The Spitfire Wing Planform: a Suggestion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wing Root & Landing Gear Door Seal Replacement
Wing Root & Landing Gear Door Seal Replacement One of the oldest original components remaining on my Baron (and likely other members planes) was surely the stiff and ragged wing root seal. In researching this component I learned that the wing root and tail seals were installed on the wings and tails before the marriage to the airframe. What lies below the top skin of the wing and tail is a length of rubber “finger” (Figure 1) as an integral part of the seal. Figure 1 This “finger” holds the seal in place and was likely glued at the factory, grabbing the backside of the wing and tail skin. With time and age these original rubber seals have taken quite a beating. With an extended winter annual downtime this year I chose to tackle this really tedious project while waiting for other components that were out for overhaul. A word of caution, this is as tedious as it gets if you choose to dig out the finger from below the top surface skins using the very narrow gap between the skin and the fuselage. Here is a pirep from a Bonanza A36 owner on how he tackled his seal replacement: “I cut the majority of the old seal off using razor blade, leaving a small lip sticking above the wing. I then used a small pick bent at a 90 degree angle, with about a 3/8" 'hook' on the end. Using the hook, I stuck it under the wing skin, between the skin and the old rubber wing seal lip under the skin, and forced it along the chord of the wing. -
PUBLIC NOTICE Washington, D.C
REPORT NO. PN-1-210205-01 | PUBLISH DATE: 02/05/2021 Federal Communications Commission 45 L Street NE PUBLIC NOTICE Washington, D.C. 20554 News media info. (202) 418-0500 APPLICATIONS File Number Purpose Service Call Sign Facility ID Station Type Channel/Freq. City, State Applicant or Licensee Status Date Status 0000132840 Assignment AM WING 25039 Main 1410.0 DAYTON, OH ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132974 Assignment FM KKUU 11658 Main 92.7 INDIO, CA ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132926 Assignment AM WSGW 22674 Main 790.0 SAGINAW, MI ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132914 Assignment FM WDLD 23469 Main 96.7 HALFWAY, MD ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession 0000132842 Assignment AM WJQS 50409 Main 1400.0 JACKSON, MS ALPHA MEDIA 01/27/2021 Accepted of LICENSEE LLC For Filing Authorization From: ALPHA MEDIA LICENSEE LLC To: Alpha Media Licensee LLC Debtor in Possession Page 1 of 66 REPORT NO. PN-1-210205-01 | PUBLISH DATE: 02/05/2021 Federal Communications Commission 45 L Street NE PUBLIC NOTICE Washington, D.C. 20554 News media info. (202) 418-0500 APPLICATIONS File Number Purpose Service Call Sign Facility ID Station Type Channel/Freq. -
Junkers G 38 Aerophilatelie
Katalog und Handbuch zu den Flügen der JUNKERS G 38 D-2000 und D-2500 Hubertus Hentschel Siemensstraße 10 40670 Meerbusch Tel. 02159 - 3084 FAX 02159 – 51808 eMail: [email protected] Die Junkers Ganzmetallflugzeuge G 38 Junkers G 38 D-2000 ( AZUR ) Werknummer 3301 G 38 di 06.11.29 JUNKERS D-2000 07.05.31 LUFT HANSA D-2000 06.07.33 DEUTSCHLAND D-2000 20.03.34 DEUTSCHLAND D-AZUR Besatzung Flugkapitän : Wilhelm Zimmermann * 24.02.1897 + 29.03.1956 2. Flugzeugf. : Otto Brauer * 16.10.1897 + 16.04.1976 : Paul Dierberg : Hans Etzold Steward : Arthur Howe Konstrukteure : Hugo Junkers * 03.02.1859 + 03.02.1935 : Ernst Zindel * 21.03.1897 + 10.10.1978 Passagiere : 9 Sitzplätze, 4 Liegeplätze : nach dem Umbau 30 Sitzplätze Junkers G 38 D-2500 ( APIS ) Werknummer 3302 G 38 ce, G 38 ci, G 38 fi 14.06.32 LUFT-HANSA D-2500 00.00.33 HINDENBURG D-2500 29.04.33 