Indoor Air Quality

Total Page:16

File Type:pdf, Size:1020Kb

Indoor Air Quality Indoor Air Quality January 1999 Primer Environmental Health Programs Office of Toxic Substances he purpose of this document is to give As a result of the energy crisis of the early T the reader a brief overview of possible seventies, the cost of energy increased by a residential indoor air quality (IAQ) problems factor of almost ten. During that time, the and provide a basic understanding of problem U.S. Government, private industry, and the identification, control methodologies, some commercial sector all developed ways to specific pollutants, their sources, potential better design new buildings and homes, as health effects, and indoor air monitoring well as retrofit existing buildings and homes methodology. with better insulation and energy conservation devices. This resulted in energy savings by IAQ in our homes, schools, and office decreasing ventilation, thus reducing or buildings has received increasing attention in eliminating the amount of outside air that the past few years from scientists, engineers, needs to be heated or conditioned. However, regulatory groups, and the public. There is the efforts to conserve energy, along with the growing concern and mounting evidence that increasing use of synthetic building materials, our indoor environment may be responsible contributes to an indoor air environment that for persistent, irritating health effects. is a possible cause of increasing adverse Traditionally, it has been assumed that people health effects. In certain circumstances, were protected from air pollution when reduced ventilation alone has resulted in indoors, particularly near industrialized areas. adverse health effects to occupants due to However, recent research has shown, that this increased levels of indoor air pollutants. is not necessarily true. Current research indicates that our indoor air may be more Several indoor air pollutants have received polluted than outside air, even in special public health attention. These include industrialized areas. This increased concern is formaldehyde, asbestos, radon, and tobacco accompanied by the realization that most smoke. Other indoor pollutants that can be people spend 80-90 percent of their time associated with health or irritating effects are indoors and that the young, aged, and health- carbon monoxide, nitrogen oxides, household compromised may be at greater risk. and personal care products, microorganisms, and allergens. during cold winter days when air infiltration is Although standards for work place exposure high and humidity is low. to many toxic compounds have been established in the United States and other The first appearance of symptoms are countries, almost no regulatory standards or commonly associated with: guidelines have been established in the U.S. for residential indoor air. Several other Q Moving into a recently purchased home or countries have established residential IAQ new mobile home. standards for several pollutants, particularly Q Recent remodeling. formaldehyde. Our ability to accurately Q Homes with urea-formaldehyde foam assess the health risks associated with insulation. exposure to these compounds is limited. Q Implementing energy conservation There is insufficient data on the number of measures that significantly reduce heat people exposed, the susceptibility of loss and ventilation rates. individuals, the patterns and degree of Q Purchase of new furnishings. exposure, and the actual health effects from Q Installation of new kitchen or bathroom exposure to low levels and mixtures of cabinets. pollutants typically found in the residential Q Installation of new carpeting or cleaning environment. of carpeting. Q Use of some recreational vehicles. Problem Identification IAQ related illnesses are usually characterized Office building workers have often been by one or more of the following symptoms: victims of indoor air pollution commonly irritation of the eyes, nose and/or throat; referred to as "Sick Building Syndrome” headache; cough; runny nose; lethargy; and (SBS). SBS events are characterized by a difficulty sleeping. Other less common significant number of building occupants with symptoms reported include dizziness, nausea, specific health complaints. Investigations diarrhea, dry skin, and rash. Symptoms usually reveal several indoor pollutants, more appear unrelated to any identifiable common often than not in extremely low illness. However, because these symptoms concentrations. Usually no one indoor air are common to many different ailments, a pollutant can be identified as the likely cause physician, allergist, or dermatologist should of health complaints. It is often thought that be consulted to determine any physical the many pollutants in combination are condition that may account for the symptoms responsible for reported health effects. experienced. The symptoms are often most Investigations have indicated that SBS occurs severe during the winter months. Symptoms most often in buildings where ventilation rates may affect only selected individuals in the are maintained near minimum requirements. home and usually are most severe in family Often improved ventilation alleviates the members who spend the greatest amount of problem. Nonresidential IAQ is discussed in time at home, such as mothers and their young a separate fact sheet distributed by the children. Symptoms become less severe when Washington State Department of Labor and away from the indoor environment in question Industries. Copies can be obtained by calling and often disappear with extended absences (360) 902-5436. (e.g., during vacations). Symptoms will often