Indoor Air Quality
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reference Guide
Indoor Air Quality Tools for Schools REFERENCE GUIDE Indoor Air Quality (IAQ) U.S. Environmental Protection Agency Indoor Environments Division, 6609J 1200 Pennsylvania Avenue, NW Washington, DC 20460 (202) 564-9370 www.epa.gov/iaq American Federation of Teachers 555 New Jersey Avenue, NW Washington, DC 20001 (202) 879-4400 www.aft.org Association of School Business Officials 11401 North Shore Drive Reston, VA 22090 (703) 478-0405 www.asbointl.org National Education Association 1201 16th Steet, NW Washington, DC 20036-3290 (202) 833-4000 www.nea.org National Parent Teachers Association 330 North Wabash Avenue, Suite 2100 Chicago, IL 60611-3690 (312) 670-6782 www.pta.org American Lung Association 1740 Broadway New York, NY 10019 (212) 315-8700 www.lungusa.org EPA 402/K-07/008 I January 2009 I www.epa.gov/iaq/schools Introduction � U nderstanding the importance of good basic measurement equipment, hiring indoor air quality (IAQ) in schools is the professional assistance, and codes and backbone of developing an effective IAQ regulations. There are numerous resources program. Poor IAQ can lead to a large available to schools through EPA and other variety of health problems and potentially organizations, many of which are listed in affect comfort, concentration, and staff/ Appendix L. Use the information in this student performance. In recognition of Guide to create the best possible learning tight school budgets, this guidance is environment for students and maintain a designed to present practical and often comfortable, healthy building for school low-cost actions you can take to identify occupants. and address existing or potential air quality Refer to A Framework for School problems. -
Tobacco Smoke, Indoor Air Pollution and Tuberculosis: a Systematic Review and Meta-Analysis
PLoS MEDICINE Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review and Meta-Analysis Hsien-Ho Lin1, Majid Ezzati2, Megan Murray1,3,4* 1 Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America, 2 Department of Population and International Health and Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Division of Social Medicine and Health Inequalities, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America, 4 Infectious Disease Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America Funding: This review was supported by The International Union Against ABSTRACT Tuberculosis and Lung Disease through a grant from the World Bank. The funders had no role in Background study design, data collection and analysis, decision to publish, or Tobacco smoking, passive smoking, and indoor air pollution from biomass fuels have been preparation of the manuscript. implicated as risk factors for tuberculosis (TB) infection, disease, and death. Tobacco smoking Competing Interests: The authors and indoor air pollution are persistent or growing exposures in regions where TB poses a major have declared that no competing health risk. We undertook a systematic review and meta-analysis to quantitatively assess the interests exist. association between these exposures and the risk of infection, disease, and death from TB. Academic Editor: Thomas E. Novotny, Center for Tobacco Control Research and Education, United Methods and Findings States of America We conducted a systematic review and meta-analysis of observational studies reporting Citation: Lin HH, Ezzati M, Murray M effect estimates and 95% confidence intervals on how tobacco smoking, passive smoke (2007) Tobacco smoke, indoor air exposure, and indoor air pollution are associated with TB. -
Racial Differences in Exposure to Environmental Tobacco Smoke Among Children Stephen E
Children’s Health | Article Racial Differences in Exposure to Environmental Tobacco Smoke among Children Stephen E. Wilson,1,2 Robert S. Kahn,2 Jane Khoury,2 and Bruce P. Lanphear 2 1Division of General Internal Medicine, University of Cincinnati, and 2Division of General and Community Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA Americans had serum cotinine levels that Exposure to environmental tobacco smoke (ETS) is a major cause of morbidity and mortality were 32–45% higher than those of whites among U.S. children. Despite African-American children’s having a lower reported exposure to (Benowitz et al. 1999, 2002; Perez-Stable tobacco compared to whites, they suffer disproportionately from tobacco-related illnesses and have et al. 1998). In a nationally representative higher levels of serum cotinine than white