Del 5.8 Study on Energy Carrier Use for Entrained Flow Gasification

Total Page:16

File Type:pdf, Size:1020Kb

Del 5.8 Study on Energy Carrier Use for Entrained Flow Gasification www.BioBoost.eu Biomass based energy intermediates boosting biofuel production This project has received funding from the European Union’s Seventh Programme for research, technological development and demonstration under grant agreement No 282873 Deliverable Deliverable 5.8 Study on energy carrier use for entrained flow gasification Workpackage: WP5 Deliverable No: D5.8 Due date of deliverable: 30/09/14 Actual date of delivery: 06/03/15 Version: Final / Vers.1.2 Responsible: KIT Authors: Prof. Dr. Edmund Henrich, Prof. Dr. Nicolaus Dahmen, Andreas Niebel Contact: [email protected] Dissemination level: PU-Public Publishable Summary For biomass gasification, a variety of technologies exist. For large-scale syngas generation with downstream synthesis of organic chemicals or synfuels, pressurized entrained flow (PEF) gasification has emerged as the preferred technology. The technology is flexible and can accommodate many different feedstocks, but at the expense of more technical effort for gasifier feed preparation. The various feed preparation methods and feed properties as well as the gasifier feeding systems are described in context with the other interacting steps in the process network. Gases and liquids (fluids) either with or without an entrained or suspended pulverized fuel are suitable feed forms. The fluid feed can be continuously transferred with pumps or compressors into a highly pressurized gasification chamber. Immediately at the gasifier inlet the fuels are mixed in special nozzles with pure oxygen (and steam) as the gasification agent; liquid and slurry fuels are atomized simultaneously. PEF gasification proceeds at high temperatures >1000 °C and high pressures up to 100 bar or more in a gasifier flame in the course of a second. The total residence time in the gasification vessel is only few seconds and the gasifier volume is correspondingly small. Solid or liquid fuels must be present as small particles or droplets with a sufficiently large surface area for complete conversion in few seconds. Ash is removed as molten slag and their melting behavior determines the minimum gasification temperature. In biofeedstocks – mainly lignocellulose like wood or straw – the cellulose fibers prevent direct milling to a suitable powder and generate fiber muddles. A suitable PEF gasifier feed can be prepared from biomass pyrolysis products; preferred processes are fast pyrolysis or torrefaction. Biomass pyrolysis destroys cellulose fibrils and the chars are brittle and easily pulverized. The pulverized chars can be transferred to a pressurized on-site gasifier either with an inert gas as a dense char particle stream from a pressurized fluidized bed or as a slurry, after char suspension in the pyrolysis liquids or any other combustible (waste) liquid or even as a water slurry, as it is already practiced with pulverized coal. Slurries, especially bioslurries, are not only a suitable PEF gasifier feed form, but also a storage and transport form with a ca. 10 times higher energy density compared to the initial biomass. Bioslurry transport from many regional pyrolysis facilities to a large and more economic gasification/synthesis plant is a unique feed preparation and handling characteristic of the KIT bioliq® process. D5.8 / Study on energy carrier use for entrained flow gasification page 2/38 Table of Content Publishable Summary ................................................................................................................. 2 Table of Content ......................................................................................................................... 3 Report ......................................................................................................................................... 4 1 A suitable gasifier for downstream synthesis of organic chemicals and synfuels .............. 4 1.1 Fixed-bed gasifiers ...................................................................................................... 5 1.2 Fluidized-bed gasifiers ................................................................................................ 5 1.3 Entrained flow gasifiers ............................................................................................... 6 2 Essential operating and design features of PEF gasifiers ................................................... 8 2.1 Operating conditions of PEF gasifiers ......................................................................... 8 2.2 Design characteristics of PEF gasifiers ..................................................................... 11 2.3 Interactions in the total PEF gasification/synthesis process network ........................ 14 3 Suitable feed preparation, feed properties and feeding systems for PEF gasifiers ........... 17 3.1 Gaseous fuel .............................................................................................................. 