Meta-Complex Numbers Dual Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Meta-Complex Numbers Dual Numbers Meta- Complex Numbers Robert Andrews Complex Numbers Meta-Complex Numbers Dual Numbers Split- Complex Robert Andrews Numbers Visualizing Four- Dimensional Surfaces October 29, 2014 Table of Contents Meta- Complex Numbers Robert Andrews 1 Complex Numbers Complex Numbers Dual Numbers 2 Dual Numbers Split- Complex Numbers 3 Split-Complex Numbers Visualizing Four- Dimensional Surfaces 4 Visualizing Four-Dimensional Surfaces Table of Contents Meta- Complex Numbers Robert Andrews 1 Complex Numbers Complex Numbers Dual Numbers 2 Dual Numbers Split- Complex Numbers 3 Split-Complex Numbers Visualizing Four- Dimensional Surfaces 4 Visualizing Four-Dimensional Surfaces Quadratic Equations Meta- Complex Numbers Robert Andrews Recall that the roots of a quadratic equation Complex Numbers 2 Dual ax + bx + c = 0 Numbers Split- are given by the quadratic formula Complex Numbers p 2 Visualizing −b ± b − 4ac Four- x = Dimensional 2a Surfaces The quadratic formula gives the roots of this equation as p x = ± −1 This is a problem! There aren't any real numbers whose square is negative! Quadratic Equations Meta- Complex Numbers Robert Andrews What if we wanted to solve the equation Complex Numbers x2 + 1 = 0? Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces This is a problem! There aren't any real numbers whose square is negative! Quadratic Equations Meta- Complex Numbers Robert Andrews What if we wanted to solve the equation Complex Numbers x2 + 1 = 0? Dual Numbers The quadratic formula gives the roots of this equation as Split- Complex p Numbers x = ± −1 Visualizing Four- Dimensional Surfaces Quadratic Equations Meta- Complex Numbers Robert Andrews What if we wanted to solve the equation Complex Numbers x2 + 1 = 0? Dual Numbers The quadratic formula gives the roots of this equation as Split- Complex p Numbers x = ± −1 Visualizing Four- Dimensional Surfaces This is a problem! There aren't any real numbers whose square is negative! We make a new number that is defined precisely to solve this equation! Define the \imaginary number" i such that i2 = −1 Then i and −i are solutions to the equation x2 + 1 = 0 Quadratic Equations Meta- Complex Numbers Robert How do we deal with the fact that there is no real number x Andrews such that x2 + 1 = 0? Complex Numbers Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces Define the \imaginary number" i such that i2 = −1 Then i and −i are solutions to the equation x2 + 1 = 0 Quadratic Equations Meta- Complex Numbers Robert How do we deal with the fact that there is no real number x Andrews such that x2 + 1 = 0? Complex We make a new number that is defined precisely to solve Numbers Dual this equation! Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces Quadratic Equations Meta- Complex Numbers Robert How do we deal with the fact that there is no real number x Andrews such that x2 + 1 = 0? Complex We make a new number that is defined precisely to solve Numbers Dual this equation! Numbers Define the \imaginary number" i such that Split- Complex 2 Numbers i = −1 Visualizing Four- Dimensional Then i and −i are solutions to the equation Surfaces x2 + 1 = 0 A complex number z is a number of the form z = a + bi 2 where a; b 2 R and i = −1. We call a the real part of the complex number and b the imaginary part. One important definition is that of the conjugate of z, denoted here by z∗. We define the conjugate of z as z∗ = a − bi In essence, we're just changing the sign of the imaginary part. Now that we've defined these new numbers, what can we do with them? Defining Complex Numbers Meta- Complex We use the imaginary unit i to build complex numbers. Numbers Robert Andrews Complex Numbers Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces One important definition is that of the conjugate of z, denoted here by z∗. We define the conjugate of z as z∗ = a − bi In essence, we're just changing the sign of the imaginary part. Now that we've defined these new numbers, what can we do with them? Defining Complex Numbers Meta- Complex We use the imaginary unit i to build complex numbers. Numbers A complex number z is a number of the form Robert Andrews z = a + bi Complex Numbers 2 