GENERALFELDMARSCHALL VON HINDENBURG D-2500 20.03.34 GENERALFELDMARSCHALL VON HINDENBURG D-APIS 00.04.40 GF-GG Besatzung Flugkapitän : Otto Brauer ( später Major ) 2. Flugzeugf. : Hans Etzold Funker : Heinrich Wiechers Maschinisten : Otto Rosinski, Willi Melzer, Heinrich Lauerwald Steward : Arthur Howe Konstrukteure : Hugo Junkers, Ernst Zindel Passagiere : 34 Fluggäste Das Gästebuch der JUNKERS G 38 ( D - 2500 ) Am 29.04.1933 wurde die JUNKERS G 38 ( D - 2500 ) auf den Namen Generalfeldmarschall von Hindenburg getauft. Der Name Hindenburg hatte bereits vorher auf dem Rumpf gestanden. Die Taufe nahm Reichsluftfahrtminister Hermann Göring im Beisein des greisen Reichspräsidenten Paul von Hindenburg vor. -
Automated Generic Parameterized Design of Aircraft Fairing and Windshield
Automated generic parameterized design of aircraft fairing and windshield Vijaykumar Govindharajan Aakash Narender Singh LIU-IEI-TEK-A-12/01271-SE Department of Management and Engineering Division of Flumes Department of Management and Engineering SE-581 83 Linköping, Sweden i ii Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under 25 år från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purpose. -
List of Exhibits at IWM Duxford
List of exhibits at IWM Duxford Aircraft Airco/de Havilland DH9 (AS; IWM) de Havilland DH 82A Tiger Moth (Ex; Spectrum Leisure Airspeed Ambassador 2 (EX; DAS) Ltd/Classic Wings) Airspeed AS40 Oxford Mk 1 (AS; IWM) de Havilland DH 82A Tiger Moth (AS; IWM) Avro 683 Lancaster Mk X (AS; IWM) de Havilland DH 100 Vampire TII (BoB; IWM) Avro 698 Vulcan B2 (AS; IWM) Douglas Dakota C-47A (AAM; IWM) Avro Anson Mk 1 (AS; IWM) English Electric Canberra B2 (AS; IWM) Avro Canada CF-100 Mk 4B (AS; IWM) English Electric Lightning Mk I (AS; IWM) Avro Shackleton Mk 3 (EX; IWM) Fairchild A-10A Thunderbolt II ‘Warthog’ (AAM; USAF) Avro York C1 (AS; DAS) Fairchild Bolingbroke IVT (Bristol Blenheim) (A&S; Propshop BAC 167 Strikemaster Mk 80A (CiA; IWM) Ltd/ARC) BAC TSR-2 (AS; IWM) Fairey Firefly Mk I (FA; ARC) BAe Harrier GR3 (AS; IWM) Fairey Gannet ECM6 (AS4) (A&S; IWM) Beech D17S Staggerwing (FA; Patina Ltd/TFC) Fairey Swordfish Mk III (AS; IWM) Bell UH-1H (AAM; IWM) FMA IA-58A Pucará (Pucara) (CiA; IWM) Boeing B-17G Fortress (CiA; IWM) Focke Achgelis Fa-330 (A&S; IWM) Boeing B-17G Fortress Sally B (FA) (Ex; B-17 Preservation General Dynamics F-111E (AAM; USAF Museum) Ltd)* General Dynamics F-111F (cockpit capsule) (AAM; IWM) Boeing B-29A Superfortress (AAM; United States Navy) Gloster Javelin FAW9 (BoB; IWM) Boeing B-52D Stratofortress (AAM; IWM) Gloster Meteor F8 (BoB; IWM) BoeingStearman PT-17 Kaydet (AAM; IWM) Grumman F6F-5 Hellcat (FA; Patina Ltd/TFC) Branson/Lindstrand Balloon Capsule (Virgin Atlantic Flyer Grumman F8F-2P Bearcat (FA; Patina Ltd/TFC) -
During World War Ii. New Insights from the Annual Audits of German Aircraft Producers
ECONOMIC GROWTH CENTER YALE UNIVERSITY P.O. Box 208629 New Haven, CT 06520-8269 http://www.econ.yale.edu/~egcenter/ CENTER DISCUSSION PAPER NO. 905 DEMYSTIFYING THE GERMAN “ARMAMENT MIRACLE” DURING WORLD WAR II. NEW INSIGHTS FROM THE ANNUAL AUDITS OF GERMAN AIRCRAFT PRODUCERS Lutz Budraß University of Bochum Jonas Scherner University of Mannheim Jochen Streb University of Hohenheim January 2005 Notes: Center Discussion Papers are preliminary materials circulated to stimulate discussions and critical comments. The first version of this paper was written while Streb was visiting the Economic Growth Center at Yale University in fall 2004. We are grateful to the Economic Growth Center for financial support. We thank Christoph Buchheim, Mark Spoerer, Timothy Guinnane, and the participants of the Yale economic history workshop for many helpful comments. Corresponding