23 Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism

Total Page:16

File Type:pdf, Size:1020Kb

23 Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism 23 Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism Georg F. Hoffmann 23.1 Introduction – 295 23.2 Hyperlysinemia/Saccharopinuria – 295 23.2.1 Clinical Presentation – 295 23.2.2 Metabolic Derangement – 295 23.2.3 Genetics – 296 23.2.4 Diagnostic Tests – 296 23.2.5 Treatment and Prognosis – 296 23.3 Hydroxylysinuria – 296 23.4 2-Amino-/2-Oxo-Adipic Aciduria – 296 23.4.1 Clinical Presentation – 296 23.4.2 Metabolic Derangement – 296 23.4.3 Genetics – 296 23.4.4 Diagnostic Tests – 296 23.4.5 Treatment and Prognosis – 297 23.5 Glutaric Aciduria Type I (Glutaryl-CoA Dehydrogenase Deficiency) – 297 23.5.1 Clinical Presentation – 297 23.5.2 Metabolic Derangement – 297 23.5.3 Genetics – 300 23.5.4 Diagnostic Tests – 300 23.5.5 Treatment and Prognosis – 301 23.6 L-2-Hydroxyglutaric Aciduria – 302 23.6.1 Clinical Presentation – 302 23.6.2 Metabolic Derangement – 303 23.6.3 Genetics – 303 23.6.4 Diagnostic Tests – 303 23.6.5 Treatment and Prognosis – 303 23.7 D-2-Hydroxyglutaric Aciduria – 303 23.7.1 Clinical Presentation – 303 23.7.2 Metabolic Derangement – 303 23.7.3 Genetics – 303 23.7.4 Diagnostic Tests – 304 23.7.5 Treatment and Prognosis – 304 23.8 N-Acetylaspartic Aciduria (Canavan Disease) – 304 23.8.1 Clinical Presentation – 304 23.8.2 Metabolic Derangement – 304 23.8.3 Genetics – 304 23.8.4 Diagnostic Tests – 304 23.8.5 Treatment and Prognosis – 305 References – 305 294 Chapter 23 · Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism Catabolism of Lysine, Hydroxylysine, and Tryptophan Lysine, hydroxylysine and tryptophan are degraded with- otide (FAD) and hence to the respiratory chain (. Fig. in the mitochodrion initially via separate pathways but 13.1) via electron transfer protein (ETF)/ETF-dehy- which then converge in a common pathway starting with drogenase (ETF-DH). From the five distinct enzyme de- 2-aminoadipic and 2-oxoadipic acids (. Fig. 23.1). The ficiencies identified in the degradation of lysine, only en- initial catabolism of lysine proceeds mainly via the bifunc- zymes 4 and 6 have proven relevance as neurometabolic tional enzyme, 2-aminoadipic-6-semialdehyde synthase disorders. Glutaric aciduria type I is caused by the isolated (enzyme 1). A small amount of lysine is cata bolized via deficiency of glutaryl-CoA dehydrogenase/glutaconyl- IV pipecolic acid and the peroxisomal enzyme, pipecolic acid CoA decarboxylase. Glutaric aciduria type II, caused by oxidase (enzyme 2). Hydroxylysine enters this pathway ETF/ETF-DH deficiencies, is discussed in 7 Chap. 13. after phosphorylation by hydroxylysine kinase (enzyme Pipecolic acid oxidase deficiency is discussed in 7 Chap. 3). 2-Aminoadipic-6-semialdehyde is converted into glu- 40 and antiquitin deficiency in 7 Chap. 29. taryl-CoA by antiquitin (enzyme 4, deficient in B6 respon- The metabolic origins and fates of L- and D-2-hydro- sive seizures) and a second bifunctional enzyme, 2-ami- xyglutaric acids have not been completely unravelled in noadipate aminotransferase/2-oxoadipate dehydrogenase mammals. Yet, L- and D-2-hydroxyglutaric aciduria (enzyme 5). Glutaryl-CoA is converted into crotonyl- have recently been shown to be caused by deficiencies CoA by a third bifunctional enzyme, glutaryl-CoA dehy- of specific dehydrogenases. Aspartoacylase irreversibly drogenase/glutaconyl-CoA decarboxylase (enzyme 6). splits N-acetylaspartic acid into acetate and aspartate This enzyme tranfers electrons to flavin adenine dinucle- (not illustrated). Fig. 23.1. Tryptophan, hydroxylysine and lysine catabolic dehydro genase; 6, glutaryl-CoA dehydrogenase/glutaconyl-CoA pathways. CoA, coenzyme A. 1, 2-aminoadipic-6-semialdehyde