Australia's Desert Fish Have Flourished for Millennia in a Changeable Environment TEXT by ROBERT LEHANE and BARRY SKIPSEY

Total Page:16

File Type:pdf, Size:1020Kb

Australia's Desert Fish Have Flourished for Millennia in a Changeable Environment TEXT by ROBERT LEHANE and BARRY SKIPSEY Australia's desert fish have flourished for millennia in a changeable environment TEXT BY ROBERT LEHANE AND BARRY SKIPSEY Afloat in the Red Centre, pioneering freshwater fish researcher Hamar Midgley, assisted by his wife Mary at the oars, plies his science on one of the Finke River's permanent waterholes - refuges during dry times I for Australia's remarkable desert fish. About 10 species are found widely throughout Central Australia. The Midgleys found five at this NT waterhole, with bony bream, foreground, the most common. APRIL - JUNE 1996 105 • CHORUS OF BIRDS had shat- are literally the gene pools of Aus- tered the icy calm of the tralia's desert fish. Like the outback's A. winter sunriseI tanhrd woken other ephemeral watercourses, the peered Finke has only a few permanent holes, flap of my swag as a warming yellow but it's in them that fish survive dry gjow rose over the Finke River water- times, dodging predators and endur- hole. With each passing minute, the ing scorching summer days and bit- red dunes bordering the opposite bank terly cold winter nights. Then, like ripened to a richer hue. desert flowers, these remnant popula- Alerted by splashing, I shifted my tions explode into life when rains gaze back to the waterhole, where I come, multiplying and dispersing with saw — to my astonishment — a pair of long-awaited floodwaters to repopu- pelicans. I'd never seen these grand late the rivers and ephemeral lakes. birds so deep in Central Australia — To learn about these tenacious ani- I was only 110 kilometres south of mals, Fa joined an expedition led by Alice Springs. As one of the pelicans Hamar Midgley, one of the pioneers opened its bill and tipped back its head of Australian freshwater fish research. to swallow its prey I saw a flash of sil- Hamar's campsite was about 200 m ver-grey. My surprise turned to a smile distant and screened by river red gums, of recognition. The birds and I were but I could hear him chattering as he after the same thing — fish. dislodged ice from his water bucket. Permanent waterholes like the 400- His gravelly baritone voice had been metre-long beauty I'd camped beside stamped on my memory the moment PHOTOS: BARRY SKI PSEY "I've a fierce love of warm places," said Hamar Midgley — pictured with Mary, rugged up for a desert winter night. Married 54 years, the couple — based in Bli Bli, in south- eastern Queensland — have collaborated on freshwater fish studies at more than 500 sites since the 1960s. Hamar is a self-taught scientist, and his work has been widely lauded. In 1994, the University of Queensland awarded him an Honorary Doctorate of Science — a rare tribute. 106 AUSTRALIAN GEOGRAPHIC Two skilled fish catchers cruise the we'd met in Alice Springs the day rounding vegetation. Three of their Finke waterhole in a serene search before. "Glad you could make it, discoveries now bear their name - the for breakfast. The pelicans have Barry," he'd said, pumping my hand. shovel-nosed catfish or silver cobbler come to the right place. In spite of Hamar's friendly bushie welcome (Arius midgleyi), Midgley's carp gud- a range of clever adaptations, some disguised his studious calling. For 30 geon and Midgley's grunter. fish - usually weaker individuals of years, he and his wife Mary have After meeting in Alice, I'd followed a particular size - succumb to cold amassed an incredible body of infor- Hamar, Mary and a handful of their temperatures. When the Midgleys mation on the freshwater fish of north- friends and family to the Finke, where arrived at the Finke, pelicans, ern and Central Australia. At about we set up camp and deployed a string cormorants and even grey teal - not 500 sites they've searched for fish and of fishing nets across the waterhole. normally fish eaters - were feasting other aquatic life and recorded water Next morning, the sight of the feast- on 3-10 cm long bony bream. The temperature and chemistry, the phys- ing pelicans dispelled any doubts I'd 13°C water temperatures had the ical make-up of riverbeds, and sur- had about finding fish out here. fish in a torpor. APRIL - JUNE 1996 107 The extremes of desert life rarely faze the bony bream, also known as hairback herring (right), which can survive in water that's nearly as salty as the ocean and temperatures from 9-38°C. Found throughout Australia except the south-east, south-west and Tasmania, this distant relative of marine herrings and sardines is abundant, but seldom seen as it's not a popular target for anglers. It may grow to 40 cm, but is