CHAPTER 8. COMPLEX NUMBERS Why Do We Need Complex Numbers? First of All, a Simple Algebraic Equation Like X2 = −1 May Not Have

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER 8. COMPLEX NUMBERS Why Do We Need Complex Numbers? First of All, a Simple Algebraic Equation Like X2 = −1 May Not Have CHAPTER 8. COMPLEX NUMBERS Why do we need complex numbers? First of all, a simple algebraic equation like x2 = 1 may not have a real solution. − Introducing complex numbers validates the so called fundamental theorem of algebra: every polynomial with a positive degree has a root. However, the usefulness of complex numbers is much beyond such simple applications. Nowadays, complex numbers and complex functions have been developed into a rich theory called complex analysis and be- come a power tool for answering many extremely difficult questions in mathematics and theoretical physics, and also finds its usefulness in many areas of engineering and com- munication technology. For example, a famous result called the prime number theorem, which was conjectured by Gauss in 1849, and defied efforts of many great mathematicians, was finally proven by Hadamard and de la Vall´ee Poussin in 1896 by using the complex theory developed at that time. A widely quoted statement by Jacques Hadamard says: “The shortest path between two truths in the real domain passes through the complex domain”. The basic idea for complex numbers is to introduce a symbol i, called the imaginary unit, which satisfies i2 = 1. − In doing so, x2 = 1 turns out to have a solution, namely x = i; (actually, there − is another solution, namely x = i). We remark that, sometimes in the mathematical − literature, for convenience or merely following tradition, an incorrect expression with correct understanding is used, such as writing √ 1 for i so that we can reserve the − letter i for other purposes. But we try to avoid incorrect usage as much as possible. So here we use that letter “i” to stand nothing other than the imaginary unit. A general complex number is of the form c = a + bi (or c = a + ib), where a, b are real numbers. We call a the real part of c and b the imaginary part of c. Sometimes they are denoted by Re c and Im c respectively. Question 8.1. What is wrong by saying that “√2 is a real number and hence it is not a complex number”? Addition and multiplication of complex numbers can be carried out in a straightfor- 1 ward manner, keeping in mind that i2 = 1. Indeed, given complex numbers c = a +b i − 1 1 1 and c2 = a2 + b2i, the sum c1 + c1 and the product c1c2 are given by c1 + c2 =(a1 + b1i)+(a2 + b2i)=(a1 + a1)+(b1 + b2)i 2 c1c2 =(a1 + b1i)(a2 + b2i)= a1a2 + b1b2i + a1b2i + a2b1i =(a a b b )+(a b + a b )i 1 2 − 1 2 1 2 2 1 To give a quick example, letting c = 1 2i, c = 2+3i, we have c + c = 3+ i, 1 − 2 1 2 c c = 1 5i and c c =8+ i. 1 − 2 − − 1 2 Exercise 8.2. In each of the following cases, find c + c , c c and c c . Present 1 2 1 − 2 1 2 your answers as simple as possible. (a) c = i, c = 1 i; (b) c = 2+√3i, c = 2 √3i; 1 2 − 1 2 − (c) c =1+ i, c 1 i. 1 2 − − Exercise 8.3. Find the product c1c2 of c1 = cos α1 +i sin α1 and c2 = cos α2 +i sin α2. Present your answers as simple as possible. The expression a + bi is called the Cartesian representation of c, (vs the polar representation described in the future), since geometrically it is represented by the point or the vector in the Cartesian xy–plane with coordinates (a, b). (See the following figure.) The magnitude of the vector representing c is called the absolute value or the modulus of c, and is denoted by c . Thus, if c = a + bi, then c = √a2 + b2: | | | | a + bi = √a2 + b2 (8.1) | | The xy–plane for representing complex numbers is called the complex plane or Argand plane and is denoted by C. An alternative way to write “c is a complex number” is “c C”, read as “c belongs to C”. ∈ 2 Every complex number z has a “twin sister” z, called the complex conjugate of z. The twins z and z do not quite have exactly the same look. They are more like mirror images to each other. The complex conjugate of c = a + bi, denoted by c, is defined to be a bi: − a + bi = a bi. (8.2) − For examples, 