become less severe or disappear when the home is ventilated by opening windows or 2 Control of Indoor Air energy efficient and non-energy efficient homes, results in a 43 percent increase in Pollutants indoor air contaminants. This increase is also Three general methods are used for dependent upon the contaminant, its source controlling indoor air pollutants: source strength, and rate of emission. removal or modification, ventilation, and air cleaning. For homes with very low ACH and those with certain pollutant producing sources, an active Source Removal/Source Modification mechanical ventilation system may be Source removal and source modification (or necessary. This may be either a system for the substitution) are generally considered before entire home or to control a specific pollutant other alternatives because the pollutant produced from an activity or appliance. For sources and their rates of emission are the instance, it is recommended that gas ranges most important factors in determining the have a mechanical exhaust hood located overall IAQ. Source removal is the most directly above the cooking surface to exhaust desirable since it permanently removes the combustion by-products directly to the pollutant source. In practice, source outside. Because of the additional heating or modification and substitution are the more cooling costs associated with whole house common forms of control. Source ventilation systems, such ventilation is not modification involves measures to reduce recommended without heat recovery. An pollutant emissions, such as restricting efficient, economical mechanical ventilation smoking. Substitution usually involves system for the entire home is an air-to-air heat replacement with a less toxic alternative, such exchanger. These systems, when properly as water based prodiucts versus solvent based. sized and installed, can provide an average of 60-85 percent heat recovery from exhaust air Dilution Ventilation and substantially reduce the energy penalty Ventilation can be used to reduce pollutant associated with forced ventilation. In general, concentrations to levels below which no the higher the forced ventilation rate the adverse health effects are experienced. By greater the reduction in pollutants. increasing the ventilation rate in a building, pollutants are rapidly dissipated by providing While ventilation is frequently helpful in less contaminated air from the outside to mix reducing indoor air contaminant with and dilute higher indoor contaminant concentrations, it is more efficient to reduce or levels. This is generally accomplished eliminate pollutants at the source. through non-mechanical means such as infiltration or by opening windows and doors. Air Cleaning Air cleaners operate by mechanical filtration, In older homes and new homes that are not absorption, adsorption, or electrostatic well sealed, the air exchange rate is usually precipitation of pollutants. Extended surface between 0.8 and 1.5 air changes per hour pleated filters serve the most effectively and (ACH). Newer, well-constructed houses and will be the most useful over the widest range older, weatherized houses generally have of pollutant types. These filters are available between .5 and 1.0 ACH. Apartments often as stand-alone units, as add-ons, or as in-lines have even lower ACH. One researcher for most home systems. Filter size and reports that each 30 percent reduction in the efficiency vary. Contact your home system ventilation rate, as can be expected between contractor for specific applications. 3 tissue changes, immune system dysfunction Negative ion generators can be effective air and asthma severity and attack rates the cleaners. Negative ion generators emit Department of Health recommends against the negative charged ions which attach to airborne use of ozone generating devices in an particles, which then attach themselves to occupied space. room surfaces removing them from the
Recommended publications
  • Reference Guide
    Indoor Air Quality Tools for Schools REFERENCE GUIDE Indoor Air Quality (IAQ) U.S. Environmental Protection Agency Indoor Environments Division, 6609J 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 564-9370 www.epa.gov/iaq American Federation of Teachers 555 New Jersey Avenue, NW Washington, DC 20001 (202) 879-4400 www.aft.org Association of School Business Officials 11401 North Shore Drive Reston, VA 22090 (703) 478-0405 www.asbointl.org National Education Association 1201 16th Steet, NW Washington, DC 20036-3290 (202) 833-4000 www.nea.org National Parent Teachers Association 330 North Wabash Avenue, Suite 2100 Chicago, IL 60611-3690 (312) 670-6782 www.pta.org American Lung Association 1740 Broadway New York, NY 10019 (212) 315-8700 www.lungusa.org EPA 402/K-07/008 I January 2009 I www.epa.gov/iaq/schools Introduction � U nderstanding the importance of good basic measurement equipment, hiring indoor air quality (IAQ) in schools is the professional assistance, and codes and backbone of developing an effective IAQ regulations. There are numerous resources program. Poor IAQ can lead to a large available to schools through EPA and other variety of health problems and potentially organizations, many of which are listed in affect comfort, concentration, and staff/ Appendix L. Use the information in this student performance. In recognition of Guide to create the best possible learning tight school budgets, this guidance is environment for students and maintain a designed to present practical and often comfortable, healthy building for school low-cost actions you can take to identify occupants. and address existing or potential air quality Refer to A Framework for School problems.
