Student Understanding of Large Numbers and Powers: the Effect of Incorporating Historical Ideas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Enigmatic Number E: a History in Verse and Its Uses in the Mathematics Classroom
To appear in MAA Loci: Convergence The Enigmatic Number e: A History in Verse and Its Uses in the Mathematics Classroom Sarah Glaz Department of Mathematics University of Connecticut Storrs, CT 06269 [email protected] Introduction In this article we present a history of e in verse—an annotated poem: The Enigmatic Number e . The annotation consists of hyperlinks leading to biographies of the mathematicians appearing in the poem, and to explanations of the mathematical notions and ideas presented in the poem. The intention is to celebrate the history of this venerable number in verse, and to put the mathematical ideas connected with it in historical and artistic context. The poem may also be used by educators in any mathematics course in which the number e appears, and those are as varied as e's multifaceted history. The sections following the poem provide suggestions and resources for the use of the poem as a pedagogical tool in a variety of mathematics courses. They also place these suggestions in the context of other efforts made by educators in this direction by briefly outlining the uses of historical mathematical poems for teaching mathematics at high-school and college level. Historical Background The number e is a newcomer to the mathematical pantheon of numbers denoted by letters: it made several indirect appearances in the 17 th and 18 th centuries, and acquired its letter designation only in 1731. Our history of e starts with John Napier (1550-1617) who defined logarithms through a process called dynamical analogy [1]. Napier aimed to simplify multiplication (and in the same time also simplify division and exponentiation), by finding a model which transforms multiplication into addition. -
Grade 7/8 Math Circles the Scale of Numbers Introduction
Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7/8 Math Circles November 21/22/23, 2017 The Scale of Numbers Introduction Last week we quickly took a look at scientific notation, which is one way we can write down really big numbers. We can also use scientific notation to write very small numbers. 1 × 103 = 1; 000 1 × 102 = 100 1 × 101 = 10 1 × 100 = 1 1 × 10−1 = 0:1 1 × 10−2 = 0:01 1 × 10−3 = 0:001 As you can see above, every time the value of the exponent decreases, the number gets smaller by a factor of 10. This pattern continues even into negative exponent values! Another way of picturing negative exponents is as a division by a positive exponent. 1 10−6 = = 0:000001 106 In this lesson we will be looking at some famous, interesting, or important small numbers, and begin slowly working our way up to the biggest numbers ever used in mathematics! Obviously we can come up with any arbitrary number that is either extremely small or extremely large, but the purpose of this lesson is to only look at numbers with some kind of mathematical or scientific significance. 1 Extremely Small Numbers 1. Zero • Zero or `0' is the number that represents nothingness. It is the number with the smallest magnitude. • Zero only began being used as a number around the year 500. Before this, ancient mathematicians struggled with the concept of `nothing' being `something'. 2. Planck's Constant This is the smallest number that we will be looking at today other than zero. -
The Exponential Function
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 5-2006 The Exponential Function Shawn A. Mousel University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Mousel, Shawn A., "The Exponential Function" (2006). MAT Exam Expository Papers. 26. https://digitalcommons.unl.edu/mathmidexppap/26 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The Exponential Function Expository Paper Shawn A. Mousel In partial fulfillment of the requirements for the Masters of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor May 2006 Mousel – MAT Expository Paper - 1 One of the basic principles studied in mathematics is the observation of relationships between two connected quantities. A function is this connecting relationship, typically expressed in a formula that describes how one element from the domain is related to exactly one element located in the range (Lial & Miller, 1975). An exponential function is a function with the basic form f (x) = ax , where a (a fixed base that is a real, positive number) is greater than zero and not equal to 1. The exponential function is not to be confused with the polynomial functions, such as x 2. One way to recognize the difference between the two functions is by the name of the function. -
Simple Statements, Large Numbers