17 3.2 Liquid fuel, transfer and atomization ........................................................................ 17 3.3 Pulverised fuel, handling and transfer ....................................................................... 17 4 Experience from commercial PEF gasifiers ..................................................................... 20 4.1 Characteristics of commercial gasifiers ..................................................................... 20 4.2 Description of typical fuel feeding techniques .......................................................... 22 4.3 Status of the world gasification technology .............................................................. 26 5 Biomass conversion to PEF gasifier feed ......................................................................... 27 5.1 Focus on lignocellulosic feedstocks .......................................................................... 27 5.2 Torrefaction ............................................................................................................... 27 5.3 Fast pyrolysis ............................................................................................................. 27 6 Pilot projects for large-scale PEF gasification of biomass ............................................... 28 6.1 Lulea university, Sweden (formerly Chemrec): Black liquor feed ........................... 28 6.2 Feeding concept of the Choren Carbo-V process ...................................................... 29 6.3 KIT “bioliq” pilot facilities ........................................................................................ 29 7 Recent process developments ........................................................................................... 30 8 Experience from slurry gasification .................................................................................. 31 9 Summary and conclusions ................................................................................................ 34 10 Sources .......................................................................................................................... 36 D5.8 / Study on energy carrier use for entrained flow gasification page 3/38 Report 1 A suitable gasifier for downstream synthesis of organic chemicals and synfuels Gasification can convert almost all organic feeds with HHV > 10 MJ/kg into syngas, a mix of CO and H2, and consumes only 20-40 % of the O2 required for stoichiometric combustion. Syngas is a very flexible intermediate (platform chemical) and educt for the selective catalytic production of numerous valuable organic chemicals and fuels at certain temperatures and higher pressures [14],[15]. The alternative use as a fuel is syngas combustion in IGCC plants for the generation of electricity or high temperature process heat. All these technical possibilities are already applied commercially. The main gasifier types are depicted in Fig. 1; essential design and operating characteristics are summarized in Tab. 1. Fixed bed gasifier Fluidized bed gasifier Entrained flow gasifier Counter current Stationary Downdraft Solidsolid fuel fuel Rawraw syngas syngas O2 (air) Solid fuel Raw syngas Solid or steam slurry fuel Fuel spray Bed (liquid, slurry, material Bubblingsand bed bed Fuel pulverized..) ( fuel) Ash fluidising gas Ash (slag) ash Fluidization medium Air (O2), steam syngas recycle Molten slag Raw syngas Co-current Circulating Updraft Air (O2) Raw syngas - Raw syngas Solid fuel steam Bed material recirculation Ash Fuel, air, Fuel, air, Fuel O2, steam O2, steam Ash (slag) Raw syngas Fluidization medium Slag Fig. 1: Main gasifier types [8] Tab. 1: Design and operating characteristics of the main gasifier types [14],[22] fixed bed fluid bed entrained flow (EF) gasification conditions: fuel type solid solid powder, liquid, gas fuel size 10-1-10-2 10-2-10-3m ca. ≤ 10-4m pressure 1-30 bar 1-30 bar 1-100 (+) bar residence time 103-104s ca. 102 s 1-few s raw syngas purity low (tar, CH4) low (tar, CH4) high fuel/gas flow countercurrent mixed cocurrent design characteristics: reactor geometry cylinder cylinder cylinder reactor wall refractory refractory membrane, refractory bed material - sand (olivine) - carbon conversion >90% >95% >99% ash dry (solid) dry (solid) molten slag D5.8 / Study on energy carrier use for entrained flow gasification page 4/38 1.1 Fixed‐bed gasifiers In fixed-bed reactors, the feedstock is exposed to the gasifying agent in a packed bed that slowly moves from the top of the gasifier to the bottom, where the ash or slag is discharged. By moving through the reactor, the biomass passes
Recommended publications
  • Institut Fur Energetik Und Umwelt Gemeinnutzige Gmbh Institute for Energy and Environment
