THE NEAREST GROUP of GALAXIES Sidney Van Den Bergh
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemistry and Kinematics of Stars in Local Group Galaxies
Chemistry and kinematics of stars in Local Group galaxies Giuseppina Battaglia ESO Garching In collaboration with DART (E.Tolstoy, M.Irwin, A.Helmi, V.Hill, B.Letarte, P.Jablonka, K.Venn, M.Shetrone, N.Arimoto, F.Primas, A.Kaufer, T. Szeifert, P. François,T.Abel) Dwarf spheroidal galaxies Small (half-light radius= 0.1-1kpc), devoid of gas, pressure supported SSccuulplpttoorr FFoorrnnaaxx Typical dSph Unusual dSph • Distance: 79 kpc • Distance: 138 kpc • Faint (Lv~ 10^6 Lsun) • Most luminous (Lv~10^7 Lsun) and and metal poor metal rich of MW satellites SFHs from Grebel, Gallagher & Harbeck 2007 (see also Monkiewicz et al. 1999, Stetson et al. 1998, Buonanno et al.1999, Saviane et al. 2000) Time [Gyr] Time [Gyr] Motivation • Galaxy formation on the smallest scales – Evolution and distribution of stellar populations – Chemical enrichment histories – All dSphs contain > 10 Gyr old stars => early universe • Most dark-matter dominated galaxies – Measure dark-matter distribution – Constrain the nature of dark-matter (warm, cold...) • Galaxy formation: building blocks of large galaxies? TThhee LLooccaall GGrroouupp Grebel et al. 2000 Large Dwarf ellipticals (dE); Dwarf irregulars dSphs/dIrrs spirals dwarf spheroidals (dSphs) (dIrr) dI rr Large majority DDAARRTT LLaarrggee PPrrooggrraamm aatt EESSOO • 4 dSphs in the MW halo: Sextans, Sculptor, Fornax, Carina (HR only) • Extended ESO/WFI imaging (CMD) probable members • VLT/FLAMES Low Resolution (LR) X probable non members spectra of 100s Red Giant Branch (RGB) stars in CaII triplet (CaT) region -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
What Is an Ultra-Faint Galaxy?
What is an ultra-faint Galaxy? UCSB KITP Feb 16 2012 Beth Willman (Haverford College) ~ 1/10 Milky Way luminosity Large Magellanic Cloud, MV = -18 image credit: Yuri Beletsky (ESO) and APOD NGC 205, MV = -16.4 ~ 1/40 Milky Way luminosity image credit: www.noao.edu Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/300 Milky Way luminosity MV = -14.2 Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/2700 Milky Way luminosity MV = -11.9 Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/14,000 Milky Way luminosity MV = -10.1 ~ 1/40,000 Milky Way luminosity ~ 1/1,000,000 Milky Way luminosity Ursa Major 1 Finding Invisible Galaxies bright faint blue red Willman et al 2002, Walsh, Willman & Jerjen 2009; see also e.g. Koposov et al 2008, Belokurov et al. Finding Invisible Galaxies Red, bright, cool bright Blue, hot, bright V-band apparent brightness V-band faint Red, faint, cool blue red From ARAA, V26, 1988 Willman et al 2002, Walsh, Willman & Jerjen 2009; see also e.g. Koposov et al 2008, Belokurov et al. Finding Invisible Galaxies Ursa Major I dwarf 1/1,000,000 MW luminosity Willman et al 2005 ~ 1/1,000,000 Milky Way luminosity Ursa Major 1 CMD of Ursa Major I Okamoto et al 2008 Distribution of the Milky Wayʼs dwarfs -14 Milky Way dwarfs 107 -12 -10 classical dwarfs V -8 5 10 Sun M L -6 ultra-faint dwarfs Canes Venatici II -4 Leo V Pisces II Willman I 1000 -2 Segue I 0 50 100 150 200 250 300 -
Model Comparison of the Dark Matter Profiles
