Stock Assessment of the Indian Scad, Decapterus Russelli (Ruppell, 1830) from Mumbai Waters

Total Page:16

File Type:pdf, Size:1020Kb

Stock Assessment of the Indian Scad, Decapterus Russelli (Ruppell, 1830) from Mumbai Waters Indian Journal of Geo Marine Sciences Vol. 40(5), October 2011, pp.680-686 Stock assessment of the Indian scad, Decapterus russelli (Ruppell, 1830) from Mumbai waters Nalini Poojary 1*, L.R. Tiwari 2 & S.K. Chakraborty 3 1,3 Central Institute of Fisheries Education, Panch Marg, Versova, Andheri (West), Mumbai 400 061, India. 2Maharshi Dayanand College of Arts, Science and Commerce, Parel, Mumbai – 400 012, India *[E-mail: [email protected]] Received 13 July 2010; revised 5 February 2011 Present study consists the Growth, mortality and the stock assessment of Decapterus russelli . ‘L ∞’ was estimated as 277 mm and ‘K’ as 1.237/year. The t o estimated by VBGF plot was – 0.3443 year. Growth in length of D. russelli described -1.237{t-(-0.3443)} following von Bertalanffy growth equation as, L t = 277[ 1-e ]. Longevity was estimated to be 2.42 years. Total mortality rate (Z), natural mortality rate (M) and fishing mortality (F) were estimated to be 6.66, 2.1 and 4.56 respectively. In this study, Z/K was found to be 5.38 indicating that the stock of D. russelli is presently mortality dominated in Mumbai waters. Exploitation rate (U) was calculated as 0.6838 and the Exploitation ratio (F/Z) as 0.6847. Thompson and Bell long- term prediction analysis indicated that there is no decline in yield of D. russelli even if the fishing effort is doubled. Present level of fishing has no deleterious effect on the fishery of D. russelli [Keywords: D. russelli , Indian Scad, Stock assessment, growth, mortality] Introduction Maharshtra 5 has been given in table 1 which shows Caranigids are a part of pelagic fishery and a steady decline. constitute 7% of annual marine fish landing in India. The average contribution of D. russelli in the year They include 25 genera and 140 species. They 2004-2008 towards the total marine catch of India particularly support the fishery in Andhra Pradesh, was 1.11% and 0.94% to the total marine catch of Tamil Nadu, Kerala and Karnataka 1. Of the 35 species Maharashtra and 25.67% to the total carangid that commonly occur along the Indian coast, landing of Maharashtra 6. So far there is no catch data Megalaspis cordyla , Decapterus russelli, Alepes exclusively for D. russelli from Mumbai landing djeddaba , Selar crumenophthalmus , Caranx spp., and centres. They are observed between October to Scomberoides spp. mainly constitute the fishery in February in the landing centres of Mumbai. Maharashtra 2. D. russelli is caught as a by-catch D. russelli is one of the important species in the throughout the year along the north-west coast of trawl catches of Mumbai coast and accounts for India using mainly trawlers with cod end mesh sizes almost 40% of the total carangid catch 7. They are ranging from 15 mm to 20 mm depending on the consumed fresh as well as cured in brine and seasons of operation, in the depth range of 55 -90 m. sun dried. It is also utilized as raw material to Decapterus spp. formed the most dominant group prepare fish meal 8. Since the prices of quality among the 20 species caught in the various cruises fish are sky rocketing, attention should be paid to conducted by the FORV Sagar Sampda 3. In 1976-85 the effective utilization of D. russelli. It is a and 1986-95 the increase in annual carangid landing commercially important fish in Kerala, Tamil Nadu, of India were to the tune of 59.1% and 67.3% Andhra Pradesh, Karnataka and Gujarat. Though the compared to their preceding decades and their average catch of D. russelli is poor in Mumbai, pricewise landings were 39,247 t and 1,44,164 tonnes 1. In the it is very remunerative. successive years the landings have decreased from Proper management strategy needs to be in place 1,96,868 t in 1995 to 1,21,863 t in 2006 4,5 . The same after ascertaining the present status of the species. trend has been seen in the annual landings of Investigations on Stock assessment studies of D. russelli in India which dropped from 1.03,063 t in D. russelli from east and west coasts of India has been 1995 to 39,409 t in 2006 4,5 . The landings from reported by few authors 19,23,24 . Age, growth and NALINI et al .: STOCK ASSESSMENT OF THE INDIAN SCAD 681 Table 1—Total marine landings and total scad landings (in tonnes) in Maharashtra from 1985-2008 4,5 (in tonnes) Year Total marine catch Total carangid landing Total scad landing % of scad to total % of scads to total marine landings carangid landings 1985 3,35,809 5,583 1,383 0.41 24.77 1986 3,15,218 11,491 2,319 0.74 20.18 1987 2,85,208 6,872 2,351 0.82 34.21 1988 3,15,244 13,868 4,390 1.39 31.66 1989 3,62,330 22,452 9,494 2.62 42.29 1990 3,45,724 14,215 8,768 2.54 61.68 1991 3,84,162 9,668 3,893 1.01 40.27 1992 3,27,695 11,311 5,947 1.81 52.58 1993 3,33,003 11,112 3,444 1.03 30.99 1994 3,23,828 17,477 3,554 1.10 20.34 1995 3,16,462 18,626 3,705 1.17 19.89 1996 3,39,148 9,526 2,188 0.65 22.97 1997 3,90,067 12,261 4,954 1.27 40.40 1998 4,15,741 8,326 352 0.08 4.23 1999 2,97,032 6,144 735 0.25 11.96 2000 3,68,222 7,947 1,122 0.30 14.12 2001 3,95,966 11,984 1,552 0.39 12.95 2002 4,49,599 13,847 1,088 0.24 7.86 2003 4,15,094 19,247 1,439 0.35 7.48 2004 3,50,712 12,548 1,584 0.45 12.62 2005 2,67,003 7,096 852 0.47 12.00 2006 3,34,451 7,155 858 0.44 11.99 2007 3,19,470 6,311 674 0.43 10.68 2008 3,58,746 6,241 660 0.39 10.58 mortality studies of D. russelli from Mumbai was presented by Jaiswar et al. 9 but so far no assessment of the stock of D. russelli from Mumbai waters has been carried out. Present study was taken up to examine the intensity of its exploitation and assesses the present status of the resource. Materials and Methods Length frequency data was collected weekly from New Ferry Wharf, Sassoon Docks and Versova landing centre of Mumbai from Sept 2004 to May 2007. The percentage of D. russelli landed at New Ferry Wharf was 90 % and the remaining 10% was from Sassoon Dock and Versova landing centre. Fishing grounds of Mumbai have been depicted in Fig. 1. Weight of fish was measured to the nearest gm at the landing centre itself. Length was measured from the tip of the snout to the end of caudal fin (total length) to the nearest mm. Total catch of the species on the day of observation was noted. Weekly length frequency data collected for D. russelli were raised to the day’s catch and then to monthly catch and subsequently to the annual 10 catch by following the method of Sekharan . Monthly raised values were fed into FiSAT Figure 1—Fishing grounds of trawlers operated from New programme to analyze various parameters. To study Ferry Wharf 682 INDIAN J. MAR. SCI., VOL. 40, NO. 5, OCTOBER 2011 the growth parameters results from Gulland and Results and Discussion Holt plot 11 employing FiSAT was used. Longevity Age and growth was estimated from the equation t = 3/k 12 and max Data of size composition during the different also by inverse Bertalanffy’s equation. months for three years was pooled and is shown in Total mortality coefficient (Z) was estimated by 17 11 Table 2. Method of Bhattacharya which is contained length converted catch curve method and natural in the FiSAT software package was applied and mortality was calculated by Pauly’s empirical 13 subsequently the values of L ∞ and K were estimated equation , Fishing mortality rate was estimated by 11 by Gulland and Holt . The values ‘L ∞’ 277 mm and Z-M. The exploitation rate (U was estimated by the ‘K’ (1.237/year) thus obtained by Gulland and Holt 11 U = (F/Z) * (1- e –z) formula 14 and the exploitation 14 (Fig. 2) were considered for further calculations in ratio was estimated as E = F/Z . Length at first estimating population parameters. Present values are capture (L c50 ) was calculated by selection ogive method determined by applying probability of capture to the length frequency distribution. Relative yield per recruit (Y’/R) and biomass per recruit (B’/R) was calculated employing FiSAT package. The length structured Virtual Population Analysis (VPA) 15 of FiSAT was used to assess the fishing pressure on different length groups. Input parameters used were L∞ = 277 mm, K = 1.237/yr, M = 2.1, a = 0. 001922, and b = 3.29 obtained from the length-weight relationship. The terminal fishing mortality was assumed as 0.55 as D. russelli is a small sized fish with higher chances of being preyed upon and also appears to be slightly overexploited 9. Stock and potential were assessed by length based Thompson and Bell Predictive model 16 .