usually 12-25 cm. The spangled perch (below) is another widely distributed species, found in eastern and northern coastal areas as well as the inland. Rarely surpassing 25 cm in length, it preys on small aquatic insects, crustaceans and molluscs, and will tolerate saltier water and greater temperature extremes than bony bream. CRAMMED INTO a 2.4 m tinnie, the Environmental Studies at the Aus- When I told Hamar that I'd never Midgleys' friends, Professor Henry Nix, tralian National University and a reg- heard of bony bream, he reminded me Mike Tyre11 and his son Kendrick, ular associate on Hamar's field trips. that only a few fish that ply desert rowed in from the centre of the water- "Although they're full of bones and waters, generally the favourites among hole after clearing the nets. I'd waited regarded as inedible by humans, anglers, are well known. Most of the 10 ashore with Hamar, whose 75-year- they're the major food fish of our fresh- species distributed widely throughout old fingers stiffen in cold water. Three water systems. They support the larger Central Australia are small and mys- silvery fish, the largest about 30 cen- predator fish, like yellowbelly, that we terious, and scientists have only timetres long, lay in the bottom of the do like to eat." recently begun unlocking their secrets. cluttered boat. "You'd expect bony bream to be Among the most common are bony "These are all bony bream, some abundant here," added Hamar. "They bream, desert goby, Lake Eyre hardy- of the largest I've seen," said Henry, eat algae, and there's plenty of that in head and spangled perch, which are director of the Centre for Resource and this waterhole." found in artesian springs and artificial GUNTHER SCHMIDA The yellowbelly, also known as callop or golden perch, is one of the largest and best known of our inland fish. Until recently, the Murray-Darling species (above) was thought to be the only yellowbelly, but the callop inhabiting the ephemeral watercourses of the Lake Eyre Basin is now classed separately. It has the ability to spawn within three days of rainfall — a handy trait in its temperamental environment. APRIL - JUNE 1996 109 bore drains as well as ephemeral water- entire drainages in a remarkably short ways. All have evolved remarkable time. But this underlines how abso- adaptations to suit their changeable lutely vital permanent waterholes like environment. this are. If they get degraded or fished For example, yellowbelly - also out, you've effectively blown the known as golden perch or callop - can whole system." survive in water that's almost as salty As an environmental scientist, as the ocean, and water temperatures Henry lauds Hamar and Mary's work. ranging from 4-37°C. When females "It's probably the single best biological spawn - triggered by rising water lev- record of any kind in the country," he els and temperatures - they'll produce told me. "Its big advantage is that up to 500,000 eggs. they've returned to sites to get a pic- Later that morning, Hamar and ture of what changes have taken place Mary rowed out to measure the water's over the years. This is vital because oxygen content and temperature. As freshwater fish are a very good indica- Hamar's navigational instructions tor of the health of the environment. resounded around the waterhole, Generally, the number of fish species Henry told me that several factors drops off as water quality declines." influence the survival of desert fish, The Midgleys have built this record but none match the impact of the out- with remarkable dedication. Although back's natural cycles. businesses and governments have "The distribution and abundance often paid them to undertake research, of inland fish is more a result of rain- they've funded many expeditions from fall than anything else," Henry said as their own pockets. "I only started the we drank tea and watched his artist work because I was a keen fisherman, wife Katharine paint a bony bream. and I wanted to catch more fish," "During a flood, they can repopulate Hamar told me later that evening, as PHOTOS: BARRY SKIPSEY The Midgleys fund many of their own expeditions, with family and friends often lending a hand. One regular helper is environmental scientist Professor Henry Nix (above, at right), pictured returning to shore after checking nets with Mike Tyre11 and Mike's son Kendrick. Hamar, left, secures the boat. To catch a wide cross-section of the waterhole's fish, Hamar (left) deploys gill nets of several mesh sizes. One species that didn't get away was the inland rainbow fish (right), a natural predator of mosquito larvae and a popular choice for home aquariums. Its remarkable ability to disperse in floodwaters has seen it establish populations in bore drains. 110 AUSTRALIAN GEOGRAPHIC 111 we sipped port by the campfire.
