Syntactic Translation of Message Payloads Between At Least Partially Equivalent Encodings Emanuel Palm, Cristina Paniagua, Ulf Bodin, Olov Schelen´ Lulea˚ University of Technology, Lulea,˚ Sweden E-mail: ffirstname:
[email protected] Abstract—Recent years have seen a surge of interest in using A significant ambition of this work is to provide mes- IoT systems for an increasingly diverse set of applications, with sage payload translation capabilities to systems such as the use cases ranging from medicine to mining. Due to the disparate Arrowhead Framework [4], a SOA-based IoT framework needs of these applications, vendors are adopting a growing number of messaging protocols, encodings and semantics, which that supports the creation of scalable cloud-based automation result in poor interoperability unless systems are explicitly systems. This kind of framework facilitates device service designed to work together. Key efforts, such as Industry 4.0, discovery and orchestration at runtime,without any need for put heavy emphasis on being able to compose arbitrary IoT human intervention. A would-be Arrowhead translator service systems to create emergent applications, which makes mitigating could be thought of as an intermediary situated between two this barrier to interoperability a significant objective. In this paper, we present a theoretical method for translating message communicating systems, as is shown in Figure 1. As work payloads in transit between endpoints, complementing previous has already been done on creating a multiprotocol translation work on protocol translation. The method involves representing system [5] for Arrowhead, the translation method we describe and analyzing encoding syntaxes with the aim of identifying in this paper could be thought of as a complement to existing the concrete translations that can be performed without risk systems only supporting protocol translation.