children. The goal of this study was to test whether sample, African-American smokers had sig- African-American children have higher levels of serum and hair cotinine, after accounting for ETS nificantly higher serum cotinine levels com- exposure and various housing characteristics. We investigated the level of cotinine in both hair pared with white smokers, even though they and serum in a sample of 222 children with asthma. Using a previously validated survey for adult reported smoking fewer cigarettes (Caraballo smokers, we assessed each child’s exposure to ETS. We collected detailed information on the pri- et al. 1998). However, the data for children mary residence, including home volume, ventilation, and overall home configuration. Despite a and ETS exposure, rather than actual tobacco lower reported ETS exposure, African-American children had higher mean levels of serum coti- use, are more limited. -
Effects of Prenatal Tobacco and Wood-Fuel Smoke Exposure on Birth Weight in Sri Lanka
healthcare Communication Effects of Prenatal Tobacco and Wood-Fuel Smoke Exposure on Birth Weight in Sri Lanka Malshani L. Pathirathna 1,2,* ID , Hansani M. Abeywickrama 2, Kayoko Sekijima 1, Mieko Sadakata 1, Naoshi Fujiwara 3, Yoshiyuki Muramatsu 1, Kuruppu M. S. Wimalasiri 4, Upali Jayawardene 5, Darshana de Silva 5 and Chandraratne M. B. Dematawewa 4 1 Department of Nursing, Graduate School of Health Sciences, Niigata University, 2-746, Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan; [email protected] (K.S.); [email protected] (M.S.); [email protected] (Y.M.) 2 Department of Nursing, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka; [email protected] 3 Department of Medical Technology, Graduate School of Health Sciences, Niigata University, 2-746, Asahimachi-dori, Chuo-ku, Niigata 951-8518, Japan; [email protected] 4 Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka; [email protected] (K.M.S.W.); [email protected] (C.M.B.D.) 5 Teaching Hospital Kurunegala, Colombo Road, Kurunegala 60000, Sri Lanka; [email protected] (U.J.); [email protected] (D.d.S.) * Correspondence: [email protected] or [email protected]; Tel.: +81-70-3604-4661 Academic Editor: Sampath Parthasarathy Received: 9 August 2017; Accepted: 23 September 2017; Published: 26 September 2017 Abstract: Low birth weight is a key public health problem in many developing countries, including Sri Lanka. Indoor air pollution from tobacco smoke and kitchen-fuel smoke are among the major contributors to low birth weight, factors of which there are little awareness of in Sri Lanka. -
Going Too Far? Exploring the Limits of Smoking Regulations Simon Chapman
William Mitchell Law Review Volume 34 | Issue 4 Article 14 2008 Going Too Far? Exploring the Limits of Smoking Regulations Simon Chapman Follow this and additional works at: http://open.mitchellhamline.edu/wmlr Recommended Citation Chapman, Simon (2008) "Going Too Far? Exploring the Limits of Smoking Regulations," William Mitchell Law Review: Vol. 34: Iss. 4, Article 14. Available at: http://open.mitchellhamline.edu/wmlr/vol34/iss4/14 This Article is brought to you for free and open access by the Law Reviews and Journals at Mitchell Hamline Open Access. It has been accepted for inclusion in William Mitchell Law Review by an authorized administrator of Mitchell Hamline Open Access. For more information, please contact [email protected]. © Mitchell Hamline School of Law Chapman: Going Too Far? Exploring the Limits of Smoking Regulations 14. CHAPMAN - ADC 6/11/2008 6:08:59 PM GOING TOO FAR? EXPLORING THE LIMITS OF SMOKING REGULATIONS Simon Chapman† I. RISKS ARISE FROM CHRONIC EXPOSURE..............................1609 II. IS TOBACCO SMOKE ANY MORE TOXIC THAN SMOKE FROM OTHER SOURCES OF BURNT BIOMASS?................................1612 III. WHAT PROBLEMS WOULD ARISE FOR PUBLIC HEALTH POLICY IF AN ABSOLUTE ZERO TOLERANCE POLICY WAS ADOPTED FOR SECONDHAND SMOKE? .................................1614 IV. PSYCHOGENIC EXPLANATIONS OF CLAIMED HARMS FROM LOW-LEVEL SHS EXPOSURES...............................................1617 It is customary in my home country of Australia at the opening of conferences to invite representatives -
ASHRAE Position Document on Environmental Tobacco Smoke