Recommended publications
  • A COMPARATIVE ACCOUNT of the SMALL PELAGIC FISHERIES in the APFIC REGION by M
    A COMPARATIVE ACCOUNT OF THE SMALL PELAGIC FISHERIES IN THE APFIC REGION by M. Devaraj and E. Vivekanandan Central Marine Fisheries Research Institute Cocbin-682014, India Abstract The production of the small pe/agics in the APFIC region was 1.2 mt/sq. km during 1995. Among the four areas in the region, the small pe/agics have registered (i) the maximum annual fluctuations in the western Indian Ocean; (ii) the highest increase duri'}i the past two decades along the west coast of Thailand in the eastern Indian Ocean; and (iii) the consistent decline in the landings during the past one decade along the Japanese coast in the northwest Pacific Ocean. The short rnackerels emerged as the largest fishery in the APFlC region, fom'ing 19.5% of the landings of the small pelagics in 1995. The group consisting afthe sardines and the anchovies has shown clear signs of decline during the past one decade in almost the entire region. Most of the small pelagics have unique biological characteristics such as fast growth, short longevity, late maturity, high nalllral mortality, shoaling behaviour, high fecundity and severe recruitment fluctuations. As many species of the small pelagics undertake migration, collaborative research programmes and close coordination are required among the APFle countries for the stock assessment of all the major species. The management measures under implementation in these countries have been reviewed, with suggestions for regional cooperation for the management of the stocks of the small pelagics. INTRODUCTION The Asia-Pacific Fishery Commission covers four oceanic areas, which have been classified by the FAO as the western Indian Ocean (FAO Statistical Area 51), eastern Indian Ocean (Area 57) , northwest Pacific Ocean (Area 61) and western central Pacific Ocean (Area 71).
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Reproductive Biology of Parona Signata (Actinopterygii: Carangidae), a Valuable Economic Resource, in the Coastal Area of Mar Del Plata, Buenos Aires, Argentina
    Neotropical Ichthyology Original article https://doi.org/10.1590/1982-0224-2019-0133 Reproductive biology of Parona signata (Actinopterygii: Carangidae), a valuable economic resource, in the coastal area of Mar del Plata, Buenos Aires, Argentina Correspondence: Mariano González-Castro 1 1,2 [email protected] Santiago Julián Bianchi and Mariano González-Castro The reproductive biology and life cycle of Parona leatherjacket, Parona signata, present in Mar del Plata (38°00’S 57°33’W) coast, was studied. Samples were obtained monthly since January 2018 to February 2019 from the artisanal fishermen and the commercial fleet of Mar del Plata. A histological analysis was carried out and the main biologic-reproductive parameters were estimated: fecundity, oocyte frequency distribution and gonadosomatic index (GSI). Both the macroscopic and microscopic analyses showed reproductive activity in March and November. Mature females were recorded, which showed hydrated oocytes, as was evidenced by the histological procedures. Both, the histological and the oocyte diameter distribution analyses showed the presence of all oocyte Submitted December 11, 2019 maturation stages in ovaries in active-spawning subphase, indicating that Accepted July 9, 2020 P. signata is a multiple spawner with indeterminate annual fecundity. Batch by Fernando Gibran fecundity ranged between 36,426 and 126,035 hydrated oocytes/ female. Relative Epub October 09, 2020 fecundity ranged between 42 and 150 oocytes/ g female ovary free. Keywords: Fecundity, Gonad histology, Life cycle, Pampo solteiro, Reproductive ecology. Online version ISSN 1982-0224 Print version ISSN 1679-6225 1 Laboratorio de Biotaxonomía Morfológica y Molecular de Peces (BIMOPE). Instituto de Investigaciones Marinas y Costeras, Neotrop.