Dual where a; b 2 R and i = −1. We call a the real part of the Numbers complex number and b the imaginary part. Split- Complex Numbers Visualizing Four- Dimensional Surfaces Now that we've defined these new numbers, what can we do with them? Defining Complex Numbers Meta- Complex We use the imaginary unit i to build complex numbers. Numbers A complex number z is a number of the form Robert Andrews z = a + bi Complex Numbers 2 Dual where a; b 2 R and i = −1. We call a the real part of the Numbers complex number and b the imaginary part. Split- Complex One important definition is that of the conjugate of z, Numbers denoted here by z∗. We define the conjugate of z as Visualizing Four- ∗ Dimensional z = a − bi Surfaces In essence, we're just changing the sign of the imaginary part. Defining Complex Numbers Meta- Complex We use the imaginary unit i to build complex numbers. Numbers A complex number z is a number of the form Robert Andrews z = a + bi Complex Numbers 2 Dual where a; b 2 R and i = −1. We call a the real part of the Numbers complex number and b the imaginary part. Split- Complex One important definition is that of the conjugate of z, Numbers denoted here by z∗. We define the conjugate of z as Visualizing Four- ∗ Dimensional z = a − bi Surfaces In essence, we're just changing the sign of the imaginary part. Now that we've defined these new numbers, what can we do with them? z + w = (a + c) + (b + d)i and define z − w as z − w = (a − c) + (b − d)i Addition and Subtraction Meta- Complex Numbers Robert Andrews Complex Let z = a + bi and w = c + di. Define z + w as Numbers Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces and define z − w as z − w = (a − c) + (b − d)i Addition and Subtraction Meta- Complex Numbers Robert Andrews Complex Let z = a + bi and w = c + di. Define z + w as Numbers Dual z + w = (a + c) + (b + d)i Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces z − w = (a − c) + (b − d)i Addition and Subtraction Meta- Complex Numbers Robert Andrews Complex Let z = a + bi and w = c + di. Define z + w as Numbers Dual z + w = (a + c) + (b + d)i Numbers Split- Complex and define z − w as Numbers Visualizing Four- Dimensional Surfaces Addition and Subtraction Meta- Complex Numbers Robert Andrews Complex Let z = a + bi and w = c + di. Define z + w as Numbers Dual z + w = (a + c) + (b + d)i Numbers Split- Complex and define z − w as Numbers Visualizing Four- z − w = (a − c) + (b − d)i Dimensional Surfaces zw = (a + bi)(c + di) = a(c + di) + bi(c + di) = (ac − bd) + (ad + bc)i Multiplication Meta- Complex Numbers We can also easily define multiplication of complex numbers Robert Andrews using the idea of the distributive property. The distributive property simply says Complex Numbers Dual a(b + c) = ab + ac Numbers Split- Complex Keeping this idea in mind, if we let z = a + bi and Numbers w = c + di, then we define zw as Visualizing Four- Dimensional Surfaces Multiplication Meta- Complex Numbers We can also easily define multiplication of complex numbers Robert Andrews using the idea of the distributive property. The distributive property simply says Complex Numbers Dual a(b + c) = ab + ac Numbers Split- Complex Keeping this idea in mind, if we let z = a + bi and Numbers w = c + di, then we define zw as Visualizing Four- Dimensional zw = (a + bi)(c + di) Surfaces = a(c + di) + bi(c + di) = (ac − bd) + (ad + bc)i w∗ we multiply by w∗ . This allows us to define division as z z w∗ zw∗ (ac + bd) + (bc − ad)i = = = w w w∗ c2 + d2 c2 + d2 Note that division is undefined when c2 + d2 = 0, i.e. when w = 0. Division Meta- Complex Numbers Robert Andrews z Let z = a + bi and w = c + di. To define w , we use an Complex Numbers algebraic trick: Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces Note that division is undefined when c2 + d2 = 0, i.e. when w = 0. Division Meta- Complex Numbers Robert Andrews z Let z = a + bi and w = c + di. To define w , we use an Complex w∗ Numbers algebraic trick: we multiply by w∗ . This allows us to define Dual division as Numbers ∗ ∗ Split- z z w zw (ac + bd) + (bc − ad)i Complex = = = Numbers w w w∗ c2 + d2 c2 + d2 Visualizing Four- Dimensional Surfaces Division Meta- Complex Numbers Robert Andrews z Let z = a + bi and w = c + di. To define w , we use an Complex