The Project Gutenberg Ebook #32000: an Introduction to Astronomy, New and Rev

Total Page:16

File Type:pdf, Size:1020Kb

The Project Gutenberg Ebook #32000: an Introduction to Astronomy, New and Rev Project Gutenberg’s An Introduction to Astronomy, by Forest Ray Moulton This eBook is for the use of anyone anywhere at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this eBook or online at www.gutenberg.org Title: An Introduction to Astronomy Author: Forest Ray Moulton Release Date: April 24, 2010 [EBook #32000] Language: English Character set encoding: ISO-8859-1 *** START OF THIS PROJECT GUTENBERG EBOOK AN INTRODUCTION TO ASTRONOMY *** Produced by Brenda Lewis, Andrew D. Hwang, Bup, and the Online Distributed Proofreading Team at http://www.pgdp.net (This file was produced from images generously made available by The Internet Archive/American Libraries.) transcriber’s note Figures may have been moved with respect to the surrounding text. Minor presentational changes have been made without comment. Typographical corrections are documented in the LATEX source file. The spelling “Leverrier” has been retained from the original. This PDF file is formatted for screen viewing, but may be easily formatted for printing. Please consult the preamble of the LATEX source file for instructions. AN INTRODUCTION TO ASTRONOMY THE MACMILLAN COMPANY NEW YORK · BOSTON · CHICAGO · DALLAS ATLANTA · SAN FRANCISCO MACMILLAN & CO., Limited LONDON · BOMBAY · CALCUTTA MELBOURNE THE MACMILLAN CO. OF CANADA, Ltd. TORONTO Fig. 1. — The Lick Observatory, Mount Hamilton, California. AN INTRODUCTION TO ASTRONOMY BY FOREST RAY MOULTON, Ph.D. PROFESSOR OF ASTRONOMY IN THE UNIVERSITY OF CHICAGO RESEARCH ASSOCIATE OF THE CARNEGIE INSTITUTION OF WASHINGTON NEW AND REVISED EDITION New York THE MACMILLAN COMPANY 1916 All rights reserved Copyright, 1906 and 1916, By THE MACMILLAN COMPANY. Set up and electrotyped. Published April, 1906. Reprinted November, 1907; July, 1908; April, 1910; April, 1911; September, 1912; September, 1913: October, 1914. New and revised edition November, 1916. Norwood Pre& J. S. Cushing Co. — Berwick & Smith Co. Norwood, Mass., U.S.A. PREFACE The necessity for a new edition of “An Introduction to Astronomy” has furnished an opportunity for entirely rewriting it. As in the first edition, the aim has been to present the great subject of astronomy so that it can be easily comprehended even by a person who has not had extensive scientific training. It has been assumed that the reader has no intention of becoming an astronomer, but that he has an interest in the wonderful universe which surrounds him, and that he has arrived at such a stage of intellectual development that he demands the rea- sons for whatever conclusions he is asked to accept. The first two of these assumptions have largely determined the subject matter which is presented; the third has strongly influenced the method of presenting it. While the aims have not changed materially since the first edition was written, the details of the attempt to accomplish them have under- gone many, and in some cases important, modifications. For example, the work on reference points and lines has been deferred to Chapter iv. If one is to know the sky, and not simply know about it, a knowledge of the coördinate systems is indispensable, but they always present some difficulties when they are encountered at the beginning of the subject. It is believed that the present treatment prepares so thoroughly for their study and leads so naturally to them that their mastery will not be found difficult. The chapter on telescopes has been regretfully omit- ted because it was not necessary for understanding the remainder of the work, and because the space it occupied was needed for treating more vital parts of the subject. The numerous discoveries in the si- dereal universe during the last ten years have made it necessary greatly to enlarge the last chapter. As now arranged, the first chapters are devoted to a discussion of the earth and its motions. They present splendid examples of the char- acteristics and methods of science, and amply illustrate the care with which scientific theories are established. The conclusions which are set forth are bound up with the development of science from the dawn of recorded history to the recent experiments on the rigidity and the elasticity of the earth. They show how closely various sciences are in- terlocked, and how much an understanding of the earth depends upon its relations to the sky. They lead naturally to a more formal treatment of the celestial sphere and a study of the constellations. A familiarity with the brighter stars and the more conspicuous constellations is re- vi PREFACE vii garded as important. One who has become thoroughly acquainted with them