decarboxylase. Enzyme deficiencies are indicated by solid bars synthase; 2, pipecolic acid oxidase; 3, hydroxylysine kinase; across the arrows 4, antiquitin; 5, 2-aminoadipate aminotransferase/2-oxoadipate 295 23 23.2 · Hyperlysinemia/Saccharopinuria share structural similarities with the excitatory amino acid Seven inborn errors are described in this chapter: glutamate (D-2-, L-2-, 3-hydroxyglutarate, glutarate) or Hyperlysinemia I/hyperlysinemia II or saccharopinuria, have been suggested to be neurotransmitters/neuromodu- hydroxylysinuria and 2-amino-/2-oxo-adipic aciduria lators (J-hydroxybutyrate, N-acetylaspartylglutamate) [2]. may all have no clinical significance, but some patients Evidence from in vitro and in vivo studies is growing that are retarded and show variable neurological abnorma- these acids indeed interfere with glutamatergic or gamma lities. amino butyric acid (GABA)-ergic neurotransmission or Glutaric aciduria type I (GA I, synonym glutaryl-CoA impair energy metabolism. Delayed myelination or pro- dehydrogenase deficiency) causes severe neurometa- gressive demyelination, basal ganglia and cerebellum patho- bolic disease. The first months may be uneventful with logy, the main pathologies in cerebral organic acid dis orders, only subtle neurological abnormalities and/or macro- are also characteristic of mitochondrial disorders suggest- cephaly, but progressive cerebral atrophy or subdural ing at least partial common pathological mechanisms. hemorrhages on neuroimaging. Between age 6 to Patients with cerebral organic acid disorders often 18 months most untreated patients suffer an acute en- suffer a diagnostic odyssey and may even remain undiag- cephalo pathy resulting in irreversible destruction of nosed. Metabolic hallmarks such as hypoglycemia, meta- suscep tible brain regions, in particular the striatum, bolic acidosis or lactic acidemia, the usual concomitants of a dystonic-dyskinetic syndrome and, ultimately, often disorders of organic acid metabolism, are generally absent. early death. Restriction of lysine, administration of Furthermore, elevations of diagnostic metabolites may be L-carnitine and timely vigorous treatment during inter- small and therefore missed on »routine« organic acid ana- current illness is able to completely prevent or at least lysis, e.g. in glutaric aciduria type I. The correct diagnosis halt the disease. requires an increased awareness of these disorders by the L-2-Hydroxyglutaric aciduria shows an insidious referring physician as well as the biochemist in the meta- onset with delay of unsupported walking and speech, bolic laboratory. Diagnostic clues can be derived from neuro- febrile convulsions, and macrocephaly. Over the years, imaging findings . Fig. 23.2). Progressive disturbances of severe mental retardation and cerebellar ataxia devel- myelination, cerebellar atrophy, frontotemporal atrophy, op with or without dystonia, pyramidal signs, and hypodensities and/or infarcts of the basal ganglia and any seizures. symmetrical (fluctuating) pathology, apparently indepen- D-2-Hydroxyglutaric aciduria causes severe early- dent of defined regions of vascular supply, are suggestive of onset epileptic encephalopathy with neonatal seizures, cerebral organic acid disorders. lack of psychomotor development and early death. In contrast to the cerebral organic acid disorders, the Some patients exhibit milder neurological symptoms other know defects of lysine and hydroxylysine degradation such as mild developmental delay, delayed speech and all appear to be rare biochemical variants of human meta- febrile convulsions. bolism without clinical significance. N-Acetylaspartic aciduria (synonyms: aspartoacylase deficiency, spongy degeneration of the brain, Van Bogaert- Bertrand disease or Canavan disease) is an infantile 