Recommended publications
  • Report to Office of Water Science, Department of Science, Information Technology and Innovation, Brisbane
    Lake Eyre Basin Springs Assessment Project Hydrogeology, cultural history and biological values of springs in the Barcaldine, Springvale and Flinders River supergroups, Galilee Basin and Tertiary springs of western Queensland 2016 Department of Science, Information Technology and Innovation Prepared by R.J. Fensham, J.L. Silcock, B. Laffineur, H.J. MacDermott Queensland Herbarium Science Delivery Division Department of Science, Information Technology and Innovation PO Box 5078 Brisbane QLD 4001 © The Commonwealth of Australia 2016 The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence Under this licence you are free, without having to seek permission from DSITI or the Commonwealth, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the source of the publication. For more information on this licence visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer This document has been prepared with all due diligence and care, based on the best available information at the time of publication. The department holds no responsibility for any errors or omissions within this document. Any decisions made by other parties based on this document are solely the responsibility of those parties. Information contained in this document is from a number of sources and, as such, does not necessarily represent government or departmental policy. If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5725 Citation Fensham, R.J., Silcock, J.L., Laffineur, B., MacDermott, H.J.
    [Show full text]
  • Fishes of the King Edward River in the Kimberley Region, Western Australia
    Records of the Western Australian Museum 25: 351–368 (2010). Fishes of the King Edward River in the Kimberley region, Western Australia David L. Morgan Freshwater Fish Group, Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia 6150, Australia. E-mail: [email protected] Abstract – The King Edward River, in the far north of the Kimberley region of Western Australia drains approximately 10,000 km2 and discharges into the Timor Sea near the town of Kalumburu. This study represents an ichthyological survey of the river’s freshwaters and revealed that the number of freshwater fishes of the King Edward River is higher than has previously been recorded for a Western Australian river. Twenty-six strictly freshwater fish species were recorded, which is three species higher than the much larger Fitzroy River in the southern Kimberley. The study also identified a number of range extensions, including Butler’s Grunter and Shovel-nosed Catfish to the west, and the Slender Gudgeon to the north and east. A possibly undescribed species of glassfish, that differs morphologically from described species in arrangement of head spines, fin rays, as well as relative body measurements, is reported. A considerable proportion of Jenkins’ Grunter, which is widespread throughout the system but essentially restricted to main channel sites, had ‘blubber-lips’. There were significant differences in the prevailing fish fauna of the different reaches of the King Edward River system. Thus fish associations in the upper King Edward River main channel were significantly different to those in the tributaries and the main channel of the Carson River.
    [Show full text]
  • A New Freshwater Catfish (Pisces: Ariidae) from Northern Australia
    Rec. West. Aust. Mus. 1988,14(1): 73-89 A new freshwater catfish (Pisces: Ariidae) from northern Australia PatriciaJ. Kailola* and Bryan E. Pierce* Abstract A new species of fork-tailed catfish is described on the basis of 31 specimens collected in northern Australia between the Fitzroy River (Western Australia) and the Mitchell River (Queensland). Arius midgleyi sp. novo grows to at least 1.3 m TL and is distinguished from other Australo-Papuan ariids by a combination of charac­ ters including snout shape, barbel length, eye size, tooth arrangement and gill raker number and position. Comparison is made with other ariid species occurring in northern Australian rivers, including the morphologically similar A. leptaspis (Bleeker). Introduction The Timor Sea and Gulf of Carpentaria drainage systems (Lake 1971) approx­ imately represent the Leichhardtian zoogeographic region of Whitley (1947). The rainfall pattern in this region is dominated by the wet monsoon (occurring within the period November to April). Most rivers here traverse a flat coastal plain about 15 km wide before reaching the sea (Lake 1971). These rivers commonly possess wide flood plains and low gradients, often contracting to a chain of waterholes during the dry season; some (Gregory River; Fitzroy to Daly Rivers) have reaches of rapids or very deep gorges. The average annual discharge from this region is 69000 billion litres (Lake 1971), most of it occurring during the wet season. Five of Australia's 18 species of fork-tailed catfishes (Ariidae) are common in this northern region, yet were overlooked by Whitley (1947) and Iredale and Whitley (1938). The members of this family, which is distributed circumglobally in the tropics and subtropics, may inhabit the sea, rivers within tidal influence, or fresh waters.