w∗ Numbers algebraic trick: we multiply by w∗ . This allows us to define Dual division as Numbers ∗ ∗ Split- z z w zw (ac + bd) + (bc − ad)i Complex = = = Numbers w w w∗ c2 + d2 c2 + d2 Visualizing Four- 2 2 Dimensional Note that division is undefined when c + d = 0, i.e. when Surfaces w = 0. Exponentiation Meta- Complex Numbers Robert To deal with complex exponents, we need to know a few Andrews Taylor series first. Recall that Complex Numbers 1 k x X x Dual e = Numbers k! k=0 Split- 1 Complex X x2k+1 Numbers sin x = (−1)k (2k + 1)! Visualizing k=0 Four- Dimensional 1 2k Surfaces X x cos x = (−1)k (2k)! k=0 Exponentiation Meta- Complex Numbers Robert Andrews If we expand the Taylor series for eix, we get Complex Numbers x x2 x3 Dual eix = 1 + i − − i + ··· Numbers 1! 2! 3! Split- x2 x4 x x3 x5 Complex = (1 − + + ··· ) + i( − + + ··· ) Numbers 2! 4! 1! 3! 5! Visualizing Four- = cos x + i sin x Dimensional Surfaces This equation, known as Euler's Formula, is essential for working with complex exponents.
Recommended publications
  • The Enigmatic Number E: a History in Verse and Its Uses in the Mathematics Classroom
    To appear in MAA Loci: Convergence The Enigmatic Number e: A History in Verse and Its Uses in the Mathematics Classroom Sarah Glaz Department of Mathematics University of Connecticut Storrs, CT 06269 [email protected] Introduction In this article we present a history of e in verse—an annotated poem: The Enigmatic Number e . The annotation consists of hyperlinks leading to biographies of the mathematicians appearing in the poem, and to explanations of the mathematical notions and ideas presented in the poem. The intention is to celebrate the history of this venerable number in verse, and to put the mathematical ideas connected with it in historical and artistic context. The poem may also be used by educators in any mathematics course in which the number e appears, and those are as varied as e's multifaceted history. The sections following the poem provide suggestions and resources for the use of the poem as a pedagogical tool in a variety of mathematics courses. They also place these suggestions in the context of other efforts made by educators in this direction by briefly outlining the uses of historical mathematical poems for teaching mathematics at high-school and college level. Historical Background The number e is a newcomer to the mathematical pantheon of numbers denoted by letters: it made several indirect appearances in the 17 th and 18 th centuries, and acquired its letter designation only in 1731. Our history of e starts with John Napier (1550-1617) who defined logarithms through a process called dynamical analogy [1]. Napier aimed to simplify multiplication (and in the same time also simplify division and exponentiation), by finding a model which transforms multiplication into addition.
    [Show full text]
  • Section 3.6 Complex Zeros
    210 Chapter 3 Section 3.6 Complex Zeros When finding the zeros of polynomials, at some point you're faced with the problem x 2 −= 1. While there are clearly no real numbers that are solutions to this equation, leaving things there has a certain feel of incompleteness. To address that, we will need utilize the imaginary unit, i. Imaginary Number i The most basic complex number is i, defined to be i = −1 , commonly called an imaginary number . Any real multiple of i is also an imaginary number. Example 1 Simplify − 9 . We can separate − 9 as 9 −1. We can take the square root of 9, and write the square root of -1 as i. − 9 = 9 −1 = 3i A complex number is the sum of a real number and an imaginary number. Complex Number A complex number is a number z = a + bi , where a and b are real numbers a is the real part of the complex number b is the imaginary part of the complex number i = −1 Arithmetic on Complex Numbers Before we dive into the more complicated uses of complex numbers, let’s make sure we remember the basic arithmetic involved. To add or subtract complex numbers, we simply add the like terms, combining the real parts and combining the imaginary parts. 3.6 Complex Zeros 211 Example 3 Add 3 − 4i and 2 + 5i . Adding 3( − i)4 + 2( + i)5 , we add the real parts and the imaginary parts 3 + 2 − 4i + 5i 5 + i Try it Now 1. Subtract 2 + 5i from 3 − 4i .