2 + 3i = 2 3i, i = i, 2 = 2, 1 i =1+ i, etc. − − − Question 8.4. In each of the following cases, what is the complex conjugate z and the modulus z of the given complex number z? (a) z = i, (b) z = 3, (c) z =4+3i | | − − (d) z = cos θ + i sin θ. Notice that, for a complex number z = a + bi, we have zz =(a + bi)(a bi)= a2 b2i2 = a2 + b2 = z 2. − − | | So z 2 = zz. (8.3) | | This identity, which resembles v 2 = v v, is one of the most useful facts about complex | | · numbers, despite of its simplicity. Usual algebraic identities such as uv = vu (commutative law), (u + v)w = uw + vw (distributive Law) (8.4) 3 hold for complex numbers u, v and w. Furthermore, taking complex conjugates “goes along” with algebraic operations well: z + w = z + w, zw = z w, z/w = z/w. (8.5) Exercise 8.5. Check all identities in (8.4) and (8.5). Example. We are asked to verify the identity zw = z w (8.6) | | | || | for two complex numbers z and w. Notice that zw = z w is equivalent to | | | || | zw 2 = z 2 w 2 | | | | | | and hence it suffices to verify the latter. By (8.3), we have zw 2 = zw zw = zw z w = z zw w = z 2 w 2, | | | | | | which is what we want to show. Exercise 8.6. Use (8.6) to deduce (a2 + b2)(c2 + d2)=(ac + bd)2 +(ad bc)2, − where a, b, c, d are arbitrary real numbers. Which integers u and v satisfy u2 + v2 = (92 + 102)(102 + 112)? Exercise 8.7. Verify the following “parallelogram identity” z + w 2 + z w 2 = 2 z 2 + 2 w 2 | | | − | | | | | for arbitrary complex numbers z and w. An important use of complex conjugation is to divide complex numbers. Given com- plex numbers z and w with z = 0, to divide w by z, we multiply both the denominator 6 and the numerator of w/z by z, the complex conjugate of the denominator, to obtain w wz wz = = z zz z 2 | | 4 in order to convert the denominator of w/z into a real number. Then we can divide the real part and the imaginary part of wz by the real number z 2. For example, to divide | | 1 i by 1+ i, we proceed as follows, by noticing that the complex conjugateof 1+ i − is 1 i: − 1 i (1 i)(1 i) 1+ i2 2i − = − − = − = i. 1+ i (1 + i)(1 i) 11 + 12 − − In division of complex numbers, it is important to recognize the complex conjugate z of z = x + yi and to use zz = z 2 = x2 + y2. | | Exercise 8.8. Perform each of the following complex division: 8+ i 5+ i 75 + 223i cos θ + i sin θ (a) (b) (c) (d) . 2 i 3 2i 63 + 17i cos θ i sin θ − − − Example. We are asked to check that if z = 1 and if | | z a w = − , 1 a z − where a is any fixed complex number with a < 1, then w = 1. First, let us notice | | | | that w = 1 is the same as w 2 = 1, which is the same as ww = 1, (in view of (8.3) | | | | above). This leads us to compute w w. Now z a z a zz za az + aa 1 za az + aa w w = − − = − − = − − = 1, 1 a z 1 az 1 az az + az az 1 az za + aa − − − − − − in view of zz = z 2 = 1. Done. | | Problem 8.9. Verify that, if a is a real number with 0 <a< 1, then z a | − | = a z a 1 | − − | for all complex numbers z with z = 1. | | The real part of a complex number z, denoted by Re z, is given by z + z Re z = (8.7) 2 A complex number z is real if and only if z = z. Exercise 8.10. Check the last statement as well as identity (8.6). 5 Exercise 8.11. Verify that, if z =1 and z = 1, then | | 6 z + 1 w = i z 1 − is a real number. Take any complex number z = x+iy, with x as its real part and y as its imaginary part. Write r for the modulus of z: r = z = x2 + y2. Let θ be the angle between | | the vector representing z; (see the next figure). Thenp x = r cos θ and y = r sin θ. Hence z = r cos θ + ir sin θ, or z = r(cos θ + i sin θ). (8.8) The last expression is called the polar form of z. Multiplication of complex numbers is especially revealing when expressed in polar form. Let z1 = r1(cos θ1 + i sin θ1), z2 = r2(cos θ2 + i sin θ2) be complex numbers in polar form. Then z1z2 = r1r2(cos θ1 + i sin θ1)(cos θ2 + i sin θ2) = r r ((cos θ cos θ sin θ sin θ )+ i(cos θ sin θ + sin θ cos θ )) 1 2 1 2 − 1 2 1 2 1 2 = r1r2(cos(θ1 + θ2)+ i sin(θ1 + θ2)). (8.9) Here we have used the addition formula for sine and cosine in trigonometry cos(α + β) = cos α cos β sin α sin β, sin(α + β) = sin α cos β + cos α sin β.