    [Show full text]
  • Lakes Argyle and Kununurra Wetlands Ramsar Site Ecological Character Description
    Lakes Argyle and Kununurra Ramsar Site Ecological Character Description Citation: Hale, J. and Morgan, D., 2010, Ecological Character Description for the Lakes Argyle and Kununurra Ramsar Site. Report to the Department of Sustainability, Environment, Water, Population and Communities, Canberra. Acknowledgements: Danny Rogers, Australasian Waders Studies Group (expert advice) Halina Kobryn, Murdoch University (mapping and GIS) The steering committee was comprised of representatives of the following organisations: • Department of the Environment, Water, Heritage and the Arts • WA Department of Environment and Conservation (Kununurra) • WA Department of Water (Kununurra) • Shire of Wyndham East Kimberley Introductory Notes This Ecological Character Description (ECD Publication) has been prepared in accordance with the National Framework and Guidance for Describing the Ecological Character of Australia’s Ramsar Wetlands (National Framework) (Department of the Environment, Water, Heritage and the Arts, 2008). The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) prohibits actions that are likely to have a significant impact on the ecological character of a Ramsar wetland unless the Commonwealth Environment Minister has approved the taking of the action, or some other provision in the EPBC Act allows the action to be taken. The information in this ECD Publication does not indicate any commitment to a particular course of action, policy position or decision. Further, it does not provide assessment of any particular action within the meaning of the Environment Protection and Biodiversity Conservation Act 1999 (Cth), nor replace the role of the Minister or his delegate in making an informed decision to approve an action. The Water Act 2007 requires that in preparing the [Murray-Darling] Basin Plan, the Murray Darling Basin Authority (MDBA) must take into account Ecological Character Descriptions of declared Ramsar wetlands prepared in accordance with the National Framework.
    [Show full text]
  • Appendices Appendices
    APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J.
    [Show full text]
  • Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013)
    Fisheries Research Report No. 249, 2013 An integrated system to survey boat-based recreational fishing in Western Australia 2011/12 K.L. Ryan, B.S. Wise, N.G. Hall, K.H. Pollock, E.H. Sulin and D.J. Gaughan Fisheries Research Division Western Australian Fisheries and Marine Research Laboratories PO Box 20 NORTH BEACH, Western Australia 6920 Correct citation: Ryan KL, Wise BS, Hall NG, Pollock KH, Sulin EH, Gaughan DJ (2013). An integrated system to survey boat- based recreational fishing in Western Australia 2011/12. Fisheries Research Report No. 249, Department of Fisheries, Western Australia. 168pp. Enquiries: WA Fisheries and Marine Research Laboratories, PO Box 20, North Beach, WA 6920 Tel: +61 8 9203 0111 Email: [email protected] Website: www.fish.wa.gov.au ABN: 55 689 794 771 A complete list of Fisheries Research Reports is available online at www.fish.wa.gov.au © Department of Fisheries, Western Australia. September 2013. ISSN: 1035 - 4549 ISBN: 978-1-921845-71-3 ii Fisheries Research Report [Western Australia] No. 249, 2013 Contents 1.0 Introduction .................................................................................................................. 3 1.1 Importance of recreational fishing in WA .............................................................. 3 1.2 Need for recreational fishing information .............................................................. 3 1.3 Recreational fishing surveys in Australia ............................................................... 4 1.4 Recreational fishing surveys
    [Show full text]
  • Fishes of the King Edward and Carson Rivers with Their Belaa and Ngarinyin Names
    Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names By David Morgan, Dolores Cheinmora Agnes Charles, Pansy Nulgit & Kimberley Language Resource Centre Freshwater Fish Group CENTRE FOR FISH & FISHERIES RESEARCH Kimberley Language Resource Centre Milyengki Carson Pool Dolores Cheinmora: Nyarrinjali, kaawi-lawu yarn’ nyerreingkana, Milyengki-ngûndalu. Waj’ nyerreingkana, kaawi-ku, kawii amûrike omûrung, yilarra a-mûrike omûrung. Agnes Charles: We are here at Milyengki looking for fish. He got one barramundi, a small one. Yilarra is the barramundi’s name. Dolores Cheinmora: Wardi-di kala’ angbûnkû naa? Agnes Charles: Can you see the fish, what sort of fish is that? Dolores Cheinmora: Anja kûkûridingei, Kalamburru-ngûndalu. Agnes Charles: This fish, the Barred Grunter, lives in the Kalumburu area. Title: Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names Authors: D. Morgan1 D. Cheinmora2, A. Charles2, Pansy Nulgit3 & Kimberley Language Resource Centre4 1Centre for Fish & Fisheries Research, Murdoch University, South St Murdoch WA 6150 2Kalumburu Aboriginal Corporation 3Kupungari Aboriginal Corporation 4Siobhan Casson, Margaret Sefton, Patsy Bedford, June Oscar, Vicki Butters - Kimberley Language Resource Centre, Halls Creek, PMB 11, Halls Creek WA 6770 Project funded by: Land & Water Australia Photographs on front cover: Lower King Edward River Long-nose Grunter (inset). July 2006 Land & Water Australia Project No. UMU22 Fishes of the King Edward River - Centre for Fish & Fisheries Research, Murdoch University / Kimberley Language Resource Centre 2 Acknowledgements Most importantly we would like to thank the people of the Kimberley, particularly the Traditional Owners at Kalumburu and Prap Prap. This project would not have been possible without the financial support of Land & Water Australia.