    [Show full text]
  • CHAPTER 8. COMPLEX NUMBERS Why Do We Need Complex Numbers? First of All, a Simple Algebraic Equation Like X2 = −1 May Not Have
    CHAPTER 8. COMPLEX NUMBERS Why do we need complex numbers? First of all, a simple algebraic equation like x2 = 1 may not have a real solution. − Introducing complex numbers validates the so called fundamental theorem of algebra: every polynomial with a positive degree has a root. However, the usefulness of complex numbers is much beyond such simple applications. Nowadays, complex numbers and complex functions have been developed into a rich theory called complex analysis and be- come a power tool for answering many extremely difficult questions in mathematics and theoretical physics, and also finds its usefulness in many areas of engineering and com- munication technology. For example, a famous result called the prime number theorem, which was conjectured by Gauss in 1849, and defied efforts of many great mathematicians, was finally proven by Hadamard and de la Vall´ee Poussin in 1896 by using the complex theory developed at that time. A widely quoted statement by Jacques Hadamard says: “The shortest path between two truths in the real domain passes through the complex domain”. The basic idea for complex numbers is to introduce a symbol i, called the imaginary unit, which satisfies i2 = 1. − In doing so, x2 = 1 turns out to have a solution, namely x = i; (actually, there − is another solution, namely x = i). We remark that, sometimes in the mathematical − literature, for convenience or merely following tradition, an incorrect expression with correct understanding is used, such as writing √ 1 for i so that we can reserve the − letter i for other purposes. But we try to avoid incorrect usage as much as possible.
    [Show full text]
  • Lecture 15: Section 2.4 Complex Numbers Imaginary Unit Complex
    Lecture 15: Section 2.4 Complex Numbers Imaginary unit Complex numbers Operations with complex numbers Complex conjugate Rationalize the denominator Square roots of negative numbers Complex solutions of quadratic equations L15 - 1 Consider the equation x2 = −1. Def. The imaginary unit, i, is the number such that p i2 = −1 or i = −1 Power of i p i1 = −1 = i i2 = −1 i3 = i4 = i5 = i6 = i7 = i8 = Therefore, every integer power of i can be written as i; −1; −i; 1. In general, divide the exponent by 4 and rewrite: ex. 1) i85 2) (−i)85 3) i100 4) (−i)−18 L15 - 2 Def. Complex numbers are numbers of the form a + bi, where a and b are real numbers. a is the real part and b is the imaginary part of the complex number a + bi. a + bi is called the standard form of a complex number. ex. Write the number −5 as a complex number in standard form. NOTE: The set of real numbers is a subset of the set of complex numbers. If b = 0, the number a + 0i = a is a real number. If a = 0, the number 0 + bi = bi, is called a pure imaginary number. Equality of Complex Numbers a + bi = c + di if and only if L15 - 3 Operations with Complex Numbers Sum: (a + bi) + (c + di) = Difference: (a + bi) − (c + di) = Multiplication: (a + bi)(c + di) = NOTE: Use the distributive property (FOIL) and remember that i2 = −1. ex. Write in standard form: 1) 3(2 − 5i) − (4 − 6i) 2) (2 + 3i)(4 + 5i) L15 - 4 Complex Conjugates Def.