ASHRAE Position Document on Environmental Tobacco Smoke Approved by ASHRAE Board of Directors October 22, 2010 Reaffirmed by ASHRAE Technology Council June 26, 2019 Expires June 26, 2020 ASHRAE 1791 Tullie Circle, NE • Atlanta, Georgia 30329-2305 404-636-8400 • fax: 404-321-5478 • www.ashrae.org © 2010 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior written permission. Committee Roster The ASHRAE Position Document on Environmental Tobacco Smoke was originally developed in 2004 by the Society’s Environmental Tobacco Smoke Position Document Committee. Their current affiliations are listed below. Jonathan Samet, MD, MS University of Southern California Keck School of Public Health Dept of Preventive Medicine Los Angeles, Calif. Hoy R. Bohanon Jr. Working Buildings Winston-Salem, N.C. David B. Coultas, MD The University of Texas Health Science Center Tyler, Texas Thomas P. Houston, MD OhioHealth Nicotine Dependence Program at McConnell Heart Health Center Columbus, Ohio Andrew K. Persily National Institute of Standards and Technology Gaithersburg, Md. Lawrence J. Schoen Schoen Engineering Inc. Columbia, Md. John Spengler Harvard University School of Public Health Boston, Mass. Cynthia A. Callaway P2S Engineering Inc. Long Beach, Calif. © 2010 ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE’s prior -
HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (Also Referred to As Extended Media
EPA-452/F-03-023 Air Pollution Cocntrol Technology Fact Sheet Name of Technology: Paper/Nonwoven Filter - High Efficiency Particle Air (HEPA) Filter - Ultra Low Penetration Air (ULPA) Filter (also referred to as Extended Media) Type of Technology: Control Device - Capture/Disposal Applicable Pollutants: Submicron Particulate Matter (PM) greater than or equal to 0.3 micrometer (µm) in aerodynamic diameter, and PM greater than or equal to 0.12 µm in aerodynamic diameter that is chemically, biologically, or radioactively toxic; hazardous air pollutants (HAPs) that are in particulate form, such as most metals (mercury is the notable exception, as a significant portion of emissions are in the form of elemental vapor). Achievable Emission Limits/Reductions: HEPA and ULPA filters are classified by their minimum collection efficiency. Many international standards and classes currently exist for high efficiency filters (Osborn, 1989). In general, HEPA and ULPA filters are defined as having the following minimum efficiency rating (Heumann, 1997): HEPA: 99.97% efficiency for the removal of 0.3 µm diameter or larger PM, ULPA: 99.9995% efficiency for the removal of 0.12 µm diameter or larger PM. Some extended media filters are capable of much higher efficiencies. Commercially available filters can control PM with 0.01 µm diameter at efficiencies of 99.99+% and PM with 0.1 µm diameter at efficiencies of 99.9999+% (Gaddish, 1989; Osborn, 1989). Several factors determine HEPA and ULPA filter collection efficiency. These include gas filtration, velocity, particle characteristics, and filter media characteristics. In general, the collection efficiency increases with increasing filtration velocity and particle size. -
WHO Guidelines for Indoor Air Quality : Selected Pollutants
WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest). -
Articles on Lung Cancer from Smoking
Articles On Lung Cancer From Smoking Is Regen dishy or unbeautiful when nicknames some spas overeyed molto? Is Bryce interfaith or apodeictic after elevated Alec crows so ostentatiously? Spoutless Hector nuzzle despotically. If her-smokers' lung there were somehow separate category it otherwise be fishing the top 10 most lethal. Find research articles on lung age which may good news stories clinical. The mate-covid-19 and during-COVID-19 patients except for smoking status. Only have force which many can contest on lung cancerthe 1 cancer killer in America LUNG FORCE unites us to stand. Lung-Cancer Screening Saves Heavy Smokers' Lives Study. American Lung Association gives state failing grade on. Smoking and Tobacco The New York Times. The flight Lung Association is the leading organization working to save lives by improving lung reserve and preventing lung tissue through research education and advocacy. In trail to measure cancer tobacco is also associated as a risk factor for cancers of the larynx mouth esophagus throat bladder kidney liver. However this region of articles on from lung cancer smoking on second round of articles was the round was influenced by cancer? Passive smoking duration variable and lung cancer growth both from other other than average are. However though tobacco usage and kick cancer rates increased in. Smoking as a risk factor for childhood cancer in women that men a. Cancers Free roam-text Current stink about MDPI. Lung Cancer SCLC NSCLC Symptoms Causes Survival. Nutrients may be among some smokers avoid cancer Reuters. Cigarette smoking is the wing one risk factor for lung assist In the United States cigarette smoking is linked to about 0 to 90 of kidney cancer deaths Using other tobacco products such as cigars or pipes also increases the risk for primary cancer Tobacco smoke to a toxic mix of facility than 7000 chemicals. -