will always experience a thrill when he looks up at night into a cloudless sky. The chapter on the sun has been postponed until after the treatment of the moon, planets, and comets. The reason is that the discussion of the sun necessitates the introduction of many new and difficult topics, such as the conservation of energy, the disintegration of radioactive elements, and the principles of spectrum analysis. Then follows the evolution of the solar system. In this chapter new and more serious demands are made on the reasoning powers and the imagination. Its study in a measure develops a point of view and prepares the way for the consideration, in the last chapter, of the transcendental and absorbingly interesting problems respecting the organization and evolution of the sidereal universe. Lists of problems have been given at the ends of the principal di- visions of the chapters. They cannot be correctly answered without a real comprehension of the principles which they involve, and in very many cases, especially in the later chapters, they lead to important supplementary results. It is strongly recommended that they be given careful consideration. The author is indebted to Mr. Albert Barnett for the new star maps and the many drawings with which the book is illustrated, with the exception of Figs. 23 and 30, which were kindly furnished by Mr. George Otis. He is indebted to Professor David Eugene Smith for photographs of Newton, Kepler, Herschel, Adams, and Leverrier. He is indebted to the Lick, Lowell, Solar, and Yerkes observatories for a large amount of illustrative material which was very generously furnished. He is under deeper obligations to his colleague, Professor W. D. MacMillan, than this brief acknowledgment can express for assistance on the manuscript, on the proofs, and in preparing the many problems which appear in the book. F. R. MOULTON. The University of Chicago, September 25, 1916. CONTENTS CHAPTER I Preliminary Considerations ARTS. PAGE 1. Science . .1 2. The value of science . .2 3. The origin of science . .3 4. The methods of science . .5 5. The imperfections of science . .8 6. Great contributions of astronomy to science . 11 7. The present value of astronomy . 12 8. The scope of astronomy . 14 CHAPTER II THE EARTH I. The Shape of the Earth 9. Astronomical problems respecting the earth . 20 10, 11. Proofs of the earth’s sphericity . 21, 24 12, 14, 15. Proofs of the earth’s oblateness . 24–28 13. Size and shape of the earth . 26 16. The theoretical shape of the earth . 29 17. Different kinds of latitude . 31 18. Historical sketch on the shape of the earth . 31 II. The Mass of the Earth and the Condition of its Interior 19. The principle by which mass is determined . 34 20. The mass and density of the earth . 35 21–23. Methods of determining the density of the earth . 36–39 24. Temperature and pressure in the earth’s interior . 40 25, 26. Proofs of the earth’s rigidity and elasticity . 41, 47 27. Historical sketch on the mass and rigidity of the earth . 49 viii CONTENTS ix III. The Earth’s Atmosphere ARTS. PAGE 28. Composition and mass of the earth’s atmosphere . 50 29–31. Methods of determining height of the atmosphere . 51–53 32. The kinetic theory of gases . 54 33. The escape of atmospheres . 55 34. Effects of the atmosphere on climate . 56 35. Importance of the constitution of the atmosphere . 57 36. Rôle of the atmosphere in life processes . 58 37. Refraction of light by the atmosphere . 59 38. The twinkling of the stars . 59 CHAPTER III THE MOTIONS OF THE EARTH I. The Rotation of the Earth 39. The relative rotation of the earth . 62 40. The laws of motion . 63 41–43. Proofs of the earth’s rotation . 66–67 44. Consequences of the earth’s rotation . 68 45. Uniformity of the earth’s rotation . 70 46. The variation of latitude . 72 47. The precession of the equinoxes and nutation . 74 II. The Revolution of the Earth 48. Relative motion of the earth with respect to the sun . 77 49–52. Proofs of the revolution of the earth . 79–82 53. Shape of the earth’s orbit . 83 54. Motion of the earth in its orbit . 84 55. Inclination of the earth’s orbit . 85 56. The cause of the seasons . 86 57. Relation of altitude of pole to latitude of observer . 87 58. The sun’s diurnal circles . 88 59. Hours of sunlight in different latitudes . 90 60. The lag of the seasons . 91 CONTENTS x ARTS. PAGE 61. Effect of eccentricity of earth’s orbit on seasons . 91 62. Historical sketch of the motions of the earth . 93 CHAPTER IV Reference Points and Lines 63. Object and character of reference points and lines . 98 64. The geographical system . 99 65. The horizon system . 100 66. The equator system . 101 67. The ecliptic system . 102 68. Comparison of systems of coördinates . 103 69, 70. Finding the altitude and azimuth . 105, 107 71, 72.