23.2 Hyperlysinemia/Saccharopinuria degenerative disease primarily affecting the cerebral white matter. It commonly manifests with poor head 23.2.1 Clinical Presentation control and hypotonia at 2-4 months, macrocephaly, marked developmental delay, optic nerve atrophy, Hyperlysinemia/saccharopinuria appears to be a rare »non- progressive spasticity, opisthotonic posturing, seizures disease«. About half of the patients described were detected and death in childhood. incidentally and are healthy [3]. Symptoms have included psychomotor retardation, epilepsy, spasticity, ataxia and short stature. Individual patients have been described with joint laxity and spherophakia, respectively. 23.1 Introduction A group of organic acid disorders presents exclusively with 23.2.2 Metabolic Derangement progressive neurological symptoms of ataxia, epilepsy, myo- clonus, extrapyramidal symptoms, metabolic stroke, and Hyperlysinemia/saccharopinuria is caused by deficiency macro cephaly [1]. The core »cerebral« organic acid dis- of the bifunctional protein 2-aminoadipic semialdehyde orders are glutaric aciduria type I, D-2-hydroxyglutaric acid- synthase, the first enzyme of the main route of lysine de- uria, L-2-hydroxyglutaric aciduria, 4-hydroxybutyric acid- gradation [4]. The two functions, lysine-2-oxoglutarate uria and N-acetylaspartic aciduria. Strikingly, in all these reductase and saccharopine dehydrogenase, may be differ- disorders the pathological compounds that accumulate ently affected by mutations. Most often, both activities are 296 Chapter 23 · Cerebral Organic Acid Disorders and Other Disorders of Lysine Catabolism severely reduced, resulting predominantly in hyperlysine- 23.3 Hydroxylysinuria mia and hyperlysinuria, accompanied by relatively mild sacccharopinuria (hyperlysinemia I). In hyperlysinemia II Hydroxylysinuria and concomitant hydroxylysinemia has or saccharopinuria [5], there is a relatively more pronounced been identified in only six patients, all of whom showed decrease in saccharopine dehydrogenase activity with re- some degree of mental retardation
Recommended publications
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Newborn Screening Laboratory Manual of Services
    Newborn Screening Laboratory Manual of Services Test Panel: Please see the following links for a detailed description of testing in the Newborn Screening section. Information about the Newborn Screening program is available here. Endocrine Disorders Congenital adrenal hyperplasia (CAH) Congenital hypothyroidism (TSH) Hemoglobinopathies Sickle cell disease (FS) Alpha (Barts) Sickle βeta Thalassemia (FSA) Other sickling hemoglobinopathies such as: FAS FAC FAD FAE Homozygous conditions such as: FC FD FE Metabolic Disorders Biotinidase deficiency Galactosemia Cystic fibrosis (CF) first tier screening for elevated immunoreactive trypsinogen (IRT) Cystic fibrosis second tier genetic mutation analysis on the top 4% IRT concentrations. Current alleles detected : F508del, I507del, G542X, G85E, R117H, 621+1G->T, 711+1G->T, R334W, R347P, A455E, 1717-1G->A, R560T, R553X, G551D, 1898+1G->A, 2184delA, 2789+5G->A, 3120+1G->A, R1162X, 3659delC, 3849+10kbC->T, W1282X, N1303K, IVS polyT T5/T7/T9 *Currently validating a mutation panel that includes the above alleles in addition to the following: 1078delT, Y122X, 394delTT, R347H, M1101K, S1255X, 1898+5G->T, 2183AA->G, 2307insA, Y1092X, 3876delA, 3905insT, S549N, S549R_1645A->C, S549R-1647T->G, S549R-1647T->G, V520F, A559T, 1677delTA, 2055del9->A, 2143delT, 3199del6, 406-1G->A, 935delA, D1152H, CFTRdele2, E60X, G178R, G330X, K710X, L206W, Q493X, Q890X, R1066C, R1158X, R75X, S1196X, W1089X, G1244E, G1349D, G551S, R560KT, S1251N, S1255P Amino acid disorders Phenylketonuria (PKU) / Hyperphenylalaninemia Maple