A&A 558, A35 (2013) Astronomy DOI: 10.1051/0004-6361/201321606 & c ESO 2013 Astrophysics Model comparison of the dark matter profiles of Fornax, Sculptor, Carina and Sextans Maarten A. Breddels and Amina Helmi Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] Received 28 March 2013 / Accepted 16 August 2013 ABSTRACT Aims. We compare dark matter profile models of four dwarf spheroidal galaxies satellites of the Milky Way using Bayesian evidence. Methods. We use orbit based dynamical models to fit the 2nd and 4th moments of the line of sight velocity distributions of the Fornax, Sculptor, Carina and Sextans dwarf spheroidal galaxies. We compare NFW, Einasto and several cored profiles for their dark halos and present the probability distribution functions of the model parameters. Results. For each galaxy separately we compare the evidence for the various dark matter profiles, and find that it is not possible to distinguish between these specific parametric dark matter density profiles using the current data. Nonetheless, from the combined 2 β/2 evidence, we find that is unlikely that all galaxies are embedded in the same type of cored profiles of the form ρDM ∝ 1/(1 + r ) , where β = 3, 4. For each galaxy, we also obtain an almost model independent, and therefore accurate, constraint on the logarithmic slope of the dark matter density distribution at a radius ∼r−3, i.e. where the logarithmic slope of the stellar density profile is −3. Conclusions. For each galaxy, we find that all best fit models essentially have the same mass distribution over a large range in radius (from just below r−3 to the last measured data point). -
2391 (Created: Tuesday, September 21, 2021 at 5:00:39 PM Eastern Standard Time) - Overview
JWST Proposal 2391 (Created: Tuesday, September 21, 2021 at 5:00:39 PM Eastern Standard Time) - Overview 2391 - The resolved properties of PAHs at low metallicity Cycle: 1, Proposal Category: GO INVESTIGATORS Name Institution E-Mail Dr. Julia Christine Roman-Duval (PI) Space Telescope Science Institute [email protected] Dr. Bruce T. Draine (CoI) Princeton University [email protected] Dr. Karl D. Gordon (CoI) Space Telescope Science Institute [email protected] Dr. Aleksandra Hamanowicz (CoI) Space Telescope Science Institute [email protected] Dr. Christopher Clark (CoI) Space Telescope Science Institute [email protected] Dr. Martha L. Boyer (CoI) Space Telescope Science Institute [email protected] Dr. Karin Marie Sandstrom (CoI) University of California - San Diego [email protected] Dr. Jeremy Chastenet (CoI) (ESA Member) Ghent University [email protected] OBSERVATIONS Folder Observation Label Observing Template Science Target MIRI IC1613 2 MIRI Imaging (1) IC-1613 6 NIRCam Imaging (1) IC-1613 SEXTANS-A 5 MIRI Imaging (2) SEXTANS-A 9 MIRI Imaging (2) SEXTANS-A 8 MIRI Imaging (2) SEXTANS-A 7 NIRCam Imaging (2) SEXTANS-A ABSTRACT The NIR-MIR SED of galaxies is dominated by spectral features from polycyclic aromatic hydrocarbon (PAH) molecules fluorescing in regions illuminated by FUV photons. In low metallicity systems (Z < 0.2 Zo), previous studies with Spitzer have revealed a substantial deficiency in the 1 JWST Proposal 2391 (Created: Tuesday, September 21, 2021 at 5:00:39 PM Eastern Standard Time) - Overview emission and abundance of PAHs, the origin of which remains unexplained due to the lack of deep, resolved, multi-band photometry or spectroscopy. -
Dwarf Spheroidal Kinematics with Large Radial Velocity Samples Matthew G
Near-Field Cosmology with Dwarf Elliptical Galaxies Proceedings IAU Colloquium No. 198, 2005 c 2005 International Astronomical Union H. Jerjen and B. Binggeli, eds. doi:10.1017/S1743921305003583 Dwarf spheroidal kinematics with large radial velocity samples Matthew G. Walker† Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA email: [email protected] Abstract. I present a large sample of precise (±2 km/s) stellar radial velocities obtained to serve as kinematic tracers in Milky Way dwarf spheroidal (dSph) satellite galaxies. This includes velocities for ∼750 member stars spanning several core radii in the Sculptor dSph, and ∼400 member stars extending out to the