Part 2. Anatomy of the Wing and Its Performance
Part 2. Anatomy of the wing and its performance 1 A reminder on the notation and how forces are computed 2 A reminder on the notation and how forces are computed • Forces and moments acting on an airfoil (2D). where is the airfoil lift coefficient, the airfoil chord, is the free-stream velocity and is the air density where is the airfoil drag coefficient, the airfoil chord, is the free-stream velocity and is the air density where is the airfoil pitching moment coefficient (usually computed at ), the airfoil chord, is the reference arm, is the free-stream velocity and is the air density • Notice that the forces and moments are computed per unit depth. 3 A reminder on the notation and how forces are computed • Forces and moments acting on a wing (3D). where is the wing lift coefficient, is the wing reference area , is the free-stream velocity and is the air density. where is the wing drag coefficient, is the wing reference area , is the free-stream velocity and is the air density. where is the wing pitching moment coefficient (usually computed at of the MAC), is the reference arm, is the wing reference area, is the free-stream velocity and is the air density. 4 A reminder on the notation and how forces are computed • The previous equations are used to get the forces and moments if you know the coefficients. • Remember, the coefficients contain all the information related to angle of attack, wing/airfoil geometry, and compressibility effect. • If you are doing CFD, you can directly compute the forces and moments by integrating the pressure and viscous forces over the body surface.
[Show full text]