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Glutaric Acidemia Type 1
    Glutaric acidemia type 1 What is glutaric acidemia type 1? Glutaric acidemia type 1 is an inherited disease characterized by episodes of severe brain dysfunction that result in spasticity, low muscle tone, and seizures.1,2 Individuals with glutaric acidemia type 1 have defects in the glutaryl-CoA dehydrogenase enzyme, which breaks down the amino acids lysine, hydroxylysine, and tryptophan. The symptoms of glutaric acidemia type 1 are due to the build-up of these amino acids and their metabolites in the body, primarily affecting the brain.1 Glutaric acidemia type 1 is also known as glutaric aciduria type 1.2 What are the symptoms of glutaric acidemia type 1 and what treatment is available? The severity of symptoms of glutaric acidemia type 1 can vary widely, even within families. Newborns may have macrocephaly (large head size) with no other signs or symptoms. Symptoms typically begin within months after birth and are often triggered by illness or fasting. Symptoms may include2: • Hypotonia (low muscle tone) • Feeding difficulties • Poor growth • Swelling of the brain • Spasticity (abnormally tight muscles) • Dystonia (sustained muscle contractions causing twisting movements and abnormal posture) • Seizures • Developmental delays • Coma, and possibly death, especially if untreated Individuals tend to have a reduced life expectancy. Approximately 10% of individuals die within the first decade; more than half do not survive past 35 years of age. 3 There is no cure for glutaric acidemia type 1, and treatment is aimed at preventing episodes of brain dysfunction and seizures. Treatment generally includes a low protein diet and nutrition supplements, and a feeding tube may be required for some individuals.
    [Show full text]
  • Metabolomic Analysis Reveals That the Drosophila Gene Lysine Influences Diverse Aspects of Metabolism
    Genetics: Early Online, published on October 6, 2017 as 10.1534/genetics.117.300201 Metabolomic analysis reveals that the Drosophila gene lysine influences diverse aspects of metabolism Samantha L. St. Clair*‡, Hongde Li*‡, Usman Ashraf†, Jonathan A. Karty†, and Jason M. *§ Tennessen * Department of Biology, Indiana University, Bloomington, IN 47405, USA † Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA. ‡ These authors contributed equally to this work. § Correspondence: [email protected] Keywords: Drosophila, metabolomics, lysine, LKRSDH, familial hyperlysinemia 1 Copyright 2017. ABSTRACT The fruit fly Drosophila melanogaster has emerged as a powerful model for investigating the molecular mechanisms that regulate animal metabolism. A major limitation of these studies, however, is that many metabolic assays are tedious, dedicated to analyzing a single molecule, and rely on indirect measurements. As a result, Drosophila geneticists commonly use candidate gene approaches, which, while important, bias studies towards known metabolic regulators. In an effort to expand the scope of Drosophila metabolic studies, we used the classic mutant lysine (lys) to demonstrate how a modern metabolomics approach can be used to conduct forward genetic studies. Using an inexpensive and well-established gas chromatography-mass spectrometry (GC-MS)-based method, we genetically mapped and molecularly characterized lys by using free lysine levels as a phenotypic readout. Our efforts revealed that lys encodes the Drosophila homolog of Lysine Ketoglutarate Reductase/Saccharopine Dehydrogenase (LKRSDH), which is required for the enzymatic degradation of lysine. Furthermore, this approach also allowed us to simultaneously survey a large swath of intermediate metabolism, thus demonstrating that Drosophila lysine catabolism is complex and capable of influencing seemingly unrelated metabolic pathways.