    [Show full text]
  • Operations with Complex Numbers Adding & Subtracting: Combine Like Terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1
    Name: __________________________________________________________ Date: _________________________ Period: _________ Chapter 2: Polynomial and Rational Functions Topic 1: Complex Numbers What is an imaginary number? What is a complex number? The imaginary unit is defined as 풊 = √−ퟏ A complex number is defined as the set of all numbers in the form of 푎 + 푏푖, where 푎 is the real component and 푏 is the coefficient of the imaginary component. An imaginary number is when the real component (푎) is zero. Checkpoint: Since 풊 = √−ퟏ Then 풊ퟐ = Operations with Complex Numbers Adding & Subtracting: Combine like terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1. (5 − 11푖) + (7 + 4푖) 2. (−5 + 7푖) − (−11 − 6푖) 3. (5 − 2푖) + (3 + 3푖) 4. (2 + 6푖) − (12 − 4푖) Multiplying: Just like polynomials, use the distributive property. Then, combine like terms and simplify powers of 푖. Remember! Multiplication does not require like terms. Every term gets distributed to every term. Examples: 1. 4푖(3 − 5푖) 2. (7 − 3푖)(−2 − 5푖) 3. 7푖(2 − 9푖) 4. (5 + 4푖)(6 − 7푖) 5. (3 + 5푖)(3 − 5푖) A note about conjugates: Recall that when multiplying conjugates, the middle terms will cancel out. With complex numbers, this becomes even simpler: (풂 + 풃풊)(풂 − 풃풊) = 풂ퟐ + 풃ퟐ Try again with the shortcut: (3 + 5푖)(3 − 5푖) Dividing: Just like polynomials and rational expressions, the denominator must be a rational number. Since complex numbers include imaginary components, these are not rational numbers. To remove a complex number from the denominator, we multiply numerator and denominator by the conjugate of the Remember! You can simplify first IF factors can be canceled.
    [Show full text]
  • Grade 6 Math Circles Fall 2019 - Oct 22/23 Exponentiation
    Faculty of Mathematics Centre for Education in Waterloo, Ontario Mathematics and Computing Grade 6 Math Circles Fall 2019 - Oct 22/23 Exponentiation Multiplication is often thought as repeated addition. Exercise: Evaluate the following using multiplication. 1 + 1 + 1 + 1 + 1 = 7 + 7 + 7 + 7 + 7 + 7 = 9 + 9 + 9 + 9 = Exponentiation is repeated multiplication. Exponentiation is useful in areas like: Computers, Population Increase, Business, Sales, Medicine, Earthquakes An exponent and base looks like the following: 43 The small number written above and to the right of the number is called the . The number underneath the exponent is called the . In the example, 43, the exponent is and the base is . 4 is raised to the third power. An exponent tells us to multiply the base by itself that number of times. In the example above,4 3 = 4 × 4 × 4. Once we write out the multiplication problem, we can easily evaluate the expression. Let's do this for the example we've been working with: 43 = 4 × 4 × 4 43 = 16 × 4 43 = 64 The main reason we use exponents is because it's a shorter way to write out big numbers. For example, we can express the following long expression: 2 × 2 × 2 × 2 × 2 × 2 as2 6 since 2 is being multiplied by itself 6 times. We say 2 is raised to the 6th power. 1 Exercise: Express each of the following using an exponent. 7 × 7 × 7 = 5 × 5 × 5 × 5 × 5 × 5 = 10 × 10 × 10 × 10 = 9 × 9 = 1 × 1 × 1 × 1 × 1 = 8 × 8 × 8 = Exercise: Evaluate.
    [Show full text]
  • Notes on Complex Numbers
    Computer Science C73 Fall 2021 Scarborough Campus University of Toronto Notes on complex numbers This is a brief review of complex numbers, to provide the relevant background that students need to follow the lectures on the Fast Fourier Transform (FFT). Students have previously encountered this material in their linear algebra courses. p • The \imaginary unit" i = −1. This is a quantity which, multiplied by itself, yields −1; i.e., i2 = −1. It is called \imaginary" because no real number has this property. • Standard representation of complex numbers. A complex number has the form z = a + bi, where a and b are real numbers; a is the \real part" of z and b is the \imaginary part" of z. We can think of z as the pair (a; b), and so complex numbers can be mapped to the Cartesian plane. Just as we can geometrically view the set of real numbers as the set of points along a straight line (the \real line"), we can view complex numbers as the set of points on a plane (the \complex plane"). So in a sense complex numbers are a way of \packaging" a pair of real numbers into a single quantity. • Equality between complex numbers. We define two complex numbers to be equal to each other if and only if they have the same real parts and the same imaginary parts. In other words, if viewed as points on the plane, the two numbers coincide. • Operations on complex numbers. We can perform addition and multiplication on compex num- bers. Let z = a + bi and z0 = a0 + b0i.