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2007 Simple Statements, Large Numbers Shana Streeks University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Streeks, Shana, "Simple Statements, Large Numbers" (2007). MAT Exam Expository Papers. 41. https://digitalcommons.unl.edu/mathmidexppap/41 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Master of Arts in Teaching (MAT) Masters Exam Shana Streeks In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Gordon Woodward, Advisor July 2007 Simple Statements, Large Numbers Shana Streeks July 2007 Page 1 Streeks Simple Statements, Large Numbers Large numbers are numbers that are significantly larger than those ordinarily used in everyday life, as defined by Wikipedia (2007). Large numbers typically refer to large positive integers, or more generally, large positive real numbers, but may also be used in other contexts. Very large numbers often occur in fields such as mathematics, cosmology, and cryptography. Sometimes people refer to numbers as being “astronomically large”. However, it is easy to mathematically define numbers that are much larger than those even in astronomy. We are familiar with the large magnitudes, such as million or billion. -
The Notion Of" Unimaginable Numbers" in Computational Number Theory
Beyond Knuth’s notation for “Unimaginable Numbers” within computational number theory Antonino Leonardis1 - Gianfranco d’Atri2 - Fabio Caldarola3 1 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] 2 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy 3 Department of Mathematics and Computer Science, University of Calabria Arcavacata di Rende, Italy e-mail: [email protected] Abstract Literature considers under the name unimaginable numbers any positive in- teger going beyond any physical application, with this being more of a vague description of what we are talking about rather than an actual mathemati- cal definition (it is indeed used in many sources without a proper definition). This simply means that research in this topic must always consider shortened representations, usually involving recursion, to even being able to describe such numbers. One of the most known methodologies to conceive such numbers is using hyper-operations, that is a sequence of binary functions defined recursively starting from the usual chain: addition - multiplication - exponentiation. arXiv:1901.05372v2 [cs.LO] 12 Mar 2019 The most important notations to represent such hyper-operations have been considered by Knuth, Goodstein, Ackermann and Conway as described in this work’s introduction. Within this work we will give an axiomatic setup for this topic, and then try to find on one hand other ways to represent unimaginable numbers, as well as on the other hand applications to computer science, where the algorith- mic nature of representations and the increased computation capabilities of 1 computers give the perfect field to develop further the topic, exploring some possibilities to effectively operate with such big numbers. -
Hyperoperations and Nopt Structures
Hyperoperations and Nopt Structures Alister Wilson Abstract (Beta version) The concept of formal power towers by analogy to formal power series is introduced. Bracketing patterns for combining hyperoperations are pictured. Nopt structures are introduced by reference to Nept structures. Briefly speaking, Nept structures are a notation that help picturing the seed(m)-Ackermann number sequence by reference to exponential function and multitudinous nestings thereof. A systematic structure is observed and described. Keywords: Large numbers, formal power towers, Nopt structures. 1 Contents i Acknowledgements 3 ii List of Figures and Tables 3 I Introduction 4 II Philosophical Considerations 5 III Bracketing patterns and hyperoperations 8 3.1 Some Examples 8 3.2 Top-down versus bottom-up 9 3.3 Bracketing patterns and binary operations 10 3.4 Bracketing patterns with exponentiation and tetration 12 3.5 Bracketing and 4 consecutive hyperoperations 15 3.6 A quick look at the start of the Grzegorczyk hierarchy 17 3.7 Reconsidering top-down and bottom-up 18 IV Nopt Structures 20 4.1 Introduction to Nept and Nopt structures 20 4.2 Defining Nopts from Nepts 21 4.3 Seed Values: “n” and “theta ) n” 24 4.4 A method for generating Nopt structures 25 4.5 Magnitude inequalities inside Nopt structures 32 V Applying Nopt Structures 33 5.1 The gi-sequence and g-subscript towers 33 5.2 Nopt structures and Conway chained arrows 35 VI Glossary 39 VII Further Reading and Weblinks 42 2 i Acknowledgements I’d like to express my gratitude to Wikipedia for supplying an enormous range of high quality mathematics articles. -
Standards Chapter 10: Exponents and Scientific Notation Key Terms