    [Show full text]
  • A Biological and Social Examination of Opelu (Decapterus Spp.) Fisheries in West Hawaii, Hawaii Island
    A Biological and Social Examination of Opelu (Decapterus spp.) Fisheries in West Hawaii, Hawaii Island A thesis submitted to the Tropical Conservation Biology and Environmental Science Graduate Program at the University of Hawaii at Hilo in Partial Fulfillment of the Requirements for the Degree of Master of Science May 2008 “Hanau ka Opelu, hanau ke Akule i ke kai la holo” Born is the Opelu, born is the Akule in the sea and swam (Kumulipo, translated by Queen Liliuokalani) Submitted by Blake D McNaughton Acknowledgements I would like to express the deepest appreciation to my committee chair, Dr. Craig Severence, whose sense of style should never be questioned. I would like to thank my committee members, Dr. Jason Turner and David Itano who, although difficult to get in the same place at the same time were always there when I need their help. In addition, many mahalos to all the fishermen who participated in this study, particularly Brian Fujikawa and Robert Leslie. Financial support was provided by the Pelagic Fishery Research Program, Honolulu Hawaii. 2 Table of Contents Abstract 4 Introduction 4 Fishery Background 6 Distribution 10 Size and Growth 11 Reproduction 12 Feeding 13 Social Profile 14 Research Objectives 15 Methods 15 Study Site 15 Social Methods 16 Biological Methods 17 Sampling 17 Lab Procedures 18 Biological Results 21 Sociological Results 32 Discussion 34 Conclusion 44 Literature Cited 48 Appendix 1 53 3 A Biological and Social Examination of Opelu (Decapterus spp.) Fisheries in West Hawaii, Hawaii Island By Blake McNaughton Abstract This study aimed to fill information gaps in opelu fishery biology and life history as well as catalogue fisher knowledge and the socioeconomics of the opelu fishery in West Hawaii.
    [Show full text]
  • Decapterus Dayi (Wakiya) 1924 - Adult Common Name ( If Available) : Mackerel Scad
    NATIONAL BIORESOURCE DEVELOPMENT BOARD Dept. of Biotechnology Government of India, New Delhi For office use: MARINE BIORESOURCES FORMS DATA ENTRY: Form- 1(general ) Ref. No.: (please answer only relevant fields;add additional fields if you require) Fauna : √ Flora Microorganisms General Category : Vertebrata (Zooplankton), Fish larvae Scientific name &Authority : Decapterus dayi (Wakiya) 1924 - Adult Common Name ( if available) : Mackerel scad Synonyms: Author(s) Status Classification: Phylum: Vertebrata Sub- Phylum Super Class : Pisces Class : Osteichthyes Sub- Class: Actinopterygii Super Order: Teleostei Order: Perciformes Sub Order :Percoidei Super Family: Family : Carangidae Sub-Family: Genus : Decapterus Species : dayi Authority: Decapterus dayi (Wakiya) 1924 Reference No. Wakiya, 1924. Ann. Carnegie Mus. 14 p. 158. Premalatha, P. 1986. Studies on the carangid fish larvae of the southwest coast of India II. Decapterus dayi (Wakiya, 1924). Bull. Dept. Mar. Sci. Univ. Cochin, 14: 113-122. Geographical Location: Warm waters of the Indo-Pacific. Commonly found along the east and west coasts of India. Latitude: Place: Longitude: State: Environment Fresh water: Yes/ No Habitat : Salinity : Brackish : Yes/ No Migrations : Temperature : Salt water : Yes√ / No Depth range : Picture (scanned images or photographs of adult / larval stages) Figs. 1- 7 Larvae of Decapterus dayi (Wakiya). (Reproduced from Premalatha, 1986) Fig. 1. 2.2 mm stage; Fig.2. 2.9 mm stage; Fig. 3. 3.5 mm stage; Fig. 4. 4.7 mm stage; Fig. 5. 8.3 mm stage; Fig. 6. 9.3 mm stage; Fig. 7. 10.3 mm stage. DATA ENTRY FORM: Form- 2(Fish / shellfish / others ) Ref.No.: (please answer only relevant fields ; add additional fields if you require) Form –1 Ref.No.: IMPORTANCE Landing statistics (t/y) : from to Place : Ref .
