What Is an Ultra-Faint Galaxy?

Total Page:16

File Type:pdf, Size:1020Kb

What Is an Ultra-Faint Galaxy? What is an ultra-faint Galaxy? UCSB KITP Feb 16 2012 Beth Willman (Haverford College) ~ 1/10 Milky Way luminosity Large Magellanic Cloud, MV = -18 image credit: Yuri Beletsky (ESO) and APOD NGC 205, MV = -16.4 ~ 1/40 Milky Way luminosity image credit: www.noao.edu Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/300 Milky Way luminosity MV = -14.2 Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/2700 Milky Way luminosity MV = -11.9 Image credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration ~ 1/14,000 Milky Way luminosity MV = -10.1 ~ 1/40,000 Milky Way luminosity ~ 1/1,000,000 Milky Way luminosity Ursa Major 1 Finding Invisible Galaxies bright faint blue red Willman et al 2002, Walsh, Willman & Jerjen 2009; see also e.g. Koposov et al 2008, Belokurov et al. Finding Invisible Galaxies Red, bright, cool bright Blue, hot, bright V-band apparent brightness V-band faint Red, faint, cool blue red From ARAA, V26, 1988 Willman et al 2002, Walsh, Willman & Jerjen 2009; see also e.g. Koposov et al 2008, Belokurov et al. Finding Invisible Galaxies Ursa Major I dwarf 1/1,000,000 MW luminosity Willman et al 2005 ~ 1/1,000,000 Milky Way luminosity Ursa Major 1 CMD of Ursa Major I Okamoto et al 2008 Distribution of the Milky Wayʼs dwarfs -14 Milky Way dwarfs 107 -12 -10 classical dwarfs V -8 5 10 Sun M L -6 ultra-faint dwarfs Canes Venatici II -4 Leo V Pisces II Willman I 1000 -2 Segue I 0 50 100 150 200 250 300 Distance from Milky Way (kpc) Luminosities and sizes of nearby dwarf galaxies 5 7 1000 LSun 10 LSun 10 LSun 3.5 MW dwarfs M31 dwarfs 3.0 Sextans Fornax Canes Venatici I Ursa Minor Leo I Ursa Major I (pc)) 2.5 Sculptor Carina HerculesBootes I half Draco Leo II Ursa Major II Leo IV log(r 2.0 Leo T Canes Venatici II Coma Berenices Pisces II Leo V Bootes II Segue II 1.5 Segue I Willman I 0 -2 -4 -6 -8 -10 -12 -14 MV MW dwarf galaxy discovery papers: Willman et al 05a,b; Zucker et al 06a,b; Belokurov et al 06,07,08,09,10; Walsh et al 07, Irwin et al 07; Detection limits: Walsh, Willman & Jerjen 2009, Koposov et al 2008 Luminosities and sizes of nearby dwarf galaxies 5 7 1000 LSun 10 LSun 10 LSun 3.5 MW dwarfs M31 dwarfs 3.0 Sextans Fornax Canes Venatici I Ursa Minor Leo I Ursa Major I (pc)) 2.5 Sculptor Carina HerculesBootes I half Draco Leo II undetectableUrsa Major II Leo IV log(r 2.0 Leo T Canes Venatici II Coma Berenices Pisces II Leo V Bootes II Segue II 1.5 Segue I Willman I 0 -2 -4 -6 -8 -10 -12 -14 MV MW dwarf galaxy discovery papers: Willman et al 05a,b; Zucker et al 06a,b; Belokurov et al 06,07,08,09,10; Walsh et al 07, Irwin et al 07; Detection limits: Walsh, Willman & Jerjen 2009, Koposov et al 2008 Luminosities and sizes of nearby dwarf galaxies 5 7 1000 LSun 10 LSun 10 LSun 3.5 MW