Chapter 10: Exponents and Scientific Notation Standards Common Core: 8.EE.1: Know and apply the properties of integer exponents to generate equivalent numerical Essential Questions Students will… expressions. How can you use exponents to Write expressions using write numbers? integer exponents. 8.EE.3: Use numbers expressed in the form of a single digit times an integer power of 10 to estimate How can you use inductive Evaluate expressions very large or very small quantities, and to express reasoning to observe patterns involving integer exponents. how many times as much one is than the other. and write general rules involving properties of Multiply powers with the 8.EE.4: Perform operations with numbers expressed exponents? same base. in scientific notation, including problems where both decimal and scientific notation are used. Use How can you divide two Find a power of a power. scientific notation and choose units of appropriate powers that have the same size for measurements of very large or very small base? Find a power of a product. quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been How can you evaluate a Divide powers with the same generated by technology. nonzero number with an base. exponent of zero? How can you evaluate a nonzero Simplify expressions number with a negative integer involving the quotient of Key Terms exponent? powers. A power is a product of repeated factors. How can you read numbers Evaluate expressions that are written in scientific involving numbers with zero The base of a power is the common factor. -
Ackermann and the Superpowers
Ackermann and the superpowers Ant´onioPorto and Armando B. Matos Original version 1980, published in \ACM SIGACT News" Modified in October 20, 2012 Modified in January 23, 2016 (working paper) Abstract The Ackermann function a(m; n) is a classical example of a total re- cursive function which is not primitive recursive. It grows faster than any primitive recursive function. It is usually defined by a general recurrence together with two \boundary" conditions. In this paper we obtain a closed form of a(m; n), which involves the Knuth superpower notation, namely m−2 a(m; n) = 2 " (n + 3) − 3. Generalized Ackermann functions, that is functions satisfying only the general recurrence and one of the bound- ary conditions are also studied. In particular, we show that the function m−2 2 " (n + 2) − 2 also belongs to the \Ackermann class". 1 Introduction and definitions The \arrow" or \superpower" notation has been introduced by Knuth [1] as a convenient way of expressing very large numbers. It is based on the infinite sequence of operators: +, ∗, ",... We shall see that the arrow notation is closely related to the Ackermann function (see, for instance, [2]). 1.1 The Superpowers Let us begin with the following sequence of integer operators, where all the operators are right associative. a × n = a + a + ··· + a (n a's) a " n = a × a × · · · × a (n a's) 2 a " n = a " a "···" a (n a's) m In general we define a " n as 1 Definition 1 m m−1 m−1 m−1 a " n = a " a "··· " a | {z } n a's m The operator " is not associative for m ≥ 1. -
Grade 6 Math Circles Fall 2019 - Oct 22/23 Exponentiation
Faculty of Mathematics Centre for Education in Waterloo, Ontario Mathematics and Computing Grade 6 Math Circles Fall 2019 - Oct 22/23 Exponentiation Multiplication is often thought as repeated addition. Exercise: Evaluate the following using multiplication. 1 + 1 + 1 + 1 + 1 = 7 + 7 + 7 + 7 + 7 + 7 = 9 + 9 + 9 + 9 = Exponentiation is repeated multiplication. Exponentiation is useful in areas like: Computers, Population Increase, Business, Sales, Medicine, Earthquakes An exponent and base looks like the following: 43 The small number written above and to the right of the number is called the . The number underneath the exponent is called the . In the example, 43, the exponent is and the base is . 4 is raised to the third power. An exponent tells us to multiply the base by itself that number of times. In the example above,4 3 = 4 × 4 × 4. Once we write out the multiplication problem, we can easily evaluate the expression. Let's do this for the example we've been working with: 43 = 4 × 4 × 4 43 = 16 × 4 43 = 64 The main reason we use exponents is because it's a shorter way to write out big numbers. For example, we can express the following long expression: 2 × 2 × 2 × 2 × 2 × 2 as2 6 since 2 is being multiplied by itself 6 times. We say 2 is raised to the 6th power. 1 Exercise: Express each of the following using an exponent. 7 × 7 × 7 = 5 × 5 × 5 × 5 × 5 × 5 = 10 × 10 × 10 × 10 = 9 × 9 = 1 × 1 × 1 × 1 × 1 = 8 × 8 × 8 = Exercise: Evaluate. -
Infinitesimals