author: Prof. Dr. Jochen Streb, University of Hohenheim (570a), D- 70593 Stuttgart, Germany, E-Mail: [email protected]. This paper can be downloaded without charge from the Social Science Research Network electronic library at: http://ssrn.com/abstract=661102 An index to papers in the Economic Growth Center Discussion Paper Series is located at: http://www.econ.yale.edu/~egcenter/research.htm Demystifying the German “armament miracle” during World War II. New insights from the annual audits of German aircraft producers by Lutz Budraß, Jonas Scherner, and Jochen Streb Abstract Armament minister Albert Speer is usually credited with causing the boom in German armament production after 1941. This paper uses the annual audit reports of the Deutsche Revisions- und Treuhand AG for seven firms which together represented about 50 % of the German aircraft producers. -
Alpha Media USA LLC ) FRN: 0025019530 ) Licensee of Various Commercial Radio Stations ) ) )
Federal Communications Commission DA 20-772 Before the Federal Communications Commission Washington, D.C. 20554 In the Matter of Online Political Files of ) File No.: MB/POL-07072020-A ) Alpha Media USA LLC ) FRN: 0025019530 ) Licensee of Various Commercial Radio Stations ) ) ) ORDER Adopted: July 22, 2020 Released: July 22, 2020 By the Chief, Media Bureau: 1. In this Order, we adopt the attached Consent Decree entered into between the Federal Communications Commission (the Commission) and Alpha Media USA LLC (Alpha Media). The Consent Decree resolves the Commission’s investigation into whether Alpha Media violated section 315(e)(3) of the Communications Act of 1934, as amended (the Act), and section 73.1943(c) of the Commission’s rules in connection with the timeliness of uploads of required information to the online political files of certain of its owned and operated radio stations. To resolve this matter, Alpha Media agrees, among other things, to implement a comprehensive Compliance Plan and to provide periodic Compliance Reports to the Bureau. 2. The Commission first adopted rules requiring broadcast stations to maintain public files documenting requests for political advertising time more than 80 years ago,1 and political file obligations have been embodied in section 315(e) of the Act since 2002.2 Section 315(e)(1) requires radio station licensees, among other regulatees, to maintain and make available for public inspection information about each request for the purchase of broadcast time that is made: (a) by or on behalf of a -
Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter
Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter A project presented to The Faculty of the Department of Aerospace Engineering San José State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Aaron Ford May 2019 approved by Prof. Jeanine Hunter Faculty Advisor © 2019 Aaron Ford ALL RIGHTS RESERVED ABSTRACT Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter by Aaron Ford A model of helicopter blade flapping dynamics is created to determine the occurrence of retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. Equations of motion are developed, and blade element theory is utilized to evaluate the appropriate aerodynamics. Modelling of the blade flapping behavior is verified against benchmark data and then used to determine the angle of attack distribution about the rotor disk for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling of the coaxial configuration with the pusher-prop in straight and level flight is then considered. An approach was taken that minimizes the angle of attack and generation of lift on the advancing side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift distribution is compensated for by using both counter-rotating rotor disks to maximize lift on their respective advancing sides and reduce drag on their respective retreating sides. The result is an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, an assessment of the lift capability of the configuration at both sea level and at “high and hot” conditions were made. -