Recommended publications
  • Section 3.6 Complex Zeros
    210 Chapter 3 Section 3.6 Complex Zeros When finding the zeros of polynomials, at some point you're faced with the problem x 2 −= 1. While there are clearly no real numbers that are solutions to this equation, leaving things there has a certain feel of incompleteness. To address that, we will need utilize the imaginary unit, i. Imaginary Number i The most basic complex number is i, defined to be i = −1 , commonly called an imaginary number . Any real multiple of i is also an imaginary number. Example 1 Simplify − 9 . We can separate − 9 as 9 −1. We can take the square root of 9, and write the square root of -1 as i. − 9 = 9 −1 = 3i A complex number is the sum of a real number and an imaginary number. Complex Number A complex number is a number z = a + bi , where a and b are real numbers a is the real part of the complex number b is the imaginary part of the complex number i = −1 Arithmetic on Complex Numbers Before we dive into the more complicated uses of complex numbers, let’s make sure we remember the basic arithmetic involved. To add or subtract complex numbers, we simply add the like terms, combining the real parts and combining the imaginary parts. 3.6 Complex Zeros 211 Example 3 Add 3 − 4i and 2 + 5i . Adding 3( − i)4 + 2( + i)5 , we add the real parts and the imaginary parts 3 + 2 − 4i + 5i 5 + i Try it Now 1. Subtract 2 + 5i from 3 − 4i .
    [Show full text]
  • Lesson 6: Trigonometric Identities
    1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as a2 − b2 =(a − b)(a + b)or a3 + b3 =(a + b)(a2 − ab + b2): Identities such as these are used to simplifly algebriac expressions and to solve alge- a3 + b3 briac equations. For example, using the third identity above, the expression a + b simpliflies to a2 − ab + b2: The first identiy verifies that the equation (a2 − b2)=0is true precisely when a = b: The formulas or trigonometric identities introduced in this lesson constitute an integral part of the study and applications of trigonometry. Such identities can be used to simplifly complicated trigonometric expressions. This lesson contains several examples and exercises to demonstrate this type of procedure. Trigonometric identities can also used solve trigonometric equations. Equations of this type are introduced in this lesson and examined in more detail in Lesson 7. For student’s convenience, the identities presented in this lesson are sumarized in Appendix A 2. The Elementary Identities Let (x; y) be the point on the unit circle centered at (0; 0) that determines the angle t rad : Recall that the definitions of the trigonometric functions for this angle are sin t = y tan t = y sec t = 1 x y : cos t = x cot t = x csc t = 1 y x These definitions readily establish the first of the elementary or fundamental identities given in the table below. For obvious reasons these are often referred to as the reciprocal and quotient identities.
    [Show full text]
  • Lecture 15: Section 2.4 Complex Numbers Imaginary Unit Complex
    Lecture 15: Section 2.4 Complex Numbers Imaginary unit Complex numbers Operations with complex numbers Complex conjugate Rationalize the denominator Square roots of negative numbers Complex solutions of quadratic equations L15 - 1 Consider the equation x2 = −1. Def. The imaginary unit, i, is the number such that p i2 = −1 or i = −1 Power of i p i1 = −1 = i i2 = −1 i3 = i4 = i5 = i6 = i7 = i8 = Therefore, every integer power of i can be written as i; −1; −i; 1. In general, divide the exponent by 4 and rewrite: ex. 1) i85 2) (−i)85 3) i100 4) (−i)−18 L15 - 2 Def. Complex numbers are numbers of the form a + bi, where a and b are real numbers. a is the real part and b is the imaginary part of the complex number a + bi. a + bi is called the standard form of a complex number. ex. Write the number −5 as a complex number in standard form. NOTE: The set of real numbers is a subset of the set of complex numbers. If b = 0, the number a + 0i = a is a real number. If a = 0, the number 0 + bi = bi, is called a pure imaginary number. Equality of Complex Numbers a + bi = c + di if and only if L15 - 3 Operations with Complex Numbers Sum: (a + bi) + (c + di) = Difference: (a + bi) − (c + di) = Multiplication: (a + bi)(c + di) = NOTE: Use the distributive property (FOIL) and remember that i2 = −1. ex. Write in standard form: 1) 3(2 − 5i) − (4 − 6i) 2) (2 + 3i)(4 + 5i) L15 - 4 Complex Conjugates Def.