nominal tidal radius of the Fornax dSph. The resulting radial velocity dispersion profiles are flat, with no evidence for a sharp decrease in the velocity dispersion at large galactocentric radius in either Sculptor of Fornax. Application of a non- parametric method for estimating the radial mass distributions gives results consistent with mass determinations from classical analyses, with lower limits of [M/L]V ∼7 for Fornax and [M/L]V ∼4 for Sculptor. Keywords. dwarf spheroidal galaxies, dark matter, non-parametric MMFS: A Powerful New Instrument The Michigan MIKE Fiber System (MMFS) is a multi-object echelle spectrograph operational at the twin Magellan 6.5m telescopes of Las Campanas Observatory, Chile. The system consists of two sets of 128 fibers, each accepting light into a 1.4 arcsec aperture and feeding the MIKE spectrograph’s two channels (split by a dichroic at 5000A).˚ Both channels of MIKE deliver spectra having R∼20000 at high efficiency. -
The Variable Star Population in the Sextans Dwarf Spheroidal Galaxy
TheThe variablevariable starstar populationpopulation inin thethe SextansSextans dwarfdwarf spheroidalspheroidal galaxygalaxy Kathy Vivas Cerro Tololo Interamerican Observatory La Serena, Chile In collaboration with Javier Alonso-García (U. of Antofagasta, Chile) Mario Mateo (U. of Michigan, USA) Alistair Walker (CTIO, Chile) David Nidever (NOAO, USA) DECam Community Science Workshop 2018 1 The Role of Variable Stars ● Tracers of different stellar populations ● Standard candles → Distance Scale Variable stars in the Carina dwarf spheroidal galaxy (Vivas & Mateo 2013) DECam Community Science Workshop 2018 2 Properties of the Satellites of the Milky Way Drlica-Wagner et al., 2015 The new discoveries are likely to be ultra-faint dwarf galaxies. Gallart et al. 2015 Classical dwarfs display a variety of SFRs DECam Community Science Workshop 2018 3 CMDs of Satellite Dwarfs Brown et al 2014 On the other hand, ultra-faint dwarfs seem Monelli et al 2003 to be consistent with only and old Galaxies like Carina show obvious population signs of multiple bursts of star formation DECam Community Science Workshop 2018 4 Leo T: a UFD with extended star formation Clementini et al (2012) DECam Community Science Workshop 2018 5 Helium-Burning Pulsating Stars 3.0 Anomalous Cepheids 2.0 0.7 RR Lyrae Stars Variable stars and theoretical isochrones in Leo I (Fiorentino et al 2012) DECam Community Science Workshop 2018 6 Dwarf Cepheid Stars (collective name for δ Scuti or SX Phe) Intermediate age population TO Old Population TO Coppola et al 2015, Vivas & Mateo 2013 DECam Community Science Workshop 2018 7 Dwarf Cepheids as distance indicators Need to study more systems! Cohen et al (2012) P-L relationship (independent of metallicity) → standard candles DECam Community Science Workshop 2018 8 Dwarf Cepheids in other galaxies 85 dwarf cepheids in Fornax A few thousand in (Poretti et al. -
The Night Sky This Month
The Night Sky (April 2020) BST (Universal Time plus one hour) is used this month. Northern Horizon Eastern Western Horizon Horizon 23:00 BST at beginning of the month 22:00 BST in middle of month 21:00 BST at end of month Southern Horizon The General Weather Pattern Surprisingly rainfall is not particularly high in April, but of course heavy rain showers do occur, often with hail and thunder. Expect it to be cloudy. Temperatures usually rise steadily, but clear evenings can still be cold with very cold mornings. Wear multiple layers of clothes, with a warm hat, socks and shoes to maintain body heat. As always, an energy snack and a flask containing a warm non-alcoholic drink might well be welcome at some time. Should you be interested in obtaining a detailed