Spotlight and Hot Topic Sessions Poster Sessions Continuing
Sessions and Events Day Thursday, January 21 (Sessions 1001 - 1025, 1467) Friday, January 22 (Sessions 1026 - 1049) Monday, January 25 (Sessions 1050 - 1061, 1063 - 1141) Wednesday, January 27 (Sessions 1062, 1171, 1255 - 1339) Tuesday, January 26 (Sessions 1142 - 1170, 1172 - 1254) Thursday, January 28 (Sessions 1340 - 1419) Friday, January 29 (Sessions 1420 - 1466) Spotlight and Hot Topic Sessions More than 50 sessions and workshops will focus on the spotlight theme for the 2019 Annual Meeting: Transportation for a Smart, Sustainable, and Equitable Future . In addition, more than 170 sessions and workshops will look at one or more of the following hot topics identified by the TRB Executive Committee: Transformational Technologies: New technologies that have the potential to transform transportation as we know it. Resilience and Sustainability: How transportation agencies operate and manage systems that are economically stable, equitable to all users, and operated safely and securely during daily and disruptive events. Transportation and Public Health: Effects that transportation can have on public health by reducing transportation related casualties, providing easy access to healthcare services, mitigating environmental impacts, and reducing the transmission of communicable diseases. To find sessions on these topics, look for the Spotlight icon and the Hot Topic icon i n the “Sessions, Events, and Meetings” section beginning on page 37. Poster Sessions Convention Center, Lower Level, Hall A (new location this year) Poster Sessions provide an opportunity to interact with authors in a more personal setting than the conventional lecture. The papers presented in these sessions meet the same review criteria as lectern session presentations. For a complete list of poster sessions, see the “Sessions, Events, and Meetings” section, beginning on page 37. -
Video Preview
“People should know just how evil war can be. It is all well and good talking about the glory, but a lot of people get killed.” —Ken Wilkinson, Battle of Britain Spitfire Pilot, Royal Air Force Table of Contents Click the section title to jump to it. Click any blue or purple head to return: Video Preview Video Voices Connect the Video to Science and Engineering Design Explore the Video Explore and Challenge Identify the Challenge Investigate, Compare, and Revise Pushing the Envelope Build Science Literacy through Reading and Writing Summary Activity Next Generation Science Standards Common Core State Standards for ELA & Literacy in Science and Technical Subjects Assessment Rubric For Inquiry Investigation Video Preview "The Spitfire" is one of 20 short videos in the series Chronicles of Courage: Stories of Wartime and Innovation. At the start of World War II, the Battle of Britain erupted, and cities across England were Germany’s targets. The Royal Air Force (RAF) relied on one of their most beloved planes—the Supermarine Spitfire—and the brand-new radar technology to defend their homeland against Hitler and his attacking military. Time Video Content 0:00–0:16 Series opening 0:17–1:22 Why the Battle of Britain matters 1:23–1:44 One of The Few 1:45–2:57 The nimble Supermarine Spitfire 2:58 –4:04 The British could sniff out German aircraft 4:05–5:28 How Radio Detection and Ranging works 5:29–6:02 A victorious turning point 6:03–6:18 Closing credits Chronicles of Courage: Stories of Wartime and Innovation “The Spitfire” 1 Video Voices—The Experts Tell the Story By interviewing people who have demonstrated courage in the face of extraordinary events, the Chronicles of Courage series keeps history alive for current generations to explore. -