    [Show full text]
  • Operations with Complex Numbers Adding & Subtracting: Combine Like Terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1
    Name: __________________________________________________________ Date: _________________________ Period: _________ Chapter 2: Polynomial and Rational Functions Topic 1: Complex Numbers What is an imaginary number? What is a complex number? The imaginary unit is defined as 풊 = √−ퟏ A complex number is defined as the set of all numbers in the form of 푎 + 푏푖, where 푎 is the real component and 푏 is the coefficient of the imaginary component. An imaginary number is when the real component (푎) is zero. Checkpoint: Since 풊 = √−ퟏ Then 풊ퟐ = Operations with Complex Numbers Adding & Subtracting: Combine like terms (풂 + 풃풊) + (풄 + 풅풊) = (풂 + 풄) + (풃 + 풅)풊 Examples: 1. (5 − 11푖) + (7 + 4푖) 2. (−5 + 7푖) − (−11 − 6푖) 3. (5 − 2푖) + (3 + 3푖) 4. (2 + 6푖) − (12 − 4푖) Multiplying: Just like polynomials, use the distributive property. Then, combine like terms and simplify powers of 푖. Remember! Multiplication does not require like terms. Every term gets distributed to every term. Examples: 1. 4푖(3 − 5푖) 2. (7 − 3푖)(−2 − 5푖) 3. 7푖(2 − 9푖) 4. (5 + 4푖)(6 − 7푖) 5. (3 + 5푖)(3 − 5푖) A note about conjugates: Recall that when multiplying conjugates, the middle terms will cancel out. With complex numbers, this becomes even simpler: (풂 + 풃풊)(풂 − 풃풊) = 풂ퟐ + 풃ퟐ Try again with the shortcut: (3 + 5푖)(3 − 5푖) Dividing: Just like polynomials and rational expressions, the denominator must be a rational number. Since complex numbers include imaginary components, these are not rational numbers. To remove a complex number from the denominator, we multiply numerator and denominator by the conjugate of the Remember! You can simplify first IF factors can be canceled.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Section 5.4 the Other Trigonometric Functions 333
    Section 5.4 The Other Trigonometric Functions 333 Section 5.4 The Other Trigonometric Functions In the previous section, we defined the sine and cosine functions as ratios of the sides of a right triangle in a circle. Since the triangle has 3 sides there are 6 possible combinations of ratios. While the sine and cosine are the two prominent ratios that can be formed, there are four others, and together they define the 6 trigonometric functions. Tangent, Secant, Cosecant, and Cotangent Functions For the point (x, y) on a circle of radius r at an angle of θ , we can define four additional important functions as the ratios of the (x, y) sides of the corresponding triangle: y r The tangent function: tan(θ ) = y x θ r The secant function: sec(θ ) = x x r The cosecant function: csc(θ ) = y x The cotangent function: cot(θ ) = y Geometrically, notice that the definition of tangent corresponds with the slope of the line segment between the origin (0, 0) and the point (x, y). This relationship can be very helpful in thinking about tangent values. You may also notice that the ratios defining the secant, cosecant, and cotangent are the reciprocals of the ratios defining the cosine, sine, and tangent functions, respectively. Additionally, notice that using our results from the last section, y r sin(θ ) sin(θ ) tan(θ ) = = = x r cos(θ ) cos(θ ) Applying this concept to the other trig functions we can state the other reciprocal identities. Identities The other four trigonometric functions can be related back to the sine and cosine functions using these basic relationships: sin(θ ) 1 1 1 cos(θ ) tan(θ ) = sec(θ ) = csc(θ ) = cot(θ ) = = cos(θ ) cos(θ ) sin(θ ) tan(θθ ) sin( ) 334 Chapter 5 These relationships are called identities.
    [Show full text]
  • Complex Numbers Euler's Identity
    2.003 Fall 2003 Complex Exponentials Complex Numbers ² Complex numbers have both real and imaginary components. A complex number r may be expressed in Cartesian or Polar forms: r = a + jb (cartesian) = jrjeÁ (polar) The following relationships convert from cartesian to polar forms: p Magnitude jrj = a2 + b2 ( ¡1 b tan a a > 0 Angle Á = ¡1 b tan a § ¼ a < 0 ² Complex numbers can be plotted on the complex plane in either Cartesian or Polar forms Fig.1. Figure 1: Complex plane plots: Cartesian and Polar forms Euler's Identity Euler's Identity states that ejÁ = cos Á + j sin Á 1 2.003 Fall 2003 Complex Exponentials This can be shown by taking the series expansion of sin, cos, and e. Á3 Á5 Á7 sin Á = Á ¡ + ¡ + ::: 3! 5! 7! Á2 Á4 Á6 cos Á = 1 ¡ + ¡ + ::: 2! 4! 6! Á2 Á3 Á4 Á5 ejÁ = 1 + jÁ ¡ ¡ j + + j + ::: 2! 3! 4! 5! Combining (Á)2 Á3 Á4 Á5 cos Á + j sin Á = 1 + jÁ ¡ ¡ j + + j + ::: 2! 3! 4! 5! = ejÁ Complex Exponentials ² Consider the case where Á becomes a function of time increasing at a constant rate ! Á(t) = !t: then r(t) becomes r(t) = ej!t Plotting r(t) on the complex plane traces out a circle with a constant radius = 1 (Fig. 2 ). Plotting the real and imaginary components of r(t) vs time (Fig. 3 ), we see that the real component is Refr(t)g = cos !t while the imaginary component is Imfr(t)g = sin !t. ² Consider the variable r(t) which is de¯ned as follows: r(t) = est where s is a complex number s = σ + j! 2 2.003 Fall 2003 Complex Exponentials t Figure 2: Complex plane plots: r(t) = ej!t t 0 t Re[ r(t) ]=cos t 0 t Im[ r(t) ]=sin t Figure 3: Real and imaginary components of r(t) vs time ² What path does r(t) trace out in the complex plane ? Consider r(t) = est = e(σ+j!)t = eσt ¢ ej!t One can look at this as a time varying magnitude (eσt) multiplying a point rotating on the unit circle at frequency ! via the function ej!t.