Recommended publications
  • 15Th October at 19:00 Hours Or 7Pm AEST
    TheSky (c) Astronomy Software 1984-1998 TheSky (c) Astronomy Software 1984-1998 URSA MINOR CEPHEUS CASSIOPEIA DRACO Night sky map OctoberDRACO 2017 URSA MAJOR North North STAR BRIGHTNESS Zero or brighter 1st magnitude nd LACERTA Deneb 2 NE rd NE Vega CYGNUS CANES VENATICI LYRAANDROMEDA 3 Vega NW th NW 4 LYRA LEO MINOR CORONA BOREALIS HERCULES BOOTES CORONA BOREALIS HERCULES VULPECULA COMA BERENICES Arcturus PEGASUS SAGITTA DELPHINUS SAGITTA SERPENS LEO Altair EQUULEUS PISCES Regulus AQUILAVIRGO Altair OPHIUCHUS First Quarter Moon SERPENS on the 28th Spica AQUARIUS LIBRA Zubenelgenubi SCUTUM OPHIUCHUS CORVUS Teapot SEXTANS SERPENS CAPRICORNUS SERPENSCRATER AQUILA SCUTUM East East Antares SAGITTARIUS CETUS PISCIS AUSTRINUS P SATURN Centre of the Galaxy MICROSCOPIUM Centre of the Galaxy HYDRA West SCORPIUS West LUPUS SAGITTARIUS SCULPTOR CORONA AUSTRALIS Antares GRUS CENTAURUS LIBRA SCORPIUS NORMAINDUS TELESCOPIUM CORONA AUSTRALIS ANTLIA Zubenelgenubi ARA CIRCINUS Hadar Alpha Centauri PHOENIX Mimosa CRUX ARA CAPRICORNUS TRIANGULUM AUSTRALEPAVO PYXIS TELESCOPIUM NORMAVELALUPUS FORNAX TUCANA MUSCA 47 Tucanae MICROSCOPIUM Achernar APUS ERIDANUS PAVO SMC TRIANGULUM AUSTRALE CIRCINUS OCTANSCHAMAELEON APUS CARINA HOROLOGIUMINDUS HYDRUS Alpha Centauri OCTANS SouthSouth CelestialCelestial PolePole VOLANS Hadar PUPPIS RETICULUM POINTERS SOUTHERN CROSS PISCIS AUSTRINUS MENSA CHAMAELEONMENSA MUSCA CENTAURUS Adhara CANIS MAJOR CHART KEY LMC Mimosa SE GRUS DORADO SMC CAELUM LMCCRUX Canopus Bright star HYDRUS TUCANA SWSW MOON PHASE Faint star VOLANS DORADO
    [Show full text]
  • 500 Natural Sciences and Mathematics
    500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681.