    [Show full text]
  • Tobacco Smoke, Indoor Air Pollution and Tuberculosis: a Systematic Review and Meta-Analysis
    PLoS MEDICINE Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review and Meta-Analysis Hsien-Ho Lin1, Majid Ezzati2, Megan Murray1,3,4* 1 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Department of Population and International Health and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Division of Social Medicine and Health Inequalities, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 4 Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America Funding: This review was supported by The International Union Against ABSTRACT Tuberculosis and Lung Disease through a grant from the World Bank. The funders had no role in Background study design, data collection and analysis, decision to publish, or Tobacco smoking, passive smoking, and indoor air pollution from biomass fuels have been preparation of the manuscript. implicated as risk factors for tuberculosis (TB) infection, disease, and death. Tobacco smoking Competing Interests: The authors and indoor air pollution are persistent or growing exposures in regions where TB poses a major have declared that no competing health risk. We undertook a systematic review and meta-analysis to quantitatively assess the interests exist. association between these exposures and the risk of infection, disease, and death from TB. Academic Editor: Thomas E. Novotny, Center for Tobacco Control Research and Education, United Methods and Findings States of America We conducted a systematic review and meta-analysis of observational studies reporting Citation: Lin HH, Ezzati M, Murray M effect estimates and 95% confidence intervals on how tobacco smoking, passive smoke (2007) Tobacco smoke, indoor air exposure, and indoor air pollution are associated with TB.
    [Show full text]
  • Racial Differences in Exposure to Environmental Tobacco Smoke Among Children Stephen E
    Children’s Health | Article Racial Differences in Exposure to Environmental Tobacco Smoke among Children Stephen E. Wilson,1,2 Robert S. Kahn,2 Jane Khoury,2 and Bruce P. Lanphear 2 1Division of General Internal Medicine, University of Cincinnati, and 2Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA Americans had serum cotinine levels that Exposure to environmental tobacco smoke (ETS) is a major cause of morbidity and mortality were 32–45% higher than those of whites among U.S. children. Despite African-American children’s having a lower reported exposure to (Benowitz et al. 1999, 2002; Perez-Stable tobacco compared to whites, they suffer disproportionately from tobacco-related illnesses and have et al. 1998). In a nationally representative higher levels of serum cotinine than white children. The goal of this study was to test whether sample, African-American smokers had sig- African-American children have higher levels of serum and hair cotinine, after accounting for ETS nificantly higher serum cotinine levels com- exposure and various housing characteristics. We investigated the level of cotinine in both hair pared with white smokers, even though they and serum in a sample of 222 children with asthma. Using a previously validated survey for adult reported smoking fewer cigarettes (Caraballo smokers, we assessed each child’s exposure to ETS. We collected detailed information on the pri- et al. 1998). However, the data for children mary residence, including home volume, ventilation, and overall home configuration. Despite a and ETS exposure, rather than actual tobacco lower reported ETS exposure, African-American children had higher mean levels of serum coti- use, are more limited.
    [Show full text]
  • Effects of Prenatal Tobacco and Wood-Fuel Smoke Exposure on Birth Weight in Sri Lanka
    healthcare Communication Effects of Prenatal Tobacco and Wood-Fuel Smoke Exposure on Birth Weight in Sri Lanka Malshani L. Pathirathna 1,2,* ID , Hansani M. Abeywickrama 2, Kayoko Sekijima 1, Mieko Sadakata 1, Naoshi Fujiwara 3, Yoshiyuki Muramatsu 1, Kuruppu M. S. Wimalasiri 4, Upali Jayawardene 5, Darshana de Silva 5 and Chandraratne M. B. Dematawewa 4 1 Department of Nursing, Graduate School of Health Sciences, Niigata University, 2-746, Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan; [email protected] (K.S.); [email protected] (M.S.); [email protected] (Y.M.) 2 Department of Nursing, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; [email protected] 3 Department of Medical Technology, Graduate School of Health Sciences, Niigata University, 2-746, Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan; [email protected] 4 Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka; [email protected] (K.M.S.W.); [email protected] (C.M.B.D.) 5 Teaching Hospital Kurunegala, Colombo Road, Kurunegala 60000, Sri Lanka; [email protected] (U.J.); [email protected] (D.d.S.) * Correspondence: [email protected] or [email protected]; Tel.: +81-70-3604-4661 Academic Editor: Sampath Parthasarathy Received: 9 August 2017; Accepted: 23 September 2017; Published: 26 September 2017 Abstract: Low birth weight is a key public health problem in many developing countries, including Sri Lanka. Indoor air pollution from tobacco smoke and kitchen-fuel smoke are among the major contributors to low birth weight, factors of which there are little awareness of in Sri Lanka.