    [Show full text]
  • Movements of Forktail Catfish in the Daly River, Northern Territory, As Determined by Otolith Chemistry Analysis
    Movements of Forktail Catfish in the Daly River, Northern Territory, as Determined by Otolith Chemistry Analysis Thesis submitted by Sally Catherine Oughton (BSc/BComm) in partial fulfilment of the requirements for the Degree of Bachelor of Science with Honours in the School of Environmental and Life Sciences, Faculty of Engineering, Health, Science and the Environment, Charles Darwin University. June 2014. Statement of Authorship I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education. Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references given. Sally Catherine Oughton Cover Illustration: Daly River at Galloping Jacks (left), and an otolith section magnified under transmitted light. I Abstract Although the vast majority of fishes spend their entire lives in either fresh water or the sea, some are capable of moving across salinity gradients. “Diadromous” species migrate between fresh and salt water on a regular, well-defined basis, whereas “euryhaline” species move across salinity gradients freely and not necessarily at particular life history stages. These species are particularly vulnerable to anthropogenic developments that regulate flow and diminish connectivity between freshwater and marine biomes, such as the construction of dams and extraction of water for agricultural use. As a result, diadromous and euryhaline species are considered among the most threatened vertebrate groups in the world. Studying fish movement behaviour provides vital information on the importance of different aquatic habitats and species’ ecological roles, and improves environmental management outcomes for diadromous species.
    [Show full text]
  • Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119
    Northern Australia Aquaculture Industry Situational Analysis Project A.1.1718119 Literature Review Editors: Jennifer Cobcroft and Dean Jerry Acknowledgments This research is funded by the CRC for Developing Northern Australia (CRCNA) is supported by the Cooperative Research Centres Program, an Australian Government initiative. The CRCNA also acknowledges the support of its investment partners: the Western Australian, Northern Territory and Queensland Governments. Disclaimer Any opinions expressed in this document are those of the authors. They do not purport to reflect the opinions or views of the CRCNA or its partners, agents or employees. The CRCNA gives no warranty or assurance and makes no representation as to the accuracy or reliability of any information or advice contained in this document, or that it is suitable for any intended use. The CRCNA, its partners, agents and employees, disclaim any and all liability for any errors or omissions or in respect of anything or the consequences of anything done or omitted to be done in reliance upon the whole or any part of this document. Peer Review Statement The CRCNA recognises the value of knowledge exchange and the importance of objective peer review. It is committed to encouraging and supporting its research teams in this regard. The author(s) confirm(s) that this document has been reviewed and approved by the project’s steering committee and by its program leader. These reviewers evaluated its: • originality • methodology • rigour • compliance with ethical guidelines • conclusions against results • conformity with the principles of the Australian Code for the Responsible Conduct of Research (NHMRC 2018), and provided constructive feedback which was considered and addressed by the author(s).
    [Show full text]
  • Malacologia, 1989, 31(1): 1-140 an Endemic Radiation Of
    MALACOLOGIA, 1989, 31(1): 1-140 AN ENDEMIC RADIATION OF HYDROBIID SNAILS FROM ARTESIAN SPRINGS IN NORTHERN SOUTH AUSTRALIA: THEIR TAXONOMY, PHYSIOLOGY, DISTRIBUTION AND ANATOMY By W.F. Ponder, R. Hershler*, and B. Jenkins, The Australian Museum, Sydney South, NSW, 2000, Australia CONTENTS INTRODUCTION Absence of fauna The mound springs—a brief description Conservation Geomorphology and water chemistry ACKNOWLEDGMENTS Spring groups and complexes REFERENCES Climate APPENDIX 1 MATERIALS AND METHODS List of stations Taxonomy List of springs not sampled Taxonomic rationale Stations at which no hydrobiids were Materials collected Methods Locality maps Characters APPENDIX 2 Anatomy Tables of measurements Physiology Materials Methods ABSTRACT RESULTS Taxonomy Artesian springs between Marree and Fonscochlea Oodnadatta contain an endemic fauna of Fonscochlea (Wolfgangia) hydrobiid snails that have undergone an Trochidrobia adaptive radiation in which habitat parti- Anatomy tioning and size displacement are clearly Anatomical description of evident. Ten new species in two new en- Fonscochlea accepta demic genera, Fonscochlea and Trochidro- Anatomical description of bia, are described. Three of the species of Trochidrobia punicea Fonscochlea are divided into a total of six Physiology geographic forms, which are not formally named. Two geographic forms are restricted DISCUSSION to single springs, the remainder being found Evolution and relationships of fauna in several springs, spring groups, or com- Geological history plexes of springs. Fonscochlea is divided in Relationships of mound-spring inver- to two subgenera, Fonscochlea s.s. contain- tebrates ing five species and Wolfgangia with a single Evolution of species within mound species. springs Both genera are represented in most Dispersal springs, with up to five taxa present in single springs in the Freeling Springs Group and in Environmentally-induced variation some of the other springs in the northern part Ecology and behaviour of the spring system.