    [Show full text]
  • Chemistry and Kinematics of Stars in Local Group Galaxies
    Chemistry and kinematics of stars in Local Group galaxies Giuseppina Battaglia ESO Garching In collaboration with DART (E.Tolstoy, M.Irwin, A.Helmi, V.Hill, B.Letarte, P.Jablonka, K.Venn, M.Shetrone, N.Arimoto, F.Primas, A.Kaufer, T. Szeifert, P. François,T.Abel) Dwarf spheroidal galaxies Small (half-light radius= 0.1-1kpc), devoid of gas, pressure supported SSccuulplpttoorr FFoorrnnaaxx Typical dSph Unusual dSph • Distance: 79 kpc • Distance: 138 kpc • Faint (Lv~ 10^6 Lsun) • Most luminous (Lv~10^7 Lsun) and and metal poor metal rich of MW satellites SFHs from Grebel, Gallagher & Harbeck 2007 (see also Monkiewicz et al. 1999, Stetson et al. 1998, Buonanno et al.1999, Saviane et al. 2000) Time [Gyr] Time [Gyr] Motivation • Galaxy formation on the smallest scales – Evolution and distribution of stellar populations – Chemical enrichment histories – All dSphs contain > 10 Gyr old stars => early universe • Most dark-matter dominated galaxies – Measure dark-matter distribution – Constrain the nature of dark-matter (warm, cold...) • Galaxy formation: building blocks of large galaxies? TThhee LLooccaall GGrroouupp Grebel et al. 2000 Large Dwarf ellipticals (dE); Dwarf irregulars dSphs/dIrrs spirals dwarf spheroidals (dSphs) (dIrr) dI rr Large majority DDAARRTT LLaarrggee PPrrooggrraamm aatt EESSOO • 4 dSphs in the MW halo: Sextans, Sculptor, Fornax, Carina (HR only) • Extended ESO/WFI imaging (CMD) probable members • VLT/FLAMES Low Resolution (LR) X probable non members spectra of 100s Red Giant Branch (RGB) stars in CaII triplet (CaT) region
    [Show full text]
  • A Gaia DR 2 and VLT/FLAMES Search for New Satellites of The
    Astronomy & Astrophysics manuscript no. spec_v1_ref1_arx c ESO 2019 February 14, 2019 A Gaia DR 2 and VLT/FLAMES search for new satellites of the LMC⋆ T. K. Fritz1, 2, R. Carrera3, G. Battaglia1, 2, and S. Taibi1, 2 1 Instituto de Astrofisica de Canarias, calle Via Lactea s/n, E-38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Universidad de La Laguna, Dpto. Astrofisica, E-38206 La Laguna, Tenerife, Spain 3 INAF - Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy ABSTRACT A wealth of tiny galactic systems populates the surroundings of the Milky Way. However, some of these objects might actually have their origin as former satellites of the Magellanic Clouds, in particular of the LMC. Examples of the importance of understanding how many systems are genuine satellites of the Milky Way or the LMC are the implications that the number and luminosity/mass function of satellites around hosts of different mass have for dark matter theories and the treatment of baryonic physics in simulations of structure formation. Here we aim at deriving the bulk motions and estimates of the internal velocity dispersion and metallicity properties in four recently discovered distant southern dwarf galaxy candidates, Columba I, Reticulum III, Phoenix II and Horologium II. We combine Gaia DR2 astrometric measurements, photometry and new FLAMES/GIRAFFE intermediate resolution spectroscopic data in the region of the near-IR Ca II triplet lines; such combination is essential for finding potential member stars in these low luminosity systems. We find very likely member stars in all four satellites and are able to determine (or place limits on) the systems bulk motions and average internal properties.
    [Show full text]
  • Craters in Shadow
    Section 3: Craters in Shadow Kepler Copernicus Eratosthenes Seen it Clavius Seen it Section 3: Craters in Shadow Visibility: A pair of binoculars is the minimum requirement to see these features. When: Look for them when the terminator’s close by, typically a day before last quarter. Not all craters are best seen when the Sun is high in the lunar sky - in fact most aren’t! If craters aren’t par- ticularly bright or dark, they tend to disappear into the background when the Moon’s phase is close to full. These craters are best seen when the ‘terminator’ is nearby, or when the Sun is low in the lunar sky as seen from the crater. This causes oblique lighting to fall on the crater and create exaggerated shadows. Ultimately, this makes the crater look more dramatic and easier to see. We’ll use this effect for the next section on lunar mountains, but before we do, there are a couple of craters that we’d like to bring to your attention. Actually, the Moon is covered with a whole host of wonderful craters that look amazing when the lighting is oblique. During the summer and into the early autumn, it’s the later phases of the Moon are best positioned in the sky - the phases following full Moon. Unfortunately, this means viewing in the early hours but don’t worry as we’ve kept things simple. We just want to give you a taste of what a shadowed crater looks like for this marathon, so the going here is really pretty easy! First, locate the two craters Kepler and Copernicus which were marathon targets pointed out in Section 2.
