Memories of Julian Schwinger
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Physical Tourist Physics and New York City
Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place. -
Title: the Distribution of an Illustrated Timeline Wall Chart and Teacher's Guide of 20Fh Century Physics
REPORT NSF GRANT #PHY-98143318 Title: The Distribution of an Illustrated Timeline Wall Chart and Teacher’s Guide of 20fhCentury Physics DOE Patent Clearance Granted December 26,2000 Principal Investigator, Brian Schwartz, The American Physical Society 1 Physics Ellipse College Park, MD 20740 301-209-3223 [email protected] BACKGROUND The American Physi a1 Society s part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20thcentury physics. This resulted in eleven consecutive posters, which when mounted side by side, create a %foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society . Each of the eleven posters begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays’ subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color- coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic This report was prepared as an account of work sponsored by an agency of the United States Government. -
SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize. -
Scientific and Related Works of Chen Ning Yang
Scientific and Related Works of Chen Ning Yang [42a] C. N. Yang. Group Theory and the Vibration of Polyatomic Molecules. B.Sc. thesis, National Southwest Associated University (1942). [44a] C. N. Yang. On the Uniqueness of Young's Differentials. Bull. Amer. Math. Soc. 50, 373 (1944). [44b] C. N. Yang. Variation of Interaction Energy with Change of Lattice Constants and Change of Degree of Order. Chinese J. of Phys. 5, 138 (1944). [44c] C. N. Yang. Investigations in the Statistical Theory of Superlattices. M.Sc. thesis, National Tsing Hua University (1944). [45a] C. N. Yang. A Generalization of the Quasi-Chemical Method in the Statistical Theory of Superlattices. J. Chem. Phys. 13, 66 (1945). [45b] C. N. Yang. The Critical Temperature and Discontinuity of Specific Heat of a Superlattice. Chinese J. Phys. 6, 59 (1945). [46a] James Alexander, Geoffrey Chew, Walter Salove, Chen Yang. Translation of the 1933 Pauli article in Handbuch der Physik, volume 14, Part II; Chapter 2, Section B. [47a] C. N. Yang. On Quantized Space-Time. Phys. Rev. 72, 874 (1947). [47b] C. N. Yang and Y. Y. Li. General Theory of the Quasi-Chemical Method in the Statistical Theory of Superlattices. Chinese J. Phys. 7, 59 (1947). [48a] C. N. Yang. On the Angular Distribution in Nuclear Reactions and Coincidence Measurements. Phys. Rev. 74, 764 (1948). 2 [48b] S. K. Allison, H. V. Argo, W. R. Arnold, L. del Rosario, H. A. Wilcox and C. N. Yang. Measurement of Short Range Nuclear Recoils from Disintegrations of the Light Elements. Phys. Rev. 74, 1233 (1948). [48c] C. -
Julian Seymour Schwinger Papers, 1920-1994
http://oac.cdlib.org/findaid/ark:/13030/tf5870062x No online items Finding Aid for the Julian Seymour Schwinger Papers, 1920-1994 Processed by Russell Johnson and Charlotte B. Brown; machine-readable finding aid created by Caroline Cubé UCLA Library, Department of Special Collections Manuscripts Division Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ © 1999 The Regents of the University of California. All rights reserved. Finding Aid for the Julian 371 1 Seymour Schwinger Papers, 1920-1994 Finding Aid for the Julian Seymour Schwinger Papers, 1920-1994 Collection number: 371 UCLA Library, Department of Special Collections Manuscripts Division Los Angeles, CA Contact Information Manuscripts Division UCLA Library, Department of Special Collections Room A1713, Charles E. Young Research Library Box 951575 Los Angeles, CA 90095-1575 Telephone: 310/825-4988 (10:00 a.m. - 4:45 p.m., Pacific Time) Email: [email protected] URL: http://www.library.ucla.edu/libraries/special/scweb/ Processed by: Charlotte B. Brown, 13 October 1995 and Russell A. Johnson, 12 February 1997 Encoded by: Caroline Cubé Online finding aid edited by: Josh Fiala, November 2002 © 1999 The Regents of the University of California. All rights reserved. Descriptive Summary Title: Julian Seymour Schwinger Papers, Date (inclusive): 1920-1994 Collection number: 371 Creator: Schwinger, Julian Seymour, 1918- Extent: 28 cartons (28 linear ft.) 1 oversize box Repository: University of California, Los Angeles. Library. Department of Special Collections. Los Angeles, California 90095-1575 Abstract: Julian Seymour Schwinger (1918-1994) worked with J. -
Joaquin M. Luttinger 1923–1997