dwarfs M31 dwarfs 3.0 Sextans Fornax Canes Venatici I Ursa Minor Leo I Ursa Major I (pc)) 2.5 Sculptor Carina HerculesBootes I half Draco Leo II Ursa Major II Leo IV log(r 2.0 Leo T Canes Venatici II Coma Berenices Pisces II Leo V Bootes II Segue II 1.5 Local Segue I Group limit of Willman I searches outside the the outside 0 -2 -4 -6 -8 -10 -12 -14 MV MW dwarf galaxy discovery papers: Willman et al 05a,b; Zucker et al 06a,b; Belokurov et al 06,07,08,09,10; Walsh et al 07, Irwin et al 07; Detection limits: Walsh, Willman & Jerjen 2009, Koposov et al 2008 Luminosities and sizes of nearby dwarf galaxies 4 6 100 LSun 10 LSun 10 LSun 3.0 2.5 2.0 undetectable (pc)) 1.5 Segue I Willman I half 1.0 log(r 0.5 Segue III 0.0 globular clusters 0 -2 -4 -6 -8 -10 -12 MV “I know it when I see it” is no longer a sufficient definition for galaxy Luminosities and sizes of nearby dwarf galaxies 4 6 100 LSun 10 LSun 10 LSun 3.0 2.5 2.0 undetectable (pc)) 1.5 Segue I Willman I half 1.0 log(r 0.5 Segue III 0.0 globular clusters 0 -2 -4 -6 -8 -10 -12 MV A self-bound stellar system whose properties cannot be explained by baryons + Newton’s laws Willman & Strader in prep Kinematics donʼt reveal huge dark matter reservoirs Segue 3: Magellan/ 12 Gyr [Fe/H] = -1.7 IMACS photometry + Keck/DEIMOS spectroscopy d ~ 17 kpc, MV ~ -0.1, rhalf ~2 pc +1.5 σvel = 1.5 -1.0 km/sec Fadely, Willman, Geha, Walsh et al 2011 Kinematics donʼt reveal huge dark matter reservoirs Segue 3: Magellan/ 12 Gyr [Fe/H] = -1.7 IMACS photometry + Keck/DEIMOS (probably) NOT A GALAXYspectroscopy d ~ 17 kpc, MV ~ -0.1, rhalf ~2 pc +1.5 σvel = 1.5 -1.0 km/sec Fadely, Willman, Geha, Walsh et al 2011 Kinematic studies reveal huge dark matter reservoirs +1.4 σ = 3.7 -1.1 km/sec (incl. binary correction) 5 Mass within 30 pc ~ 6 x 10 MSun, M/L ~ 3000 6 stars with [Fe/H] estimates from -1.7 to -3.3 Keck/DEIMOS observations of Segue 1 Simon, Geha ... Kirby... 99% complete sample of stars with r < 22 within 2 Willman et al (2011) reff (60 pc) Kinematic studies reveal huge dark matter reservoirs +1.4 σ = 3.7 -1.1 km/sec (incl. binary correction) 5 Mass within 30 pc ~ 6 x 10 MSun, M/L ~ 3000 DWARF 6GALAXY stars with [Fe/H] estimates from -1.7 to -3.3 Keck/DEIMOS observations of Segue 1 Simon, Geha ... Kirby... 99% complete sample of stars with r < 22 within 2 Willman et al (2011) reff (60 pc) Kinematic studies complicated by irregular dynamics 10 probable members Running vsys (9 star window) high [Fe/H] candidates probable members including high [Fe/H] 0 ï10 [km/sec] helio v ï20 ï30 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 projected distance from center [rhalf,ell] 10 0 ï10 [km/sec] helio v ï20 ï30 50 0 ï50 projected majorïaxis distance from center [pc] Keck/DEIMOS and KPNO observations of Willman, Geha... Simon, Willman I (MV ~ -2, d ~ 38 kpc) Kirby et al (2011) [Fe/H] spread can distinguish galaxies from clusters Willman & Strader in preparation Dwarf data from: Kirby et al 08, 10; Norris et al 10, Simon et al 11, Willman et al 11; GC data from: Carretta et al 06,07,09,10, Johnson & Pilachowski 2010, Cohen et al 2010, Gratton et al 07, Marino et al 11 [Fe/H] spread can distinguish galaxies from clusters: Willman 1 filled ï candidate Wil 1 members open ï MW stars 16 18 0 r 20 22 bright RGB faint RGB MS/BHB ï0.5 0.0 0.5 1.0 (g ï r) 0 Willman, Geha... Simon, Kirby et al (2011) Keck/DEIMOS and KPNO Two red giant branch star members observations of Willman I There is an [Fe/H] ([Ca/Fe]) spread: -1.7 (MV ~ -2, d ~ 38 kpc) and -2.7 (-0.4 and +0.1) [Fe/H] spread can distinguish galaxies from clusters: Willman 1 filled ï candidate Wil 1 members open ï MW stars 16 18 0 r 20 DWARF GALAXY? 22 bright RGB faint RGB MS/BHB ï0.5 0.0 0.5 1.0 (g ï r) 0 Willman, Geha... Simon, Kirby et al (2011) Keck/DEIMOS and KPNO Two red giant branch star members observations of Willman I There is an [Fe/H] ([Ca/Fe]) spread: -1.7 (MV ~ -2, d ~ 38 kpc) and -2.7 (-0.4 and +0.1) Distribution of the Milky Wayʼs dwarfs -14 Milky Way dwarfs 107 -12 -10 V -8 5 10 Sun M Low luminosity from nurture or L nature? -6 Canes Venatici II -4 Leo V Pisces II Willman I 1000 -2 Segue I 0 50 100 150 200 250 300 Distance from Milky Way (kpc) see e.g. Willman et al 2002; Walsh, Willman & Jerjen 2009 Outer halo dwarfs: Nature vs Nurture Leo V, Pisces II, CVn II Morphological evidence for tidal evolution? Sand, Strader, Willman et al submitted Hints of disturbed structure: 2d distribution Sand, Strader, Willman et al submitted Hints of disturbed structure: 2d distribution Leo V 10 5 0 d ~ 190 kpc Dec (arcmin) -5 To Leo IV -10 10 5 0 -5 -10 RA (arcmin) Sand, Strader, Willman et al submitted Hints of disturbed structure: 2d distribution 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 10 5 0 -5 -10 Sand, Strader, Willman et al submitted Hints of disturbed structure: 2d distribution Pisces II 10 5 0 d ~ 170 kpc Dec (arcmin) -5 -10 10 5 0 -5 -10 RA (arcmin) Sand, Strader, Willman et al submitted Hints of disturbed structure: 2d distribution CVn II 10 5 0 d ~ 160 kpc -5Dec (arcmin) -10 15 10 5 0 -5 -10 -15 RA (arcmin) Sand, Strader, Willman et al submitted Hints of disturbed structure: Ellipticity eSDSS = 0.44 +/- 0.05 eclassical = 0.32 +/- 0.03 Sand, Strader, Willman et al submitted Hints of disturbed structure: Orientation CVn II 10 5 0 -5Dec (arcmin) -10 15 10 5 0 -5 -10 -15 RA (arcmin) Sand, Strader, Willman et al submitted Challenging pathological explanations: Luminosity-[Fe/H] relation Segue 1 (7 stars): -2.7 +/- 0.4 dex Wil 1 (3 stars): -2.1 +/- 0.4 dex Kirby et al 2011 Connecting observations to theory: How many dwarfs vs subhalos Corrections for SDSS footprint and luminosity bias suggest ~100-300 dwarfs (e.g.