    [Show full text]
  • Hydrogeological Overview of Springs in the Great Artesian Basin
    Hydrogeological Overview of Springs in the Great Artesian Basin M. A. (Rien) Habermehl1 Abstract The Great Artesian Basin (GAB) is a regional groundwater system consisting of aquifers and confining beds within the sedimentary Eromanga, Surat and Carpentaria Basins. They under- lie arid to semi-arid regions across 1.7 million km2, or one-fifth of the Australian continent. Artesian springs of the GAB are naturally occurring outlets of groundwater from the confined aquifers. Springs predominantly occur near the eastern recharge margins and the south-western and western discharge margins of the GAB. These zones of natural groundwater discharge represent areas of permanent water, with widely recognised cultural, spiritual and subsistence importance to Indigenous people for tens of thousands of years. The unique hydrogeological environments – discharge, hydrochemistry and substrate – support a range of endemic flora and fauna protected under the EPBC Act (1999). Springs have formed in many areas across the GAB; however, the largest concentrations occur near the south-western margins of the basin. Supporting these flowing artesian springs is a multi-layered aquifer system, comprising Jurassic- to Cretaceous-age sandstones and siltstone, and confining beds of mudstones. Hydrogeological, hydrochemical and isotope hydrology studies show that most artesian springs and flowing water bores in the GAB derive their water from the main Jurassic–Lower Cretaceous Cadna-owie Formation – Hooray Sandstone aquifer and its equivalents. Focusing on springs in South Australia, this paper provides a summary of the hydrogeology of the GAB, including zones of recharge and regional groundwater flow directions, with a major focus on summarising under- standing of the occurrence and formation of springs.
    [Show full text]
  • Conservation Status of Fish of the Northern Territory
    Conservation status of fish of the Northern Territory Classification – Endangered Scientific name Common name Glyphis garricki Northern River Shark Classification – Vulnerable Scientific name Common name Chlamydogobius japalpa Finke Goby Glyphis glyphis Speartooth Shark Pingalla lorentzi Lorentz Grunter Pristis clavata Dwarf Sawfish Pristis pristis Largetooth Sawfish Pristis zijsron Green Sawfish Scortum neili Angalarri Grunter Classification – Near Threatened Scientific name Common name Anoxypristis cuspidata Narrow Sawfish Craterocephalus centralis Finke Hardyhead Melanotaenia maccullochi McCulloch’s Rainbowfish Mogurnda larapintae Desert Mogurnda Porochilus obbesi Obbes' Catfish Classification – Least Concern Scientific name Common name Ablennes hians Barred Longtom Abudefduf bengalensis Bengal Sergeant Abudefduf sexfasciatus Scissortail Sergeant Department of ENVIRONMENT AND NATURAL RESOURCES Page 1 of 21 Conservation status of fish of the Northern Territory Scientific name Common name Acanthopagrus morrisoni Western Yellowfin Bream Acanthopagrus pacificus Pikey Bream Acanthopagrus palmaris Northwest Black-Bream Acanthurus grammoptilus Inshore Surgeonfish Acentrogobius viridipunctatus Green-spotted Goby Adventor elongatus Sandpaper Velvetfish Aetobatus ocellatus White-spotted Eagle Ray Aetomylaeus nichofii Banded Eagle Ray Albula argentea Pacific Bonefish Alectis indica Diamond Trevally Alepes vari Herring Scad Ambassis agrammus Sailfin Glassfish Ambassis dussumieri Barehead Glassfish Ambassis interrupta Long-spined Glassfish Ambassis
    [Show full text]