    [Show full text]
  • Martin County Artificial Reef Monitoring 2016-17 FINAL
    Martin County Artificial Reef Monitoring 2016-17 FINAL REPORT FWC Grant No. 15106 September 2017 Prepared for: Florida Fish and Wildlife Conservation Commission 620 South Meridian Street Tallahassee, FL 32399 Prepared by: Coastal Eco-Group, Inc. 665 SE 10th St. Suite 104 Deerfield Beach, FL 33441 Phone: 954-591-1219 Recommended citation: O’Neil, K., C. Miller and D. Fisco. 2017. Martin County Artificial Reef Monitoring 2016- 17. Florida Fish and Wildlife Conservation Commission Grant No. 15106. Report prepared by Coastal Eco-Group, Inc. 71 pp. plus appendices. Table of Contents 1.0 INTRODUCTION ........................................................................................................... 1 2.0 METHODS ................................................................................................................... 7 2.1 Survey Locations ............................................................................................................... 7 2.1.1 South County Artificial Reefs .................................................................................... 7 2.1.2 Natural Reef Sites ..................................................................................................... 8 2.1.3 Comparisons to Prior Studies.................................................................................... 8 2.2 Experimental Design ........................................................................................................ 9 2.3 Benthic Quadrat Assessments ......................................................................................
    [Show full text]
  • Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) Associated with Venezuelan Marine Fishes (Elasmobranchii, Actinopterygii)
    Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp. from Diplectrum radiale*, Heteropriacanthus cruentatus*, Orthopristis ruber* and Trachinotus carolinus*; two aegids, Rocinela signata from Dasyatis guttata*, H. cruentatus*, Haemulon auro- lineatum*, H. steindachneri* and O. ruber; and Rocinela sp. from Epinephelus flavolimbatus*; five cymothoids: Anilocra haemuli from Haemulon boschmae*, H. flavolineatum* and H. steindachneri*; Anilocra cf haemuli from Heteropriacanthus cruentatus*; Haemulon bonariense*, O. ruber*, Cymothoa excisa in H. cruentatus*; Cymothoa oestrum in Chloroscombrus chrysurus, H. cruentatus* and Priacanthus arenatus; Cymothoa sp. in O. ruber; Livoneca sp. from H. cruentatus*; and Nerocila fluviatilis from H. cruentatus* and P. arenatus*). The Rocinela sp. and A.
    [Show full text]
  • And Their Fisheries In
    SMALL PELAGIC RESOURCES AND THEIR FISHERIES IN THE ASIA-PACIFIC REGION ASIA-PACIFIC FISHERY COMMISSION FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS REGIONAL OFFICE FOR ASIA AND THE PACIFIC RAP Publication 1997/31 SMALL PELAGIC RESOURCES AND THEIR FISHERIES IN THE ASIA-PACIFIC REGION Proceedings of the First Session of the APFIC Worldng Party on Marine Fisheries Bangkok, Thailand, 13-16 May 1997 Asia-Pacific Fishery Commission Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific Bangkok, Thailand, 1997 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of itsauthorities, or concerning the delinutation of its frontiers or boundaries. Opinions expressed in this publication are those of the author(s) alone and do not imply any opinion whatsoever on the part of FAO and APFIC. NOTICE OF COPYRIGHT The copyright in this publication is vested in the Food and Agriculture Organization of the United Nations. This publication may not be reproduced, in whole or in part, by any method or process, without written permission from the copyright holder. Applications for such permission with a statement of the purpose and extent of the reproduction desired should be made through and addressed to the Senior Fishery Officer, FAO Regional Office for Asia and the Pacific, Maliwan Mansion, Phra Athit Road, Bangkok 10200, Thailand. ii PREPARATION OF THIS DOCUMENT This Proceedings consists of the Conclusion and Recommendations of and the papers presented at the First Session of the APFIC Working Party on Marine Fisheries held in Bangkok, Thailand, from 13 to 16 May 1997.