Recommended publications
  • A New Milky Way Halo Star Cluster in the Southern Galactic Sky
    The Astrophysical Journal, 767:101 (6pp), 2013 April 20 doi:10.1088/0004-637X/767/2/101 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A NEW MILKY WAY HALO STAR CLUSTER IN THE SOUTHERN GALACTIC SKY E. Balbinot1,2, B. X. Santiago1,2, L. da Costa2,3,M.A.G.Maia2,3,S.R.Majewski4, D. Nidever5, H. J. Rocha-Pinto2,6, D. Thomas7, R. H. Wechsler8,9, and B. Yanny10 1 Instituto de F´ısica, UFRGS, CP 15051, Porto Alegre, RS 91501-970, Brazil; [email protected] 2 Laboratorio´ Interinstitucional de e-Astronomia–LIneA, Rua Gal. Jose´ Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil 3 Observatorio´ Nacional, Rua Gal. Jose´ Cristino 77, Rio de Janeiro, RJ 22460-040, Brazil 4 Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325, USA 5 Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042, USA 6 Observatorio´ do Valongo, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 20080-090, Brazil 7 Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, UK 8 Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA 9 Department of Physics, Stanford University, Stanford, CA 94305, USA 10 Fermi National Laboratory, P.O. Box 500, Batavia, IL 60510-5011, USA Received 2012 October 8; accepted 2013 February 28; published 2013 April 1 ABSTRACT We report on the discovery of a new Milky Way (MW) companion stellar system located at (αJ 2000,δJ 2000) = (22h10m43s.15, 14◦5658.8).
    [Show full text]
  • Chemistry and Kinematics of Stars in Local Group Galaxies
    Chemistry and kinematics of stars in Local Group galaxies Giuseppina Battaglia ESO Garching In collaboration with DART (E.Tolstoy, M.Irwin, A.Helmi, V.Hill, B.Letarte, P.Jablonka, K.Venn, M.Shetrone, N.Arimoto, F.Primas, A.Kaufer, T. Szeifert, P. François,T.Abel) Dwarf spheroidal galaxies Small (half-light radius= 0.1-1kpc), devoid of gas, pressure supported SSccuulplpttoorr FFoorrnnaaxx Typical dSph Unusual dSph • Distance: 79 kpc • Distance: 138 kpc • Faint (Lv~ 10^6 Lsun) • Most luminous (Lv~10^7 Lsun) and and metal poor metal rich of MW satellites SFHs from Grebel, Gallagher & Harbeck 2007 (see also Monkiewicz et al. 1999, Stetson et al. 1998, Buonanno et al.1999, Saviane et al. 2000) Time [Gyr] Time [Gyr] Motivation • Galaxy formation on the smallest scales – Evolution and distribution of stellar populations – Chemical enrichment histories – All dSphs contain > 10 Gyr old stars => early universe • Most dark-matter dominated galaxies – Measure dark-matter distribution – Constrain the nature of dark-matter (warm, cold...) • Galaxy formation: building blocks of large galaxies? TThhee LLooccaall GGrroouupp Grebel et al. 2000 Large Dwarf ellipticals (dE); Dwarf irregulars dSphs/dIrrs spirals dwarf spheroidals (dSphs) (dIrr) dI rr Large majority DDAARRTT LLaarrggee PPrrooggrraamm aatt EESSOO • 4 dSphs in the MW halo: Sextans, Sculptor, Fornax, Carina (HR only) • Extended ESO/WFI imaging (CMD) probable members • VLT/FLAMES Low Resolution (LR) X probable non members spectra of 100s Red Giant Branch (RGB) stars in CaII triplet (CaT) region
    [Show full text]
  • Main Sequence Star Populations in the Virgo Overdensity Region