    [Show full text]
  • Contents 0 Complex Numbers
    Linear Algebra and Dierential Equations (part 0s): Complex Numbers (by Evan Dummit, 2016, v. 2.15) Contents 0 Complex Numbers 1 0.1 Arithmetic with Complex Numbers . 1 0.2 Complex Exponentials, Polar Form, and Euler's Theorem . 2 0 Complex Numbers In this supplementary chapter, we will outline basic properties along with some applications of complex numbers. 0.1 Arithmetic with Complex Numbers • Complex numbers may seem daunting, arbitrary, and strange when rst introduced, but they are (in fact) very useful in mathematics and elsewhere. Plus, they're just neat. • Some History: Complex numbers were rst encountered by mathematicians in the 1500s who were trying to write down general formulas for solving cubic equations (i.e., equations like x3 + x + 1 = 0), in analogy with the well-known formula for the solutions of a quadratic equation. It turned out that their formulas required manipulation of complex numbers, even when the cubics they were solving had three real roots. ◦ It took over 100 years before complex numbers were accepted as something mathematically legitimate: even negative numbers were sometimes suspect, so (as the reader may imagine) their square roots were even more questionable. ◦ The stigma is still evident even today in the terminology (imaginary numbers), and the fact that complex numbers are often glossed over or ignored in mathematics courses. ◦ Nonetheless, they are very real objects (no pun intended), and have a wide range of uses in mathematics, physics, and engineering. ◦ Among neat applications of complex numbers are deriving trigonometric identities with much less work (see later) and evaluating certain kinds of denite and indenite integrals.
    [Show full text]
  • Reihenalgebra: What Comes Beyond Exponentiation? M
    Reihenalgebra: What comes beyond exponentiation? M. M¨uller, [email protected] Abstract Addition, multiplication and exponentiation are classical oper- ations, successively defined by iteration. Continuing the iteration process, one gets an infinite hierarchy of higher-order operations, the first one sometimes called tetration a... aa a b = a b terms , ↑ o followed by pentation, hexation, etc. This paper gives a survey on some ideas, definitions and methods that the author has developed as a young pupil for the German Jugend forscht science fair. It is meant to be a collection of ideas, rather than a serious formal paper. In particular, a definition for negative integer exponents b is given for all higher-order operations, and a method is proposed that gives a very natural (but non-trivial) interpolation to real (and even complex) integers b for pentation and hexation and many other operations. It is an open question if this method can also be applied to tetration. 1 Introduction Multiplication of natural numbers is nothing but repeated addition, a + a + a + ... + a = a b . (1) · b terms | {z } Iterating multiplication, one gets another operation, namely exponentiation: b a a a ... a = a =: aˆb . (2) · · · · b terms | {z } Classically, this is it, and one stops here. But what if one continues the iteration process? One could define something like aˆaˆaˆ ... ˆa = a b . ↑ b terms | {z } But, wait a minute, in contrast to eq. (1) and (6), this definition will depend on the way we set brackets, i.e. on the order of exponentiation! Thus, we have to distinguish between the two canonical possibilities aaa..