    [Show full text]
  • 16 3.0 Description, Distribution, and Use of Essential Fish
    3.0 Description, Distribution and Use of Essential Fish Habitat 3.0 DESCRIPTION, DISTRIBUTION, AND USE OF ESSENTIAL FISH HABITAT 3.1 Estuarine and Inshore Habitats 3.1.1 Estuarine 3.1.1.1 Estuarine Emergent (Saltmarsh and Brackish Marsh) 3.1.1.1.1 Description and Ecological Role and Function The saltmarsh is a type of wetland. Wetlands are classified on the basis of their hydrology, vegetation and substrate. One classification system proposed by Cowardin et al., (1979) and used by the USFWS classifies wetlands into five ecological systems. Estuarine emergents fall into two of these systems, the Estuarine and Marine. The Estuarine wetland is described as tidal wetlands in low-wave-energy environments, where the salinity is greater than 0.5 parts per thousand (ppt) and is variable owing to evaporation and the mixing of seawater and freshwater. Marine wetlands are described as tidal wetlands that are exposed to waves and currents of the open ocean and have a salinity of greater than 30 ppt. A saltmarsh, as defined by Beeflink (1977), is a “natural or semi-natural salt tolerant grassland and dwarf brushwood on the alluvial sediments bordering saline water bodies whose water level fluctuates either tidal or nontidally”. The flora comprise of erect, rooted, herbaceous hydrophytes dominated by salt- tolerant perennial plants (Cowardin et al. 1979). Structure and function of a saltmarsh are influenced by tide, salinity, nutrients and temperature. The saltmarsh can be a stressful environment to plants and animals, with rapid changes occurring in these abiotic variables (Gosselink 1980; Gosselink et al. 1974). Although species diversity may be lower than in other systems, the saltmarsh is one of the most biologically productive ecosystems in the world (Teal 1962; Teal and Teal, 1969).
    [Show full text]
  • The State of World Fisheries and Aquaculture 2020
    2018 2020 2018 2018 THE STATE OF WORLD FISHERIES AND AQUACULTURE SUSTAINABILITY IN ACTION This flagship publication is part of THE STATE OF THE WORLD series of the Food and Agriculture Organization of the United Nations. Required citation: FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The designations employed and the presentation of material in the maps do not imply the expression of any opinion whatsoever on the part of FAO concerning the legal or constitutional status of any country, territory or sea area, or concerning the delimitation of frontiers. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISSN 1020-5489 [PRINT] ISSN 2410-5902 [ONLINE] ISBN 978-92-5-132692-3 © FAO 2020 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).
    [Show full text]
  • Oma158267.Pdf
    ب Fishery Quality Control Regulation 12/2009 Third Edition 2009 ت 5 ث ج Contents Chapter Page Chapter (One) Definitions 8 Chapter (Two) General provisions 12 Chapter (Three) General conditions for quality control and safety of fish and 20 fishery products Chapter (Four) Additional conditions for chilled fish and fishery production 24 Chapter (Five) Additional conditions for frozen fish and fishery products 26 Chapter (Six) Additional conditions for chilled and frozen crustaceans 27 Chapter (Seven) Potable water inspection and test methods 29 Chapter (Eight) General conditions for displaying and marketing of fish and 29 fishery products Chapter (Nine) Hygienic conditions for the production and marketing of fish and 31 fishery products Chapter (Ten) Requirements during and after fish and fishery products landing 33 Chapter (Eleven) Conditions for establishment on land 36 Chapter (Twelve) Conditions for handling fish and fishery production on shore 39 Chapter (Thirteen) Hygienic conditions for monitoring fish and fishery products 45 production. Chapter (Fourteen) Violations and Penalties 48 Annexes Annex No. (1) .............................................................................................. 50 Annex No. (2) .............................................................................................. 57 Annex No. (3) .............................................................................................. 67 Annex No. (4) .............................................................................................. 72
    [Show full text]