    Draft version October 17, 2018 Preprint typeset using LATEX style emulateapj v. 5/2/11 MAIN SEQUENCE STAR POPULATIONS IN THE VIRGO OVERDENSITY REGION H. Jerjen1, G.S. Da Costa1, B. Willman2, P. Tisserand1, N. Arimoto3,4, S. Okamoto5, M. Mateo6, I. Saviane7, S. Walsh8, M. Geha9, A. Jordan´ 10,11, E. Olszewski12, M. Walker13, M. Zoccali10,11, P. Kroupa14 1Research School of Astronomy & Astrophysics, The Australian National University, Mt Stromlo Observatory, via Cotter Rd, Weston, ACT 2611, Australia 2Haverford College, Department of Astronomy, 370 Lancaster Avenue, Haverford, PA 19041, USA 3National Astronomical Observatory of Japan, Subaru Telescope, 650 North A'ohoku Place, Hilo, 96720 USA 4The Graduate University for Advanced Studies, Department of Astronomical Sciences, Osawa 2-21-1, Mitaka, Tokyo, Japan 5Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China 6Department of Astronomy, University of Michigan, Ann Arbor, MI, USA 7European Southern Observatory, Casilla 19001, Santiago 19, Chile 8Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia 9Astronomy Department, Yale University, New Haven, CT 06520, USA 10Departamento de Astronom´ıay Astrof´ısica,Pontificia Universidad Cat´olicade Chile, 7820436 Macul, Santiago, Chile 11The Milky Way Millennium Nucleus, Av. Vicu~naMackenna 4860, 782-0436 Macul, Santiago, Chile 12Steward Observatory, The University of Arizona, Tucson, AZ, USA 13Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA and 14Argelander Institute for Astronomy, University of Bonn, Auf dem H¨ugel71,D-53121 Bonn, Germany Draft version October 17, 2018 ABSTRACT We present deep color-magnitude diagrams for two Subaru Suprime-Cam fields in the Virgo Stellar Stream(VSS)/Virgo Overdensity(VOD) and compare them to a field centred on the highest concen- tration of Sagittarius (Sgr) Tidal Stream stars in the leading arm, Branch A of the bifurcation.
    [Show full text]
  • Central Coast Astronomy Virtual Star Party May 15Th 7Pm Pacific
    Central Coast Astronomy Virtual Star Party May 15th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon 4 days after new, which is excellent for star gazing! *Image credit: all astrophotography images are courtesy of NASA & ESO unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1. Canes Venatici (The Hunting Dogs) 2. Boötes (the Herdsman) 3. Coma Berenices (Hair of Berenice) 4. Virgo (the Virgin) Central Coast Astronomy CentralCoastAstronomy.org Page 2 Canes Venatici (the Hunting Dogs) Canes Venatici, The Hunting Dogs, a modern constellation created by Polish astronomer Johannes Hevelius in 1687.
    [Show full text]
  • Distances to Local Group Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven.
    [Show full text]
  • Distribution of Phantom Dark Matter in Dwarf Spheroidals Alistair O
    A&A 640, A26 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037634 & c ESO 2020 Astrophysics Distribution of phantom dark matter in dwarf spheroidals Alistair O. Hodson1,2, Antonaldo Diaferio1,2, and Luisa Ostorero1,2 1 Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy e-mail: [email protected],[email protected] Received 31 January 2020 / Accepted 25 May 2020 ABSTRACT We derive the distribution of the phantom dark matter in the eight classical dwarf galaxies surrounding the Milky Way, under the assumption that modified Newtonian dynamics (MOND) is the correct theory of gravity. According to their observed shape, we model the dwarfs as axisymmetric systems, rather than spherical systems, as usually assumed. In addition, as required by the assumption of the MOND framework, we realistically include the external gravitational field of the Milky Way and of the large-scale structure beyond the Local Group. For the dwarfs where the external field dominates over the internal gravitational field, the phantom dark matter has, from the star distribution, an offset of ∼0:1−0:2 kpc, depending on the mass-to-light ratio adopted. This offset is a substantial fraction of the dwarf half-mass radius. For Sculptor and Fornax, where the internal and external gravitational fields are comparable, the phantom dark matter distribution appears disturbed with spikes at the locations where the two fields cancel each other; these features have little connection with the distribution of the stars within the dwarfs.