Infinitesimals: History & Application Joel A. Tropp Plan II Honors Program, WCH 4.104, The University of Texas at Austin, Austin, TX 78712 Abstract. An infinitesimal is a number whose magnitude ex- ceeds zero but somehow fails to exceed any finite, positive num- ber. Although logically problematic, infinitesimals are extremely appealing for investigating continuous phenomena. They were used extensively by mathematicians until the late 19th century, at which point they were purged because they lacked a rigorous founda- tion. In 1960, the logician Abraham Robinson revived them by constructing a number system, the hyperreals, which contains in- finitesimals and infinitely large quantities. This thesis introduces Nonstandard Analysis (NSA), the set of techniques which Robinson invented. It contains a rigorous de- velopment of the hyperreals and shows how they can be used to prove the fundamental theorems of real analysis in a direct, natural way. (Incredibly, a great deal of the presentation echoes the work of Leibniz, which was performed in the 17th century.) NSA has also extended mathematics in directions which exceed the scope of this thesis. These investigations may eventually result in fruitful discoveries. Contents Introduction: Why Infinitesimals? vi Chapter 1. Historical Background 1 1.1. Overview 1 1.2. Origins 1 1.3. Continuity 3 1.4. Eudoxus and Archimedes 5 1.5. Apply when Necessary 7 1.6. Banished 10 1.7. Regained 12 1.8. The Future 13 Chapter 2. Rigorous Infinitesimals 15 2.1. Developing Nonstandard Analysis 15 2.2. Direct Ultrapower Construction of ∗R 17 2.3. Principles of NSA 28 2.4. Working with Hyperreals 32 Chapter 3. -
Meta-Complex Numbers Dual Numbers
Meta- Complex Numbers Robert Andrews Complex Numbers Meta-Complex Numbers Dual Numbers Split- Complex Robert Andrews Numbers Visualizing Four- Dimensional Surfaces October 29, 2014 Table of Contents Meta- Complex Numbers Robert Andrews 1 Complex Numbers Complex Numbers Dual Numbers 2 Dual Numbers Split- Complex Numbers 3 Split-Complex Numbers Visualizing Four- Dimensional Surfaces 4 Visualizing Four-Dimensional Surfaces Table of Contents Meta- Complex Numbers Robert Andrews 1 Complex Numbers Complex Numbers Dual Numbers 2 Dual Numbers Split- Complex Numbers 3 Split-Complex Numbers Visualizing Four- Dimensional Surfaces 4 Visualizing Four-Dimensional Surfaces Quadratic Equations Meta- Complex Numbers Robert Andrews Recall that the roots of a quadratic equation Complex Numbers 2 Dual ax + bx + c = 0 Numbers Split- are given by the quadratic formula Complex Numbers p 2 Visualizing −b ± b − 4ac Four- x = Dimensional 2a Surfaces The quadratic formula gives the roots of this equation as p x = ± −1 This is a problem! There aren't any real numbers whose square is negative! Quadratic Equations Meta- Complex Numbers Robert Andrews What if we wanted to solve the equation Complex Numbers x2 + 1 = 0? Dual Numbers Split- Complex Numbers Visualizing Four- Dimensional Surfaces This is a problem! There aren't any real numbers whose square is negative! Quadratic Equations Meta- Complex Numbers Robert Andrews What if we wanted to solve the equation Complex Numbers x2 + 1 = 0? Dual Numbers The quadratic formula gives the roots of this equation as Split- -
Reihenalgebra: What Comes Beyond Exponentiation? M
Reihenalgebra: What comes beyond exponentiation? M. M¨uller, [email protected] Abstract Addition, multiplication and exponentiation are classical oper- ations, successively defined by iteration. Continuing the iteration process, one gets an infinite hierarchy of higher-order operations, the first one sometimes called tetration a... aa a b = a b terms , ↑ o followed by pentation, hexation, etc. This paper gives a survey on some ideas, definitions and methods that the author has developed as a young pupil for the German Jugend forscht science fair. It is meant to be a collection of ideas, rather than a serious formal paper. In particular, a definition for negative integer exponents b is given for all higher-order operations, and a method is proposed that gives a very natural (but non-trivial) interpolation to real (and even complex) integers b for pentation and hexation and many other operations. It is an open question if this method can also be applied to tetration. 1 Introduction Multiplication of natural numbers is nothing but repeated addition, a + a + a + ... + a = a b . (1) · b terms | {z } Iterating multiplication, one gets another operation, namely exponentiation: b a a a ... a = a =: aˆb . (2) · · · · b terms | {z } Classically, this is it, and one stops here. But what if one continues the iteration process? One could define something like aˆaˆaˆ ... ˆa = a b . ↑ b terms | {z } But, wait a minute, in contrast to eq. (1) and (6), this definition will depend on the way we set brackets, i.e. on the order of exponentiation! Thus, we have to distinguish between the two canonical possibilities aaa..