    Institut fur Energetik und Umwelt gemeinnutzige GmbH Institute for Energy and Environment Sustainable Strategies for Biomass Use in the European Context Analysis in the charged debate on national guidelines and the competition between solid, liquid and gaseous biofuels Dr. Daniela Thran Michael Weber Anne Scheuermann Nicolle Frohlich Prof. Dr. Drs. h.c. Jurgen Zeddies Prof. Dr. Arno Henze Prof. Dr. Carsten Thoroe Dr. Jorg Schweinle Uwe R. Fritsche Dr. Wolfgang Jenseit, Lothar Rausch, Klaus Schmidt Geschaftsfiihrer: Prof. Dr. Martin Kaltschmitt Deutsche Kreditbank AG Stadt- und Kreissparkasse Leipzig Handelsregister: Amtsgericht Leipzig HRB 8071 (BLZ 120 30 000) (BLZ 860 555 92) Sitz und Gerichtsstand Leipzig Konto-Nr.: 1364280 KontoNr.: 1100564876 Zert.-Nr. 1210010564/1 - II - Sponsor: Bundesministerium fur Umwelt, Naturschutz und Reaktorsicherheit (German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety) Contact partner: Dr. Daniela Thran [email protected] Tel.: +49 341 / 2434 435 Developed by: Institut fur Energetik und Umwelt gGmbH / Institute for Energy and Environment (IE) Torgauer Str. 116 04347 Leipzig Germany Universitat Hohenheim / University of Hohenheim (UHOH) Institut fur Landwirtschaftliche Betriebslehre (Institute for Farm Management) Schloss-Osthof-Sud 70599 Stuttgart Hohenheim Germany Bundesforschungsanstalt fur Forst- und Holzwirtschaft / Federal Research Centre for Forestry and Forest Products (BFH) Institut fur Okonomie (Institute for Economics) Postfach 80 02 09 21002 Hamburg
    [Show full text]
  • Hans Robert A. Hellsmark Ufligtefraiepaeo Aiidboasi H Uoenuin Union European the in Biomass Ofgasified Phase Formative the Unfolding
    chalmers university of technology se-412 96 Gothenburg, Sweden Telephone: +46-(0)31 772 10 00 www.chalmers.se hans robert a. hellsmark hellsmark a. robert hans Unfolding the formative phase ofgasified biomass in the European Union Unfolding the formative phase of gasified biomass in the European Union The role of system builders in realising the potential of second-generation transportation fuels from biomass hans robert a. hellsmark Environmental System Analysis Department of Energy and Environment 2011 chalmers university of technology Göteborg, Sweden 2011 THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Unfolding the formative phase of gasified biomass in the European Union ― The role of system builders in realising the potential of second-generation transportation fuels from biomass Hans Robert A. Hellsmark Environmental System Analysis Department of Energy and Environment CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2010 UNFOLDING THE FORMATIVE PHASE OF GASIFIED BIOMASS IN THE EUROPEAN UNION The role of system builders in realising the potential of second-generation transportation fuels from biomass Hans Robert A. Hellsmark Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3159 ISSN 0346-718X ISBN 978-91-7385-478-8 © Hans Robert A. Hellsmark, 2010. Environmental System Analysis Department of Energy and Environment Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 URL: http://www.chalmers.se/ee Chalmers Reproservice Göteborg, Sweden 2010 ABSTRACT In an era of climate change, the process of and time frame for fostering new industries with the capacity of being innovative and able to diffuse a wide range of renewable energy technologies on a large scale has become a pressing issue.
    [Show full text]
  • Bioenergi Från Jordbruket – En Växande Resurs
    Bioenergi från jordbruket – en växande resurs Betänkande av Utredningen om jordbruket som bioenergiproducent Stockholm 2007 SOU 2007:36 SOU och Ds kan köpas från Fritzes kundtjänst. För remissutsändningar av SOU och Ds svarar Fritzes Offentliga Publikationer på uppdrag av Regeringskansliets förvaltningsavdelning. Beställningsadress: Fritzes kundtjänst 106 47 Stockholm Orderfax: 08-690 91 91 Ordertel: 08-690 91 90 E-post: [email protected] Internet: www.fritzes.se Svara på remiss. Hur och varför. Statsrådsberedningen, 2003. – En liten broschyr som underlättar arbetet för den som skall svara på remiss. Broschyren är gratis och kan laddas ner eller beställas på http://www.regeringen.se/remiss Textbearbetning och layout har utförts av Regeringskansliet, FA/kommittéservice Tryckt av Edita Sverige AB Stockholm 2007 ISBN 978-91-38-22751-0 ISSN 0375-250X Till statsrådet och chefen för Jordbruksdepartementet Genom beslut vid regeringssammanträde den 21 juli 2005 bemyn- digade regeringen chefen för Jordbruksdepartementet att tillkalla en särskild utredare med uppgift att analysera det svenska jord- brukets förutsättningar som producent av bioenergi samt att lämna förslag till tydliggörande av samhällets syn på den roll som jord- bruket bör ha som producent av bioenergi (dir. 2005:85). Till särskild utredare förordnades den 10 oktober 2005 Lars Andersson, f.d. verkställande direktör Eskilstuna Energi & Miljö AB. Att som experter biträda utredningen förordnades den 6 april 2006 handläggare Susanne Andersson, professor Runar Brännlund, docent Pål Börjesson, kansliråd Sven-Olov Ericson, civilingenjör Olle Hådell, departementssekreterare Ulrika Jardfeldt, avdelnings- direktör Kersti Linderholm, docent Hans-Örjan Nohrstedt, departementssekreterare Fredrik Odelram, expert Ann Segerborg- Fick, kammarrättsassessor Anna Stålnacke, chefsekonom Harald Svensson och projektledare Kerstin Wennberg.