    [Show full text]
  • Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II
    Preprint typeset in JHEP style - HYPER VERSION astro-ph/0809.2269 Dark Matter Signals from Draco and Willman 1: Prospects for MAGIC II and CTA Torsten Bringmann Department of Physics, Stockholm University, AlbaNova, University Centre, S-106 91 Stockholm, Sweden E-mail: [email protected] Michele Doro Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy E-mail: [email protected] Mattia Fornasa Department of Physics G. Galilei, University of Padova & INFN, via Marzolo 8, 35131 Padova, Italy Institut d’Astrophysique de Paris, boulevard Arago 98bis, 75014, Paris, France E-mail: [email protected] Abstract: The next generation of ground-based Imaging Air Cherenkov Telescopes will play an important role in indirect dark matter searches. In this article, we consider two particularly promis- ing candidate sources for dark matter annihilation signals, the nearby dwarf galaxies Draco and Willman 1, and study the prospects of detecting such a signal for the soon-operating MAGIC II telescope system as well as for the planned installation of CTA, taking special care of describing the experimental features that affect the detectional prospects. For the first time in such studies, we fully take into account the effect of internal bremsstrahlung, which has recently been shown to arXiv:0809.2269v3 [astro-ph] 21 Jan 2009 considerably enhance, in some cases, the gamma-ray flux in the high energies domain where At- mospheric Cherenkov Telescopes operate, thus leading to significantly harder annihilation spectra than traditionally considered. While the detection of the spectral features introduced by internal bremsstrahlung would constitute a smoking gun signature for dark matter annihilation, we find that for most models the overall flux still remains at a level that will be challenging to detect, unless one adopts somewhat favorable descriptions of the smooth dark matter distribution in the dwarfs.
    [Show full text]
  • The Detailed Properties of Leo V, Pisces II and Canes Venatici II
    Haverford College Haverford Scholarship Faculty Publications Astronomy 2012 Tidal Signatures in the Faintest Milky Way Satellites: The Detailed Properties of Leo V, Pisces II and Canes Venatici II David J. Sand Jay Strader Beth Willman Haverford College Dennis Zaritsky Follow this and additional works at: https://scholarship.haverford.edu/astronomy_facpubs Repository Citation Sand, David J., Jay Strader, Beth Willman, Dennis Zaritsky, Brian Mcleod, Nelson Caldwell, Anil Seth, and Edward Olszewski. "Tidal Signatures In The Faintest Milky Way Satellites: The Detailed Properties Of Leo V, Pisces Ii, And Canes Venatici Ii." The Astrophysical Journal 756.1 (2012): 79. Print. This Journal Article is brought to you for free and open access by the Astronomy at Haverford Scholarship. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Haverford Scholarship. For more information, please contact [email protected]. The Astrophysical Journal, 756:79 (14pp), 2012 September 1 doi:10.1088/0004-637X/756/1/79 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. TIDAL SIGNATURES IN THE FAINTEST MILKY WAY SATELLITES: THE DETAILED PROPERTIES OF LEO V, PISCES II, AND CANES VENATICI II∗ David J. Sand1,2,7, Jay Strader3, Beth Willman4, Dennis Zaritsky5, Brian McLeod3, Nelson Caldwell3, Anil Seth6, and Edward Olszewski5 1 Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117, USA; [email protected] 2 Department of Physics, Broida Hall,
    [Show full text]
  • Wyn Evans Institute of Astronomy, Cambridge
    DARK MATTER SUBSTRUCTURES IN THE NEARBY UNIVERSE Wyn Evans Institute of Astronomy, Cambridge Monday, 16 July 2012 DARK MATTER 1. The dwarf spheroidals 2. The ultra-faints 3. The clouds & streams 4. The unknown Monday, 16 July 2012 DWARF SPHEROIDALS Image (35’ by 35’) of the Sculptor dwarf spheroidal taken with the NOAO CTIO 4 m telescope. Monday, 16 July 2012 DWARF SPHEROIDALS Surrounding the Milky Way are 9 classical dwarf spheroidal galaxies (Scu, For, Leo I, Leo II, UMi, Dra, Car, Sex, Sgr). These contain intermediate age to old stellar populations and no gas. They have velocity dispersions ∼ 8-10 km/s, half-light radius ∼ 200-300 pc, and absolute magnitudes MV brighter than -8. They are all highly dark matter dominated, and are natural targets for indirect detection