    [Show full text]
  • November 25,1897
    The Republican Journal. V0LlME li9'_ BELFAST, MAINE, THURSDAY, NOVEMBER 25, 1897. NUMBER 47 political movement, the A. P. A. has Busy Brooks. good business in stoves, tinware, etc. M. J. Associated THE REPUBLICAN JOURNAL. given up the ghost, the national organiza- Charities. The Water Works in Brooks Village. PERSONAL. Dow has a store filled with a handsome tion having surrendered its charter and A Write-up of this Enterprising Village. of in Two preliminary meetings looking to the gone out of business.The new recita- assortment everything ladies’ wear, The Consolidated Water Co. of Portland C.W. Frederick visited It is the of a Augusta yesterday. PUBLISHED EVERY THURSDAY MORNING BY THE tion hall which verdict of all who visit Brooks F. establishing society for associated char- John D. Rockefeller has millinery, etc. B. Stantial’s stock of dry has put in a system of water works at Brooks that have been Mr. E. O. Thorndike returned to Boston just built for Vassal- at a cost of village it is one of the busiest and most and is and ity held in this city and some College fancy goods complete, Chas. H. Village and water is now supplied to about was dedicated Nov. 19th. The progress made. At the Nov. Saturday. Journal Pub. Co. $100,000 enterprising places of its size in the State. has a well store. meeting 19th Republican Irving equipped jewelry 60 buildings. The company was incorporated same day Mr. Rockefeller telegraphed to The is N. E. Keen was elected chairman Hon. R. W. went to Boston yester- village situated on the Belfast branch The mechanics include Chas.
    [Show full text]
  • Music and the American Civil War
    “LIBERTY’S GREAT AUXILIARY”: MUSIC AND THE AMERICAN CIVIL WAR by CHRISTIAN MCWHIRTER A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of History in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2009 Copyright Christian McWhirter 2009 ALL RIGHTS RESERVED ABSTRACT Music was almost omnipresent during the American Civil War. Soldiers, civilians, and slaves listened to and performed popular songs almost constantly. The heightened political and emotional climate of the war created a need for Americans to express themselves in a variety of ways, and music was one of the best. It did not require a high level of literacy and it could be performed in groups to ensure that the ideas embedded in each song immediately reached a large audience. Previous studies of Civil War music have focused on the music itself. Historians and musicologists have examined the types of songs published during the war and considered how they reflected the popular mood of northerners and southerners. This study utilizes the letters, diaries, memoirs, and newspapers of the 1860s to delve deeper and determine what roles music played in Civil War America. This study begins by examining the explosion of professional and amateur music that accompanied the onset of the Civil War. Of the songs produced by this explosion, the most popular and resonant were those that addressed the political causes of the war and were adopted as the rallying cries of northerners and southerners. All classes of Americans used songs in a variety of ways, and this study specifically examines the role of music on the home-front, in the armies, and among African Americans.