    [Show full text]
  • LARGE PRIME NUMBERS This Writeup Is Modeled Closely on A
    LARGE PRIME NUMBERS This writeup is modeled closely on a writeup by Paul Garrett. See, for example, http://www-users.math.umn.edu/~garrett/crypto/overview.pdf 1. Fast Modular Exponentiation Given positive integers a, e, and n, the following algorithm quickly computes the reduced power ae % n. (Here x % n denotes the element of f0; ··· ; n − 1g that is congruent to x modulo n. Note that x % n is not an element of Z=nZ since such elements are cosets rather than coset representatives.) • (Initialize) Set (x; y; f) = (1; a; e). • (Loop) While f > 0, do as follows: { If f%2 = 0 then replace (x; y; f) by (x; y2 % n; f=2), { otherwise replace (x; y; f) by (xy % n; y; f − 1). • (Terminate) Return x. The algorithm is strikingly efficient both in speed and in space. Especially, the operations on f (halving it when it is even, decrementing it when it is odd) are very simple in binary. To see that the algorithm works, represent the exponent e in binary, say e = 2g + 2h + 2k; 0 ≤ g < h < k: The algorithm successively computes (1; a; 2g + 2h + 2k) g (1; a2 ; 1 + 2h−g + 2k−g) g g (a2 ; a2 ; 2h−g + 2k−g) g h (a2 ; a2 ; 1 + 2k−h) g h h (a2 +2 ; a2 ; 2k−h) g h k (a2 +2 ; a2 ; 1) g h k k (a2 +2 +2 ; a2 ; 0); and then it returns the first entry, which is indeed ae. Fast modular exponentiation is not only for computers. For example, to compute 237 % 149, proceed as follows, (1; 2; 37) ! (2; 2; 36) ! (2; 4; 18) ! (2; 16; 9) ! (32; 16; 8) ! (32; −42; 4) ! (32; −24; 2) ! (32; −20; 1) ! ( 105 ; −20; 0): 2.
    [Show full text]
  • The Strange Properties of the Infinite Power Tower Arxiv:1908.05559V1
    The strange properties of the infinite power tower An \investigative math" approach for young students Luca Moroni∗ (August 2019) Nevertheless, the fact is that there is nothing as dreamy and poetic, nothing as radical, subversive, and psychedelic, as mathematics. Paul Lockhart { \A Mathematician's Lament" Abstract In this article we investigate some "unexpected" properties of the \Infinite Power Tower 1" function (or \Tetration with infinite height"): . .. xx y = f(x) = xx where the \tower" of exponentiations has an infinite height. Apart from following an initial personal curiosity, the material collected here is also intended as a potential guide for teachers of high-school/undergraduate students interested in planning an activity of \investigative mathematics in the classroom", where the knowledge is gained through the active, creative and cooperative use of diversified mathematical tools (and some ingenuity). The activity should possibly be carried on with a laboratorial style, with no preclusions on the paths chosen and undertaken by the students and with little or no information imparted from the teacher's desk. The teacher should then act just as a guide and a facilitator. The infinite power tower proves to be particularly well suited to this kind of learning activity, as the student will have to face a challenging function defined through a rather uncommon infinite recursive process. They'll then have to find the right strategies to get around the trickiness of this function and achieve some concrete results, without the help of pre-defined procedures. The mathematical requisites to follow this path are: functions, properties of exponentials and logarithms, sequences, limits and derivatives.
    [Show full text]
  • Definition of a Vector Space
    i i “main” 2007/2/16 page 240 i i 240 CHAPTER 4 Vector Spaces 5. Verify the commutative law of addition for vectors in 8. Show with examples that if x is a vector in the first R4. quadrant of R2 (i.e., both coordinates of x are posi- tive) and y is a vector in the third quadrant of R2 (i.e., 6. Verify the associative law of addition for vectors in both coordinates of y are negative), then the sum x +y R4. could occur in any of the four quadrants. 7. Verify properties (4.1.5)–(4.1.8) for vectors in R3. 4.2 Definition of a Vector Space In the previous section, we showed how the set Rn of all ordered n-tuples of real num- bers, together with the addition and scalar multiplication operations defined on it, has the same algebraic properties as the familiar algebra of geometric vectors. We now push this abstraction one step further and introduce the idea of a vector space. Such an ab- straction will enable us to develop a mathematical framework for studying a broad class of linear problems, such as systems of linear equations, linear differential equations, and systems of linear differential equations, which have far-reaching applications in all areas of applied mathematics, science, and engineering. Let V be a nonempty set. For our purposes, it is useful to call the elements of V vectors and use the usual vector notation u, v,...,to denote these elements. For example, if V is the set of all 2 × 2 matrices, then the vectors in V are 2 × 2 matrices, whereas if V is the set of all positive integers, then the vectors in V are positive integers.
    [Show full text]