    [Show full text]
  • Going Too Far? Exploring the Limits of Smoking Regulations Simon Chapman
    William Mitchell Law Review Volume 34 | Issue 4 Article 14 2008 Going Too Far? Exploring the Limits of Smoking Regulations Simon Chapman Follow this and additional works at: http://open.mitchellhamline.edu/wmlr Recommended Citation Chapman, Simon (2008) "Going Too Far? Exploring the Limits of Smoking Regulations," William Mitchell Law Review: Vol. 34: Iss. 4, Article 14. Available at: http://open.mitchellhamline.edu/wmlr/vol34/iss4/14 This Article is brought to you for free and open access by the Law Reviews and Journals at Mitchell Hamline Open Access. It has been accepted for inclusion in William Mitchell Law Review by an authorized administrator of Mitchell Hamline Open Access. For more information, please contact [email protected]. © Mitchell Hamline School of Law Chapman: Going Too Far? Exploring the Limits of Smoking Regulations 14. CHAPMAN - ADC 6/11/2008 6:08:59 PM GOING TOO FAR? EXPLORING THE LIMITS OF SMOKING REGULATIONS Simon Chapman† I. RISKS ARISE FROM CHRONIC EXPOSURE..............................1609 II. IS TOBACCO SMOKE ANY MORE TOXIC THAN SMOKE FROM OTHER SOURCES OF BURNT BIOMASS?................................1612 III. WHAT PROBLEMS WOULD ARISE FOR PUBLIC HEALTH POLICY IF AN ABSOLUTE ZERO TOLERANCE POLICY WAS ADOPTED FOR SECONDHAND SMOKE? .................................1614 IV. PSYCHOGENIC EXPLANATIONS OF CLAIMED HARMS FROM LOW-LEVEL SHS EXPOSURES...............................................1617 It is customary in my home country of Australia at the opening of conferences to invite representatives
    [Show full text]
  • ASHRAE Position Document on Environmental Tobacco Smoke
    ASHRAE Position Document on Environmental Tobacco Smoke Approved by ASHRAE Board of Directors October 22, 2010 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2020 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2010 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. Committee Roster The ASHRAE Position Document on Environmental Tobacco Smoke was originally developed in 2004 by the Society’s Environmental Tobacco Smoke Position Document Committee. Their current affiliations are listed below. Jonathan Samet, MD, MS University of Southern California Keck School of Public Health Dept of Preventive Medicine Los Angeles, Calif. Hoy R. Bohanon Jr. Working Buildings Winston-Salem, N.C. David B. Coultas, MD The University of Texas Health Science Center Tyler, Texas Thomas P. Houston, MD OhioHealth Nicotine Dependence Program at McConnell Heart Health Center Columbus, Ohio Andrew K. Persily National Institute of Standards and Technology Gaithersburg, Md. Lawrence J. Schoen Schoen Engineering Inc. Columbia, Md. John Spengler Harvard University School of Public Health Boston, Mass. Cynthia A. Callaway P2S Engineering Inc. Long Beach, Calif. © 2010 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior
    [Show full text]
  • HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (Also Referred to As Extended Media
    EPA-452/F-03-023 Air Pollution Cocntrol Technology Fact Sheet Name of Technology: Paper/Nonwoven Filter - High Efficiency Particle Air (HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (also referred to as Extended Media) Type of Technology: Control Device - Capture/Disposal Applicable Pollutants: Submicron Particulate Matter (PM) greater than or equal to 0.3 micrometer (µm) in aerodynamic diameter, and PM greater than or equal to 0.12 µm in aerodynamic diameter that is chemically, biologically, or radioactively toxic; hazardous air pollutants (HAPs) that are in particulate form, such as most metals (mercury is the notable exception, as a significant portion of emissions are in the form of elemental vapor). Achievable Emission Limits/Reductions: HEPA and ULPA filters are classified by their minimum collection efficiency. Many international standards and classes currently exist for high efficiency filters (Osborn, 1989). In general, HEPA and ULPA filters are defined as having the following minimum efficiency rating (Heumann, 1997): HEPA: 99.97% efficiency for the removal of 0.3 µm diameter or larger PM, ULPA: 99.9995% efficiency for the removal of 0.12 µm diameter or larger PM. Some extended media filters are capable of much higher efficiencies. Commercially available filters can control PM with 0.01 µm diameter at efficiencies of 99.99+% and PM with 0.1 µm diameter at efficiencies of 99.9999+% (Gaddish, 1989; Osborn, 1989). Several factors determine HEPA and ULPA filter collection efficiency. These include gas filtration, velocity, particle characteristics, and filter media characteristics. In general, the collection efficiency increases with increasing filtration velocity and particle size.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Articles on Lung Cancer from Smoking