CASE FILE Co
CASE FILE co TECHIICAL LIEMORANUI.:S 1TATIONAL ADVISORY FOR AERONAUTICS No. 608 THE USE OF ELEKTRON MTAL liT AIRPLANE CONSTRUCTION By E. I. de Ridder Jahrbuoh 1929 der Wsenschaft1iohen Oesellschaft fi.r Lu±tfahrt This nmuua ON W* F** Nt R NATIONAL MWOlY COMM4!TI K* AEONAIrnr L&JIG1Y PVVOKIAL *€O$*tlT%C*t. LAaOPA7OPY LANG&.EY FIELD, MAM1N, VRIN*A TO ThLMOV€ *uø€: QUESTS R) P*iCAIONS SHOULD ,,Do(SstD Vasi ng to i-i I11Nk pmi*y coMMrcEE Mebruary, 1931 37$UMI'. N.W.. *INGTO$ • 2S. ).C. NATIONAL ADVISORY COITTEE FOR AERONAUTICS TECHNICAL 1MORANDUM NO. 608 THE USE OF ELEKTRON 1.rETAL IN AIRPLANE CONSTRUCTION* By E. I. de Ridder The tendency in aircraft construction is tovard higher per formanc:e. and gea.ter economy. From the , aerodynamic standpoint this me:ans a minimum possible drag by streamlining,. and from the structura]viewpo,nt, .aving in weight by usag light metal. Elektron is the lightest of the light metas, andas such merits our special attention beoaus .e it meets the demand for lighter construction. Itis impossible to go fully into its mechanical proper- ties and chemical composition on this occasion, but i .t should. not, be passed without at least briefly describing those charac- teristics which are of interest to the cpnstructor who uses it. E].elctron,. .as manufacT'cured ly the .1. G. Dye Industry, A.G., Bitterfeld,; isa magnesium-base alloy offrom 1.8 to 1.83 spe- cif'ic gravity.,. lience.a third as ligit as aluminum alloys. The rn I + .' eEg point of the metal is 625° slightly below that of aluminum. -
Study on Thin Airfoil Theory and Performance Test of Elliptical Wing As Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil
EJERS, European Journal of Engineering Research and Science Vol. 3, No. 4, April 2018 Study on Thin Airfoil Theory and Performance Test of Elliptical Wing as Compared to Model Mosquito Wing and NACA 64A012 Mod Airfoil Nesar Ali, Mostafizur R. Komol, and Mohammad T. Saki their elevated flying characteristics, flying insects give Abstract—Thin airfoil theory is a simple conception of researchers inspiration for biomimetic fabrications of airfoils that describes angle of attack to lift for incompressible, insect’s wing and many model aircraft wing. We also inviscid flows. It was first devised by famous German- analyze the four basic principle forces acting on an aircraft American mathematician Max Munk and therewithal refined in flight and insect’s flying [1], [15]. by British aerodynamicist Hermann Glauertand others in the 1920s. The thin airfoil theory idealizes that the flow around an Flight is the astonishment that has long been a part of the airfoil as two-dimensional flow around a thin airfoil. It can be natural world. Birds fly and insect’s flying not only by conceived as addressing an airfoil of zero thickness and infinite flapping their wings, but by gliding with their wings wingspan. Thin airfoil theory was particularly citable in its day convoluted for long distances. Likewise, man-made aircraft because it provided a well-established theoretical basis for the bank on this philosophy to overcome the force of gravity following important prominence of airfoils in two-dimensional and achieve enough flight. Lighter-than-air craft, such as the flow like i) on a symmetric shape of airfoil which center of pressure and aerodynamic center remain exactly one quarter hot air balloon, dispense on the Buoyancy principle.