weather forecast for observing in the Usk area, log on to https://www.meteoblue.com/en/weather/forecast/seeing/usk_united-kingdom_2635052 other locations are available. Earth (E) As the Earth moves from the vernal equinox in March, the days are still opening out rapidly. The Moon no longer raises high in the mid-night sky as it does in the winter, but relocates at lower latitudes for the summer. The Sun, of course, does the converse. Artificial Satellites or Probes Should you be interested in observing the International Space Station or other space craft, carefully log on to http://www.heavens-above.com to acquire up-to-date information for your observing site. Sun Conditions apply as to the use of this matter. © D J Thomas 2020 (N Busby 2019) The Sun is becoming better placed for observing as it climbs to more northerly latitudes, and, it is worth reminding members that sunlight contains radiation across the spectrum that is harmful to our eyes and that the projection method should be used. -
Guide to the Constellations
STAR DECK GUIDE TO THE CONSTELLATIONS BY MICHAEL K. SHEPARD, PH.D. ii TABLE OF CONTENTS Introduction 1 Constellations by Season 3 Guide to the Constellations Andromeda, Aquarius 4 Aquila, Aries, Auriga 5 Bootes, Camelopardus, Cancer 6 Canes Venatici, Canis Major, Canis Minor 7 Capricornus, Cassiopeia 8 Cepheus, Cetus, Coma Berenices 9 Corona Borealis, Corvus, Crater 10 Cygnus, Delphinus, Draco 11 Equuleus, Eridanus, Gemini 12 Hercules, Hydra, Lacerta 13 Leo, Leo Minor, Lepus, Libra, Lynx 14 Lyra, Monoceros 15 Ophiuchus, Orion 16 Pegasus, Perseus 17 Pisces, Sagitta, Sagittarius 18 Scorpius, Scutum, Serpens 19 Sextans, Taurus 20 Triangulum, Ursa Major, Ursa Minor 21 Virgo, Vulpecula 22 Additional References 23 Copyright 2002, Michael K. Shepard 1 GUIDE TO THE STAR DECK Introduction As an introduction to astronomy, you cannot go wrong by first learning the night sky. You only need a dark night, your eyes, and a good guide. This set of cards is not designed to replace an atlas, but to engage your interest and teach you the patterns, myths, and relationships between constellations. They may be used as “field cards” that you take outside with you, or they may be played in a variety of card games. The cultural and historical story behind the constellations is a subject all its own, and there are numerous books on the subject for the curious. These cards show 52 of the modern 88 constellations as designated by the International Astronomical Union. Many of them have remained unchanged since antiquity, while others have been added in the past century or so. The majority of these constellations are Greek or Roman in origin and often have one or more myths associated with them. -
Galaxy Group and Cluster Astronomy at RIT
Galaxy Group and Cluster Astronomy at RIT 23 Spitzer,)HST,)GALEX,)&)Chandra)Image) Green Bank 100M Hershel 3.5M Credit:)NRAO) Credit:)Chicago)University) Hubble Space Telescope (HST) Sloan Digital 2.4M Sky Survey 2.5M Credit:) Hubblesite ) In Space On Earth Astronomers at RIT want to learn about galaxy groups and clusters. They use a variety of ground- and space-based telescopes. 24 YOU ARE HERE Milky Way galaxy Artist’s representation Here’s where the sun lives! We are on the outskirts of the Milky Way. It takes the sun 200 million years to travel once around the galaxy. Credit:)NASA/JPLJCaltech/R) 25 Sometimes galaxies run past each other or even combine! ZOOM Antennae Galaxies This can jumpstart star formation and make irregularly shaped galaxies like the ones shown here. 26 Credit:)HubbleSite) Living as a group of galaxies, the Milky Way has neighbors: the larger Andromeda and the smaller Tr i a n g u l u m . The Milky Way s Home The Local Group Andromeda Galaxy This is an artist’s interpretation. NGC185 Not drawn to scale. NGC147 M32 Tr i a n g u l u m Galaxy NGC205 Pegasus Milky Way Galaxy IC1613 Draco Fornax WLM Ursa Minor Sculptor LEo I Leo II Sextans NGC6822 SMC LMC Carina Artist’s representation of the Local Group Around each larger galaxy there are dozens of dwarf galaxies. It takes light 2.5 million years to get to Earth from Andromeda. 