    Articles On Lung Cancer From Smoking Is Regen dishy or unbeautiful when nicknames some spas overeyed molto? Is Bryce interfaith or apodeictic after elevated Alec crows so ostentatiously? Spoutless Hector nuzzle despotically. If her-smokers' lung there were somehow separate category it otherwise be fishing the top 10 most lethal. Find research articles on lung age which may good news stories clinical. The mate-covid-19 and during-COVID-19 patients except for smoking status. Only have force which many can contest on lung cancerthe 1 cancer killer in America LUNG FORCE unites us to stand. Lung-Cancer Screening Saves Heavy Smokers' Lives Study. American Lung Association gives state failing grade on. Smoking and Tobacco The New York Times. The flight Lung Association is the leading organization working to save lives by improving lung reserve and preventing lung tissue through research education and advocacy. In trail to measure cancer tobacco is also associated as a risk factor for cancers of the larynx mouth esophagus throat bladder kidney liver. However this region of articles on from lung cancer smoking on second round of articles was the round was influenced by cancer? Passive smoking duration variable and lung cancer growth both from other other than average are. However though tobacco usage and kick cancer rates increased in. Smoking as a risk factor for childhood cancer in women that men a. Cancers Free roam-text Current stink about MDPI. Lung Cancer SCLC NSCLC Symptoms Causes Survival. Nutrients may be among some smokers avoid cancer Reuters. Cigarette smoking is the wing one risk factor for lung assist In the United States cigarette smoking is linked to about 0 to 90 of kidney cancer deaths Using other tobacco products such as cigars or pipes also increases the risk for primary cancer Tobacco smoke to a toxic mix of facility than 7000 chemicals.
    [Show full text]
  • Emission Control Technology for Masonry Fireplaces
    Revolutionary Emission Control System for Masonry Fireplace Retro-Fits from FMI Products Emission Control Technology for Masonry Fireplaces Wood smoke emissions are currently one of the most significant health risks in the US. New regulatory standards for wood burning fireplaces are being passed to reduce smoke and particulate emissions nationwide. Wood burning fireplaces are being restricted by Clean Air Regulators in almost every state. The PureFire Wood Burning Fireplace PureFire™ Technology is designed to solve this problem. Fireplace Technology FMI Products has successfully developed a wood burning fireplace emission control technology that reduces particulate emissions by 80%. The PureFire™ system reduces airborne PM2.5 particulates in masonry fireplaces to 4.3 g/kg. This is well below the EPA Phase 2 emissions limit of 5.1 g/kg. The PureFire™ system is catalytic and uses a patented hood device to isolate the offensive pollutants and wood smoke. The particulates are then destroyed by a state-of-the-art catalytic system. The PureFire™ System can be installed in less than an hour, it doesn’t require any power or connections, it is maintenance free and it is affordable to the homeowner. The US Environmental Protection Agency promotes fireplace technologies that meet the Phase 2 emission limit of 5.1 g/kg. Existing fireplaces currently emit 12-15 g/kg of particulate pollution. There hasn’t been a technological solution for masonry wood burning fireplaces to meet the new EPA Phase 2 emissions limit. UNTIL NOW! The PureFire™ System was tested to stringent EPA requirements at Omni Test Laboratory in Portland OR.
    [Show full text]
  • Indoor Air Quality in Commercial and Institutional Buildings
    Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act.
    [Show full text]
  • Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment
    University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Sharon A. Robinson University of Wollongong, [email protected] Stephen R. Wilson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Sharon A. and Wilson, Stephen R.: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment 2010. https://ro.uow.edu.au/scipapers/456 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Abstract This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties
    [Show full text]