    [Show full text]
  • CEF 2020 Transport MAP Call
    Connecting Europe Facility (CEF) 2020 TRANSPORT MAP CALL Proposal for the selection of projects July 2021 European Climate, Infrastructure and Environment Executive Agency THE PROJECT DESCRIPTIONS IN THIS PUBLICATION ARE AS SUPPLIED BY APPLICANTS IN THE TENTEC PROPOSAL SUBMIS- SION SYSTEM. THE EUROPEAN CLIMATE, INFRASTRUCTURE AND ENVIRONMENT EXECUTIVE AGENCY CANNOT BE HELD RESPONSIBLE FOR ANY ISSUE ARISING FROM SAID DESCRIPTIONS. The European Climate, Infrastructure and Environment Executive Agency is not liable for any consequence from the reuse of this publication. Brussels, European Climate, Infrastructure and Environment Executive Agency (CINEA), 2021 © European Union, 2021 Reuse is authorised provided the source is acknowledged. Distorting the original meaning or message of this document is not allowed. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos and other material that is not under the copyright of the European Union, permission must be sought directly from the copyright holders. PDF ISBN 978-92-95225-08-4 doi:10.2926/76242 HZ-02-21-827-EN-N Page 2 / 109 Table of Contents Commonly used abbreviations ......................................................................................................................................................................................................................... 5 Introduction ................................................................................................................................................................................................................................................................
    [Show full text]
  • Initial Study – Compilation and Synthesis of Knowledge About Energy Crops from Field to Energy Production
    CROPS FROM FIELD TO ENERGY 1019 Initial study – compilation and synthesis of knowledge about energy crops from field to energy production Magnus Berg, Monika Bubholz, Maya Forsberg, Åse Myringer, Ola Palm, Marie Rönnbäck, Claes Tullin Initial study – compilation and synthesis of knowledge about energy crops from field to energy production Förstudie - sammanställning och syntes av kunskap och erfarenheter om grödor från åker till energiproduktion Magnus Berg, Monika Bubholz, Maya Forsberg, Åse Myringer, Ola Palm, Marie Rönnbäck, Claes Tullin Project number E06-603 VÄRMEFORSK Service AB SE-101 53 STOCKHOLM · Tel +46 8 677 25 80 November 2007 ISSN 1653-1248 VÄRMEFORSK Abstract Literature on existing knowledge on agrifuel, straw, energy grain, willow, reed canary grass and hemp has been reviewed with the aim of identifying knowledge gaps and areas for future research. This work covers the entire chain from cultivation, harvesting, storage and transport to quality assurance, preparation, refining, dosing, combustion, emission, flue gas cleaning and ash disposal. v VÄRMEFORSK vi VÄRMEFORSK Summary Energy crops constitute an as yet not fully utilised potential as fuel for heating and power production. As competition for biomass increases interest in agricultural fuels such as straw, energy grain, willow, reed canary grass and hemp is increasing. Exploiting the potential for energy crops as fuels will demand that cultivation and harvest be coordinated with transportation, storage and combustion of the crops. Together, Värmeforsk and the Swedish Farmers’ Foundation for Agricultural Research (SLF), have taken the initiative to a common research programme. The long-term aim of the programme is to increase production and utilisation of bioenergy from agriculture to combustion for heat and power production in Sweden.