Joaquin M. Luttinger 1923–1997 A Biographical Memoir by Walter Kohn ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. JOAQUIN MAZDAK LUTTINGER December 2, 1923–April 6, 1997 Elected to the NAS, 1976 The brilliant mathematical and theoretical physicist Joaquin M. Luttinger died at the age of 73 years in the city of his birth, New York, which he deeply loved throughout his life. He had been in good spirits a few days earlier when he said to Walter Kohn (WK), his longtime collaborator and friend, that he was dying a happy man thanks to the loving care during his last illness by his former wife, Abigail Thomas, and by his stepdaughter, Jennifer Waddell. Luttinger’s work was marked by his exceptional ability to illuminate physical properties and phenomena through Visual Archives. Emilio Segrè Photograph courtesy the use of appropriate and beautiful mathematics. His writings and lectures were widely appreciated for their clarity and fine literary quality. With Luttinger’s death, an By Walter Kohn influential voice that helped shape the scientific discourse of his time, especially in condensed-matter physics, was stilled, but many of his ideas live on. For example, his famous 1963 paper on condensed one-dimensional fermion systems, now known as Tomonaga-Luttinger liquids,1, 2 or simply Luttinger liquids, continues to have a strong influence on research on 1-D electronic dynamics. In the 1950s and ’60s, Luttinger also was one of the great figures who helped construct the present canon of classic many-body theory while at the same time laying founda- tions for present-day revisions. -
The Lecturer, the Researcher and the Winner
Gautam Ramasubramanian MHC 20301 - Science and Technology at NYC Professor Lampousis 5 December 2014 Schwinger - The Lecturer, The Researcher and The Winner Julian Schwinger had a particular perspective on lecture-giving. When he taught physics at Harvard, he often spent hours the night before preparing his lectures, down to the wording and movement, and considered the lecture as a self-contained piece of art. Rather than merely conveying material, Schwinger viewed the lecture as a presentation of a story, a self-contained cohesive experience that shone like artwork. One advantage of this is was the artistry in and of itself - students and faculty from neighboring colleges such as MIT would clamor into Harvard to sit through Schwinger’s lectures. The second advantage is that Schwinger would rephrase the same concept in multiple ways, allowing students to better retain the information. Yet, this approach had its problems. Questions from the audience were never welcomed, and his answers to them were rather terse and unsatisfactory. According to Mehra and Milton, “[If] a questioner grew more and more persistent, [it] ...drew no response from Schwinger except for him ‘getting quieter and quieter and looking down at his feet,’ until the questioner gave up in embarrassment.” Some students complained of Schwinger making very big logical jumps in the spirit of his flow, logical conclusions that were difficult for students to follow. Yet, the students who were able to follow praised his lecture style for its rigor and artistic flow. Schwinger was a theoretical physicist, one whose focus was on the field of quantum electrodynamics, the unification of the fields of special relativity and quantum theory. -
Center for History of Physics Newsletter, Spring 2008
One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter. -
Physics and Feynman's Diagrams » American Scientist 6/3/10 12:09 PM
Physics and Feynman's Diagrams » American Scientist 6/3/10 12:09 PM FEATURE ARTICLE Physics and Feynman's Diagrams In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics David Kaiser George Gamow, the wisecracking theoretical physicist who helped invent the Big Bang model of the universe, was fond of explaining what he liked best about his line of work: He could lie down on a couch and close his eyes, and no one would be able to tell whether he was working or not. A fine gag, but a bad model for thinking about the day-to-day work that theoretical physicists do. For too long, physicists, historians and philosophers took Gamow's joke quite seriously. Research in theory, we were told, concerns abstract thought wholly separated from anything like labor, activity or skill. Theories, worldviews or paradigms seemed the appropriate units of analysis, and the challenge lay in charting the birth and conceptual development of particular ideas. In the accounts that resulted from such studies, the skilled manipulation of tools played little role. Ideas, embodied in texts, traveled easily from theorist to theorist, shorn of the material constraints that encumbered experimental physicists (tied as they were to their electron microscopes, accelerators or bubble chambers). The age-old trope of minds versus hands has been at play in our account of progress in physics, which pictures a purely cognitive realm of ideas separated from a manual realm of action. This depiction of what theorists do, I am convinced, obscures a great deal more than it clarifies. -
A Festschrift for Thomas Erber
