5 are all trademarks of C-Port, a Motorola Company. Motorola and the stylized Motorola logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners. CSTTW-UG/D Rev 00 CONTENTS About This Guide Guide Overview . 9 Using PDF Documents . 10 Guide Conventions . 11 References to CST Pathnames . 12 Revision History . 13 Related Product Documentation . 14 LESSON 1 Workbook Overview Overview . 17 Lessons . 17 Lessons in This Workbook .
    [Show full text]
  • Parallel Processing Implementations of a Contextual Classifier for Multispectral Remote Sensing Data Howard J
    Purdue University Purdue e-Pubs LARS Technical Reports Laboratory for Applications of Remote Sensing 1-1-1980 Parallel Processing Implementations of a Contextual Classifier for Multispectral Remote Sensing Data Howard J. Siegel Philip H. Swain Bradley W. Smith Follow this and additional works at: http://docs.lib.purdue.edu/larstech Siegel, Howard J.; Swain, Philip H.; and Smith, Bradley W., "Parallel Processing Implementations of a Contextual Classifier for Multispectral Remote Sensing Data" (1980). LARS Technical Reports. Paper 51. http://docs.lib.purdue.edu/larstech/51 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. PARALLEL PROCESSING IMPLEMENTATIONS 060380 OF A CONTEXTUAL CLASSIFIER FOR MULTISPECTRAL REMOTE SENSING DATA HOWARD JAY SIEGEL J PHILIP H. SWAIN J AND BRADLEY W. SMITH Purdue University ABSTRACT pIer algorithms used for remote sensing data analysis) typically require large a­ Contextual classifiers are being de­ mounts of computation time. One way to veloped as a method to exploit the spati­ reduce the execution time of these tasks al/spectral context of a pixel to achieve is through the use of parallelism. Vari­ accurate classification. Classification ous parallel processing systems that can algorithms such as the contextual classi­ be used for remote sensing have been fier typically require large amounts of built or proposed. The Control Data Cor­ computation time. One way to reduce the poration Flexible Processor system is a execution time of these tasks is through commercially available multiprocessor sys­ the use of parallelism. The applicability tem which has been recommended for use in of the CDC Flexible Processor system and remote sensing [4,5].
    [Show full text]
  • Are Central to Operating Systems As They Provide an Efficient Way for the Operating System to Interact and React to Its Environment
    1 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in OPERATING SYSTEMS DESIGN Topic Objective: At the end of this topic student will be able to understand: Understand the operating system Understand the Program execution Understand the Interrupts Understand the Supervisor mode Understand the Memory management Understand the Virtual memory Understand the Multitasking Definition/Overview: An operating system: An operating system (commonly abbreviated to either OS or O/S) is an interface between hardware and applications; it is responsible for the management and coordination of activities and the sharing of the limited resources of the computer. The operating system acts as a host for applications that are run on the machine. Program execution: The operating system acts as an interface between an application and the hardware. Interrupts: InterruptsWWW.BSSVE.IN are central to operating systems as they provide an efficient way for the operating system to interact and react to its environment. Supervisor mode: Modern CPUs support something called dual mode operation. CPUs with this capability use two modes: protected mode and supervisor mode, which allow certain CPU functions to be controlled and affected only by the operating system kernel. Here, protected mode does not refer specifically to the 80286 (Intel's x86 16-bit microprocessor) CPU feature, although its protected mode is very similar to it. Memory management: Among other things, a multiprogramming operating system kernel must be responsible for managing all system memory which is currently in use by programs. www.bsscommunitycollege.in www.bssnewgeneration.in www.bsslifeskillscollege.in 2 www.onlineeducation.bharatsevaksamaj.net www.bssskillmission.in Key Points: 1.
    [Show full text]
  • A Programming Environment for Network Processors
    A Programming Environment for Network Processors Michael E. Kounavis, Andrew T. Campbell, Stephen T. Chou and John B. Vicente COMET Group, Columbia University, New York, NY 10025, USA Abstract There is growing interest in network processor technologies capable of processing packets at line rates. In this paper, we present the design, implementation and evaluation of NetBind, a programming environment for constructing data paths in network processor-based routers. NetBind balances the flexibility of network programmability against the need to process and forward packets at line speeds. To support dynamic binding of components with minimum addition of instructions in the critical path, NetBind modifies the machine language code of components at run time. To support fast data path composition, NetBind reduces the number of binding operations required for constructing data paths to a minimum set so that binding latencies are comparable to packet forwarding times. Data paths constructed using NetBind seamlessly share the resources of the same network processor. The NetBind source code described and evaluated in this paper is freely available on the Web [15] for experimentation. 1. Introduction Recently, there has been a growing interest in network processor technologies [1-4] that can support software-based implementations of the critical path while processing packets at high speeds. Network processors use specialized architectures that employ multiple processing units to offer high packet- processing throughput. We believe that introducing programmability in network processor-based routers is an important area of research that has not been fully addressed as yet. The difficulty stems from the fact network processor-based routers need to forward minimum size packets at line rates and yet support modular and extensible data paths.
    [Show full text]
  • Netbind: a Binding Tool for Constructing Data Paths in Network Processor-Based Routers
    NetBind: A Binding Tool for Constructing Data Paths in Network Processor-Based Routers Andrew T. Campbell, Stephen T. Chou, Michael E. Kounavis, Vassilis D. Stachtos and John Vicente network processors because these techniques introduce Abstract-- There is growing interest in network processor considerable overhead in terms of additional instructions in technologies capable of processing packets at line rates. In this the critical path. One solution to this problem is to optimize paper, we present the design, implementation and evaluation the code produced by a binding tool, once data path of NetBind, a high performance, flexible and scalable binding composition has taken place. Code optimization algorithms tool for dynamically constructing data paths in network can be complex and time-consuming, however, and thus not processor-based routers. The methodology that underpins NetBind balances the flexibility of network programmability suitable for applications that require fast data path against the need to process and forward packets at line speeds. composition, (e.g., data path composition on a packet-by- Data paths constructed using NetBind seamlessly share the packet basis). We believe that a binding tool for network resources of the same network processor. We compare the processor-based routers needs to balance the flexibility of performance of NetBind to the MicroACE system developed network programmability against the need to process and by Intel to support binding between software components forward packets at line rates. This poses significant running on Intel IXP1200 network processors. We evaluate challenges. these alternative approaches in terms of their binding In this paper, we present the design, implementation and overhead, and discuss how this can affect the forwarding evaluation of NetBind, a high performance, flexible and performance of IPv4 data paths running on IXP1200 network processor-based routers.
    [Show full text]