    [Show full text]
  • Evaluation of Techno-Economic Studies on the Bioliq® Process for Synthetic Fuels Production from Biomass
    processes Article Evaluation of Techno-Economic Studies on the bioliq® Process for Synthetic Fuels Production from Biomass Nicolaus Dahmen * and Jörg Sauer Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; [email protected] * Correspondence: [email protected] Abstract: Techno-economic studies by various research institutions on the costs for the produc- tion of biomass to liquid (BtL) fuels using the bioliq® process were analyzed and evaluated. The bioliq® process consists of decentralized pretreatment by fast pyrolysis plants for biomass energy densification, and of a central gasification and synthesis step for synthesis of gas and synthetic fuel production. For comparison, specific material and energy flows were worked out for both process steps, and conversion efficiencies were calculated for the conversion of straw to diesel fuel via the Fischer-Tropsch synthesis. A significant variation of the overall process efficiency in the range of 33–46% was mainly a result of the different assumptions made for electricity generation at the central location. After breaking down the individual cost items to either fixed or variable costs, it turned out that the largest cost items in the production of BtL fuels were attributable to feedstock and capital costs. Comparison of the specific investments showed that, in addition to economies of scale, other factors had a significant influence leading to values between 1000 and 5000 EUR/kW. This, particularly, included the origin of the equipment purchase costs and the factors applied to them. Fuel production costs were found to range between 0.8 and 2.6 EUR/L.
    [Show full text]
  • Analyse Und Bewertung Ausgewählter Zukünftiger Biokraftstoffoptionen Auf Der Basis Fester Biomasse
    DBFZ Report Nr. 9 Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse Franziska Müller-Langer ANALYSE UND BEWERTUNG AUSGEWÄHLTER ZUKÜNFTIGER BIOKRAFTSTOFFOPTIONEN AUF DER BASIS FESTER BIOMASSE Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieurin (Dr.-Ing.) genehmigte Dissertation von Franziska Müller-Langer aus Leipzig 2011 Gutachter: Prof. Dr.-Ing. Martin Kaltschmitt Prof. Dr.-Ing. Joachim Werther Tag der mündlichen Prüfung: 13. Dezember 2011 II INHALTSVERZEICHNIS INHALTSVERZEICHNIS SYMBOLVERZEICHNIS ................................................................................................... VII 1 EINLEITUNG .................................................................................................................. 1 1.1 Hintergrund ................................................................................................................... 1 1.2 Zielstellung ................................................................................................................... 3 1.3 Aufbau der Arbeit ......................................................................................................... 4 2 KRAFTSTOFFOPTIONEN AUS FESTER BIOMASSE ........................................... 6 2.1 Feste Biomasse .............................................................................................................. 6 2.1.1 Definition und Abgrenzung ...................................................................................
    [Show full text]
  • DBFZ Report Nr.9
    DBFZ Report Nr. 9 Analyse und Bewertung ausgewählter zukünftiger Biokraftstoffoptionen auf der Basis fester Biomasse Franziska Müller-Langer ANALYSE UND BEWERTUNG AUSGEWÄHLTER ZUKÜNFTIGER BIOKRAFTSTOFFOPTIONEN AUF DER BASIS FESTER BIOMASSE Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieurin (Dr.-Ing.) genehmigte Dissertation von Franziska Müller-Langer aus Leipzig 2011 Gutachter: Prof. Dr.-Ing. Martin Kaltschmitt Prof. Dr.-Ing. Joachim Werther Tag der mündlichen Prüfung: 13. Dezember 2011 II INHALTSVERZEICHNIS INHALTSVERZEICHNIS SYMBOLVERZEICHNIS ................................................................................................... VII 1 EINLEITUNG .................................................................................................................. 1 1.1 Hintergrund ................................................................................................................... 1 1.2 Zielstellung ................................................................................................................... 3 1.3 Aufbau der Arbeit ......................................................................................................... 4 2 KRAFTSTOFFOPTIONEN AUS FESTER BIOMASSE ........................................... 6 2.1 Feste Biomasse .............................................................................................................. 6 2.1.1 Definition und Abgrenzung ...................................................................................
    [Show full text]