A&A 619, A103 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833343 & c ESO 2018 Astrophysics Gaia DR2 proper motions of dwarf galaxies within 420 kpc Orbits, Milky Way mass, tidal influences, planar alignments, and group infall T. K. Fritz1,2, G. Battaglia1,2, M. S. Pawlowski3,?, N. Kallivayalil4, R. van der Marel5,6, S. T. Sohn5, C. Brook1,2, and G. Besla7 1 Instituto de Astrofísica de Canarias, calle Via Lactea s/n, 38205, La Laguna, Tenerife, Spain e-mail:
[email protected] 2 Universidad de La Laguna, Dpto. Astrofísica, 38206, La Laguna Tenerife, Spain 3 Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 4 Department of Astronomy, University of Virginia, 530 McCormick Road, Charlottesville, VA 22904-4325, USA 5 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 6 Center for Astrophysical Sciences, Department of Physics & Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA 7 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA Received 2 May 2018 / Accepted 28 August 2018 ABSTRACT A proper understanding of the Milky Way (MW) dwarf galaxies in a cosmological context requires knowledge of their 3D velocities and orbits. However, proper motion (PM) measurements have generally been of limited accuracy and are available only for more massive dwarfs. We therefore present a new study of the kinematics of the MW dwarf galaxies. We use the Gaia DR2 for those dwarfs that have been spectroscopically observed in the literature. We derive systemic PMs for 39 galaxies and galaxy candidates out to 420 kpc, and generally find good consistency for the subset with measurements available from other studies.