Physics:Doing A Festschrift For Thomas Erber Edited by Porter Wear Johnson GC(2251)_PhysicsBookCvr10.indd 1 9/15/10 10:33 AM Doing Physics: A Festschrift for Tom Erber Edited by Porter Wear Johnson Illinois Institute of Technology IIT Press Doing Physics: A Festschrift For Thomas Erber edited by Porter Wear Johnson Published by: IIT Press 3300 S. Federal St., 301MB Chicago, IL 60616 Copyright °c 2010 IIT Press All rights reserved. No part of this book, including interior design, cover design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photo- copying, recording, or otherwise) without the prior written permission of the publisher. ISBN: 1-61597-000-2 Series Editor: Technical Editor: Sudhakar Nair Julia Chase Editorial Board David Arditi Roya Ayman Krishna Erramilli Porter Wear Johnson Harry Francis Mallgrave Mickie Piatt Katherine Riley Keiicho Sato Vincent Turitto Geo®rey Williamson Doing Physics: A Festschrift for Tom Erber Preface \Au¼ertenÄ wir oben, da¼ die Geschichte des Menschen den Menschen darstelle, so lÄa¼tsich hier auch wohl behaupten, da¼ die Geschichte der Wissenschaft die Wissenschaft selbst sei." Goethe, Zur Farbenlehre: Vorwort (1808) It is widely asserted that the great physicists who grasped the full unity of physics are all dead, having been replaced in this age of specialization by sci- entists who have a deep understanding only for issues of rather limited scope. Indeed, it is di±cult to refute such a viewpoint today, at the end of the ¯rst decade of the twenty-¯rst century. The unifying principles of the quantum the- ory and relativity are part of the ethos of physics, but fragmented development in various disjointed areas has characterized the past several decades of progress. -
Does Physics History Matter? by Robert H
HistoryN E W S L E T T E R of Physics A F O R U M O F T H E A M E R I C A N P H Y S I C A L S O C I E T Y • V O L U M E I X N O . 6 • S P R I N G 2 0 0 6 Report From The Chair Does Physics History Matter? by Robert H. Romer, Amherst College, Forum Chair Perhaps the title got your attention, so let me promptly explain leading experimental results. It might just help them to understand what I mean. Is it important that serious history of physics be that the fact that Darwinian or neo-Darwinian evolution does not included in the professional education of physicists? I think that explain every last detail of every living organism does not mean for many of us who belong to and support the APS history forum, that some other idea, untested or untestable, has an equal claim to even — or perhaps especially — for those like me who are not time in the science classroom, that the fact that none of us were professional historians of physics, it is almost an article of faith present at the big bang does not mean that the big bang is “just a that the answer to my question is an unqualified “yes.” I said as theory” with no successful explanations to its credit, that someone much myself several years ago, in my election statement when I else’s creation myth is just as deserving of our attention. -
Search Articles
Welcome! advanced Herbert Search search Jaeger Table of contents Articles Past issues Links to advertisers Request product The Early History of Quantum Tunneling info Products advertised Also this month Place an ad Molecular spectra, electron emission from metals, COMPANY Buyers' guide and alpha decay provided fertile ground in the Sinks for SPOTLIGHT 1920s for applying the new ideas of quantum Anthropogenic About us Carbon mechanics. Contact us Superconducting Submit press release Magnets above 20 Eugen Merzbacher Tesla American Institute of Among all the successes of quantum mechanics as it evolved in the The Early History Physics of Quantum The Industrial Physicist third decade of the 20th century, none was more impressive than Tunneling Computing in Science & the understanding of the tunnel effect--the penetration of matter Engineering waves and the transmission of particles through a high potential Journals barrier. Eventually, five Nobel prizes in physics were awarded for Virtual Journals research involving tunneling in semiconductors and superconductors and for the invention of scanning tunneling microscopy. Tunneling occurs in all quantum systems. It is crucial for nucleosynthesis in stars, and it may also have played an essential role in the evolution of the early universe. From its beginning, recounted here, quantum tunneling has remained a hot topic, with myriad applications to this day. In 1923, Louis de Broglie proposed that matter waves have a wavelength inversely proportional to their velocity. It must have been immediately realized that, in a manner analogous to optics, a particle of energy E incident on a region of potential energy V enters a refractive medium characterized by an index of refraction n that varies inversely with the wavelength.