Emission Control Technology for Masonry Fireplaces
Revolutionary Emission Control System for Masonry Fireplace Retro-Fits from FMI Products Emission Control Technology for Masonry Fireplaces Wood smoke emissions are currently one of the most significant health risks in the US. New regulatory standards for wood burning fireplaces are being passed to reduce smoke and particulate emissions nationwide. Wood burning fireplaces are being restricted by Clean Air Regulators in almost every state. The PureFire Wood Burning Fireplace PureFire™ Technology is designed to solve this problem. Fireplace Technology FMI Products has successfully developed a wood burning fireplace emission control technology that reduces particulate emissions by 80%. The PureFire™ system reduces airborne PM2.5 particulates in masonry fireplaces to 4.3 g/kg. This is well below the EPA Phase 2 emissions limit of 5.1 g/kg. The PureFire™ system is catalytic and uses a patented hood device to isolate the offensive pollutants and wood smoke. The particulates are then destroyed by a state-of-the-art catalytic system. The PureFire™ System can be installed in less than an hour, it doesn’t require any power or connections, it is maintenance free and it is affordable to the homeowner. The US Environmental Protection Agency promotes fireplace technologies that meet the Phase 2 emission limit of 5.1 g/kg. Existing fireplaces currently emit 12-15 g/kg of particulate pollution. There hasn’t been a technological solution for masonry wood burning fireplaces to meet the new EPA Phase 2 emissions limit. UNTIL NOW! The PureFire™ System was tested to stringent EPA requirements at Omni Test Laboratory in Portland OR. -
Indoor Air Quality in Commercial and Institutional Buildings
Indoor Air Quality in Commercial and Institutional Buildings OSHA 3430-04 2011 Occupational Safety and Health Act of 1970 “To assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health.” This publication provides a general overview of a particular standards-related topic. This publication does not alter or determine compliance responsibili- ties which are set forth in OSHA standards, and the Occupational Safety and Health Act of 1970. More- over, because interpretations and enforcement poli- cy may change over time, for additional guidance on OSHA compliance requirements, the reader should consult current administrative interpretations and decisions by the Occupational Safety and Health Review Commission and the courts. Material contained in this publication is in the public domain and may be reproduced, fully or partially, without permission. Source credit is requested but not required. This information will be made available to sensory- impaired individuals upon request. Voice phone: (202) 693-1999; teletypewriter (TTY) number: 1-877- 889-5627. Indoor Air Quality in Commercial and Institutional Buildings Occupational Safety and Health Administration U.S. Department of Labor OSHA 3430-04 2011 The guidance is advisory in nature and informational in content. It is not a standard or regulation, and it neither creates new legal obligations nor alters existing obligations created by OSHA standards or the Occupational Safety and Health Act. -
Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2010 Assessment
University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2010 Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Sharon A. Robinson University of Wollongong, [email protected] Stephen R. Wilson University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Sharon A. and Wilson, Stephen R.: Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment 2010. https://ro.uow.edu.au/scipapers/456 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment Abstract This quadrennial Assessment was prepared by the Environmental Effects Assessment Panel (EEAP) for the Parties to the Montreal Protocol. The Assessment reports on key findings on environment and health since the last full Assessment of 2006, paying attention to the interactions between ozone depletion and climate change. Simultaneous publication of the Assessment in the scientific literature aims to inform the scientific community how their data, modeling and interpretations are playing a role in information dissemination to the Parties