    [Show full text]
  • Amino Acid Disorders
    471 Review Article on Inborn Errors of Metabolism Page 1 of 10 Amino acid disorders Ermal Aliu1, Shibani Kanungo2, Georgianne L. Arnold1 1Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; 2Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA Contributions: (I) Conception and design: S Kanungo, GL Arnold; (II) Administrative support: S Kanungo; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: E Aliu, GL Arnold; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Georgianne L. Arnold, MD. UPMC Children’s Hospital of Pittsburgh, 4401 Penn Avenue, Suite 1200, Pittsburgh, PA 15224, USA. Email: [email protected]. Abstract: Amino acids serve as key building blocks and as an energy source for cell repair, survival, regeneration and growth. Each amino acid has an amino group, a carboxylic acid, and a unique carbon structure. Human utilize 21 different amino acids; most of these can be synthesized endogenously, but 9 are “essential” in that they must be ingested in the diet. In addition to their role as building blocks of protein, amino acids are key energy source (ketogenic, glucogenic or both), are building blocks of Kreb’s (aka TCA) cycle intermediates and other metabolites, and recycled as needed. A metabolic defect in the metabolism of tyrosine (homogentisic acid oxidase deficiency) historically defined Archibald Garrod as key architect in linking biochemistry, genetics and medicine and creation of the term ‘Inborn Error of Metabolism’ (IEM). The key concept of a single gene defect leading to a single enzyme dysfunction, leading to “intoxication” with a precursor in the metabolic pathway was vital to linking genetics and metabolic disorders and developing screening and treatment approaches as described in other chapters in this issue.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Glutaric Acidemia Type 1: Treatment and Outcome of 168 Patients Over Three Decades
    University of Massachusetts Medical School eScholarship@UMMS Open Access Publications by UMMS Authors 2020-11-01 Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades Kevin A. Strauss University of Massachusetts Medical School Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Nutritional and Metabolic Diseases Commons, and the Pediatrics Commons Repository Citation Strauss KA. (2020). Glutaric acidemia type 1: Treatment and outcome of 168 patients over three decades. Open Access Publications by UMMS Authors. https://doi.org/10.1016/j.ymgme.2020.09.007. Retrieved from https://escholarship.umassmed.edu/oapubs/4429 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Publications by UMMS Authors by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Molecular Genetics and Metabolism 131 (2020) 325–340 Contents lists available at ScienceDirect Molecular Genetics and Metabolism journal homepage: www.elsevier.com/locate/ymgme Glutaric acidemia type 1: Treatment and outcome of 168 patients over three T decades ⁎ Kevin A. Straussa,b,c, , Katie B. Williamsa, Vincent J. Carsona,b, Laura Poskitta,b, Lauren E. Bowsera, Millie Younga, Donna L. Robinsona,
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • Table S1. Disease Classification and Disease-Reaction Association
    Table S1. Disease classification and disease-reaction association Disorder class Associated reactions cross Disease Ref[Goh check et al.
    [Show full text]
  • Defects in Amino Acid Catabolism and the Urea Cycle
    Handbook of Clinical Neurology, Vol. 113 (3rd series) Pediatric Neurology Part III O. Dulac, M. Lassonde, and H.B. Sarnat, Editors © 2013 Elsevier B.V. All rights reserved Chapter 181 Defects in amino acid catabolism and the urea cycle GEORG F. HOFFMANN* AND STEFAN KO¨ LKER Department of General Pediatrics, University Children’s Hospital Heidelberg, Heidelberg, Germany INTRODUCTION organizations can offer support. Since treatment is time- and cost-intensive, often lifelong, and mostly Defects in amino acid catabolism and the urea cycle performed at home, regular training and support of result in an accumulation of metabolites upstream of patients and their families is essential. Unfortunately, as the defective enzyme (amino acids (AAs), organic acids for all chronic diseases, average compliance with recom- and/or ammonia) causing intoxication. Phenylketonuria mendations has been found as low as 50%, e.g., in PKU. (PKU) is the most frequent AA disorder (AAD) in Individual defects in AA catabolism and the urea Caucasians. Breakdown of AAs results in the release cycle usually have a low prevalence except for some of ammonia that is detoxified by the urea cycle. Hyper- communities with high consanguinity rates. However, ammonemia is the biochemical hallmark of urea cycle the cumulative prevalence of these disorders is consider- defects (UCDs). able (i.e., at least> 1:2000 newborns; Schulze et al., After an uneventful pregnancy and an initially asymp- 2003). Detailed information on diagnosis, genetic test- tomatic period, the onset of symptoms in these disorders ing, treatment and follow-up is available at the following varies from neonatal metabolic decompensation to late online databases: onset in adulthood.
    [Show full text]