27 Hundreds, or even thousands, of galaxies can live together in a cluster. A crowded neighborhood Abell 1689 shown here has over 2000 galaxies living far, far away from Earth. -
609-622, July 1991 PUBLICATIONS of the ASTRONOMICAL
Publications OFTHE Astronomical SociE-noFTHK Pacific 103: 609-622, July 1991 PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC Vol. 103 July 1991 No. 665 THE STELLAR POPULATIONS OF M 331 SIDNEY VAN DEN BERGH Dominion Astrophysical Observatory, National Research Council of Canada 5071 West Saanich Road, Victoria, BC V8X 4M6, Canada Received 199 ABSTRACT A review is given of present ideas on the evolution and stellar content of the Triangulum nebula = M 33 = NGC 598. A distance modulus of (m — M)() = 24.5 ± 0.2 (D = 795 ± 75 kpc) and a Galactic foreground reddening £ß_v = 0.07, from which Mv = —18.87, are adopted throughout this paper. The disk of M 33 is embedded in a halo of globular clusters, metal-poor red giants, and RR Lyrae stars. Its nuclear bulge component is weak (Mv > -14). This suggests that the halos of galaxies are not extensions of their bulges to large radii. The ages of M 33 clusters do not appear to exhibit a hiatus in their star-forming history like that which is observed in the Large Magellanic Cloud. Young and intermediate-age clusters with luminosities rivaling the populous clusters in the LMC are rare in M 33. The integrated light of the semistellar nucleus of M 33, which contains the strongest X-ray source in the Local Group, is dominated by a young metal-rich population. At optical wavelengths the disk scale length of M 33 is 9.'6, which is similar to the 9.'9 scale length of OB associations. The ratio of the nova rate in M 33 to that in M 31 is approximately equal to the ratio of their luminosities. -
The Hertzsprung-Russell Diagram of Metal-Poor Disk Stars
THE HERTZSPRUNG-RUSSELL DIAGRAM OF METAL-POOR DISK STARS Sidney van den Bergh David Dunlap Observatory A quarter of a century ago Keenan and Keller (1953) showed that the majority of high-velocity stars near the Sun outline a Hertzsprung-Russell diagram similar to that of old Population I. This result, which did not appear to fit into Baade1s (19ΛΛ) two- population model of the Galaxy was ignored (except by Roman 1965) for the next two decades. Striking confirmation of the results of Keenan and Keller was, however, obtained by Hartwick and Hesser (1972). Their work appears to show that high-velocity field stars with an ultraviolet excess (which measures Fe/H) of 6(U-B) ^ +0T11 lie on a red giant branch that is more than a magnitude fainter than the giant branch of the strong-lined globular cluster 47 Tue for which <S(U-B) ^ +0Tl0. Furthermore Démarqué and McClure (1977) show that the red giants in the old metal poor [S(U-B) ^ +0T11] open cluster NGC 2^20 are significantly fainter than are those in 4-7 Tue. Calculations by these authors show that the observed differences between the giants in Λ7 Tue and in NGC 24-20 can be explained if either (l) 4-7 Tue is richer in helium than NGC 24-20 by ΔΥ £ 0.1 or (2) if Λ7 Tue has a ten times lower value of Z(CNO) than does NGC 2Λ20. Presently available chemical abundance determinations for galactic disk and halo stars do not allow one to make a clear-cut choice between these two alternatives.