experiments. What are their dark matter profiles? Are they cusped or cored? Monday, 16 July 2012 DWARF SPHEROIDALS Radial velocity surveys with multi-object spectrographs have now provided datasets of thousands of velocities for the giants stars. Early hopes that the photometry and line of sight velocity dispersion profile could be used to constrain the dark halo give way to pessimism. Most early modelers used the spherical Jeans equations to deduce dark matter properties at the center. Monday, 16 July 2012 JEANS EQUATIONS • The spherical Jeans equation is dangerous! If the light profile is cored (Plummer), then assuming isotropy gives a cored dark matter density. If the light profile is cusped (exponential), then so is the dark halo (An & Evans 2009). • The degeneracies in the Jeans equations are also illustrated by Walker et al.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects
    Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Porto Alegre 2017 Juliana Crestani Ribeiro de Souza Spatial Distribution of Galactic Globular Clusters: Distance Uncertainties and Dynamical Effects Dissertação elaborada sob orientação do Prof. Dr. Eduardo Luis Damiani Bica, co- orientação do Prof. Dr. Charles José Bon- ato e apresentada ao Instituto de Física da Universidade Federal do Rio Grande do Sul em preenchimento do requisito par- cial para obtenção do título de Mestre em Física. Porto Alegre 2017 Acknowledgements To my parents, who supported me and made this possible, in a time and place where being in a university was just a distant dream. To my dearest friends Elisabeth, Robert, Augusto, and Natália - who so many times helped me go from "I give up" to "I’ll try once more". To my cats Kira, Fen, and Demi - who lazily join me in bed at the end of the day, and make everything worthwhile. "But, first of all, it will be necessary to explain what is our idea of a cluster of stars, and by what means we have obtained it. For an instance, I shall take the phenomenon which presents itself in many clusters: It is that of a number of lucid spots, of equal lustre, scattered over a circular space, in such a manner as to appear gradually more compressed towards the middle; and which compression, in the clusters to which I allude, is generally carried so far, as, by imperceptible degrees, to end in a luminous center, of a resolvable blaze of light." William Herschel, 1789 Abstract We provide a sample of 170 Galactic Globular Clusters (GCs) and analyse its spatial distribution properties.
    [Show full text]
  • Galactic Archaeology. the Dwarfs That Survived and Perished
    Galactic Archaeology. The dwarfs that survived and perished Vasily Belokurova,∗ aInstitute of Astronomy, Cambridge Abstract From the archaeological point of view, the local dwarf galaxies are unique objects in which the imprint of the conditions that shaped the early structure formation can be studied today at high resolution. Over the last decade, this new window into the high redshift Universe has started to be exploited using deep wide-field imaging, high resolution spectroscopy and cutting edge N- body and hydro-dynamical simulations. We review the recent advances in the observational studies of the Milky Way dwarf galaxies, with the aim to understand the properties of the population as a whole and to assist an objective comparison between the models and the data. Keywords: Galaxies: kinematics and dynamics, Galaxies: dwarf, dark matter, Local Group, Galaxies: stellar content. 1. Introduction The prehistoric stars whose formation epochs lie beyond the redshift ac- cessible by the Hubble Ultra Deep Field, have been found en masse in little satellites around the Milky Way. Other less fortunate dwarf galaxies have been pulled apart by gravity to furnish the diffuse Galactic halo. These re- cently uncovered relics of the ancient dwarf galaxy population may play a arXiv:1307.0041v2 [astro-ph.GA] 15 Jul 2013 vital role in the pursuit of reconstructing the formation of the Galaxy. Its path from the distant pre-reionisation era, through the most active growth ∗Corresponding author Email address: [email protected] (Vasily Belokurov) Preprint submitted to New Astronomy Reviews July 16, 2013 periods to the present day, can be gleaned by studying the chemical compo- sition and the phase-space density distribution of these halo denizens.
    [Show full text]