    [Show full text]
  • General Vertical Files Anderson Reading Room Center for Southwest Research Zimmerman Library
    “A” – biographical Abiquiu, NM GUIDE TO THE GENERAL VERTICAL FILES ANDERSON READING ROOM CENTER FOR SOUTHWEST RESEARCH ZIMMERMAN LIBRARY (See UNM Archives Vertical Files http://rmoa.unm.edu/docviewer.php?docId=nmuunmverticalfiles.xml) FOLDER HEADINGS “A” – biographical Alpha folders contain clippings about various misc. individuals, artists, writers, etc, whose names begin with “A.” Alpha folders exist for most letters of the alphabet. Abbey, Edward – author Abeita, Jim – artist – Navajo Abell, Bertha M. – first Anglo born near Albuquerque Abeyta / Abeita – biographical information of people with this surname Abeyta, Tony – painter - Navajo Abiquiu, NM – General – Catholic – Christ in the Desert Monastery – Dam and Reservoir Abo Pass - history. See also Salinas National Monument Abousleman – biographical information of people with this surname Afghanistan War – NM – See also Iraq War Abousleman – biographical information of people with this surname Abrams, Jonathan – art collector Abreu, Margaret Silva – author: Hispanic, folklore, foods Abruzzo, Ben – balloonist. See also Ballooning, Albuquerque Balloon Fiesta Acequias – ditches (canoas, ground wáter, surface wáter, puming, water rights (See also Land Grants; Rio Grande Valley; Water; and Santa Fe - Acequia Madre) Acequias – Albuquerque, map 2005-2006 – ditch system in city Acequias – Colorado (San Luis) Ackerman, Mae N. – Masonic leader Acoma Pueblo - Sky City. See also Indian gaming. See also Pueblos – General; and Onate, Juan de Acuff, Mark – newspaper editor – NM Independent and
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Instruction Manual
    1 Contents 1. Constellation Watch Cosmo Sign.................................................. 4 2. Constellation Display of Entire Sky at 35° North Latitude ........ 5 3. Features ........................................................................................... 6 4. Setting the Time and Constellation Dial....................................... 8 5. Concerning the Constellation Dial Display ................................ 11 6. Abbreviations of Constellations and their Full Spellings.......... 12 7. Nebulae and Star Clusters on the Constellation Dial in Light Green.... 15 8. Diagram of the Constellation Dial............................................... 16 9. Precautions .................................................................................... 18 10. Specifications................................................................................. 24 3 1. Constellation Watch Cosmo Sign 2. Constellation Display of Entire Sky at 35° The Constellation Watch Cosmo Sign is a precisely designed analog quartz watch that North Latitude displays not only the current time but also the correct positions of the constellations as Right ascension scale Ecliptic Celestial equator they move across the celestial sphere. The Cosmo Sign Constellation Watch gives the Date scale -18° horizontal D azimuth and altitude of the major fixed stars, nebulae and star clusters, displays local i c r e o Constellation dial setting c n t s ( sidereal time, stellar spectral type, pole star hour angle, the hours for astronomical i o N t e n o l l r f
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Sky and Telescope
    SkyandTelescope.com The Lunar 100 By Charles A. Wood Just about every telescope user is familiar with French comet hunter Charles Messier's catalog of fuzzy objects. Messier's 18th-century listing of 109 galaxies, clusters, and nebulae contains some of the largest, brightest, and most visually interesting deep-sky treasures visible from the Northern Hemisphere. Little wonder that observing all the M objects is regarded as a virtual rite of passage for amateur astronomers. But the night sky offers an object that is larger, brighter, and more visually captivating than anything on Messier's list: the Moon. Yet many backyard astronomers never go beyond the astro-tourist stage to acquire the knowledge and understanding necessary to really appreciate what they're looking at, and how magnificent and amazing it truly is. Perhaps this is because after they identify a few of the Moon's most conspicuous features, many amateurs don't know where Many Lunar 100 selections are plainly visible in this image of the full Moon, while others require to look next. a more detailed view, different illumination, or favorable libration. North is up. S&T: Gary The Lunar 100 list is an attempt to provide Moon lovers with Seronik something akin to what deep-sky observers enjoy with the Messier catalog: a selection of telescopic sights to ignite interest and enhance understanding. Presented here is a selection of the Moon's 100 most interesting regions, craters, basins, mountains, rilles, and domes. I challenge observers to find and observe them all and, more important, to consider what each feature tells us about lunar and Earth history.
    [Show full text]