    [Show full text]
  • Intervening in Student Identity in Mathematics Education: an Attempt to Increase Motivation to Learn Mathematics
    INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION e-ISSN: 1306-3030. 2020, Vol. 15, No. 3, em0597 OPEN ACCESS https://doi.org/10.29333/iejme/8326 Intervening in Student Identity in Mathematics Education: An Attempt to Increase Motivation to Learn Mathematics Kayla Heffernan 1*, Steven Peterson 2, Avi Kaplan 3, Kristie J. Newton 4 1 Department of Mathematics, University of Pittsburgh at Greensburg, 150 Finoli Drive, Greensburg, PA 15601, USA 2 Haverford High School, 200 Mill Road, Havertown, PA 19083, USA 3 Department of Psychological Studies in Education, Temple University, 1301 Cecil B. Moore Avenue, Philadelphia, PA 19122, USA 4 Department of Teaching and Learning, Temple University, 1301 Cecil B. Moore Avenue, Philadelphia, PA 19122, USA * CORRESPONDENCE: [email protected] ABSTRACT Students’ relationships with mathematics continuously remain problematic, and researchers have begun to look at this issue through the lens of identity. In this article, the researchers discuss identity in education research, specifically in mathematics classrooms, and break down the various perspective on identity. A review of recent literature that explicitly invokes identity as a construct in intervention studies is presented, with a devoted attention to research on identity interventions in mathematics classrooms categorized based on the various perspectives of identity. Across perspectives, the review demonstrates that mathematics identities motivate action and that mathematics educators can influence students’ mathematical identities. The purpose of this paper is to help readers, researchers, and educators understand the various perspectives on identity, understand that identity can be influenced, and learn how researchers and educators have thus far, and continue to study identity interventions in mathematics classrooms.
    [Show full text]
  • On Orders of Elements in Quasigroups
    BULETINUL ACADEMIEI DE S¸TIINT¸E A REPUBLICII MOLDOVA. MATEMATICA Number 2(45), 2004, Pages 49–54 ISSN 1024–7696 On orders of elements in quasigroups Victor Shcherbacov Abstract. We study the connection between the existence in a quasigroupof(m, n)- elements for some natural numbers m, n and properties of this quasigroup. The special attention is given for case of (m, n)-linear quasigroups and (m, n)-T-quasigroups. Mathematics subject classification: 20N05. Keywords and phrases: Quasigroup, medial quasigroup, T-quasigroup, order of an element of a quasigroup. 1 Introduction We shall use basic terms and concepts from books [1, 2, 11]. We recall that a binary groupoid (Q, A) with n-ary operation A such that in the equality A(x1,x2)= x3 knowledge of any two elements of x1,x2,x3 the uniquely specifies the remaining one is called a binary quasigroup [3]. It is possible to define a binary quasigroup also as follows. Definition 1. A binary groupoid (Q, ◦) is called a quasigroup if for any element (a, b) of the set Q2 there exist unique solutions x,y ∈ Q to the equations x ◦ a = b and a ◦ y = b [1]. An element f(b) of a quasigroup (Q, ·) is called a left local identity element of an element b ∈ Q, if f(b) · b = b. An element e(b) of a quasigroup (Q, ·) is called a right local identity element of an element b ∈ Q, if b · e(b)= b. The fact that an element e is a left (right) identity element of a quasigroup (Q, ·) means that e = f(x) for all x ∈ Q (respectively, e = e(x) for all x ∈ Q).
    [Show full text]
  • Euler's Formula: 1 Powers of E: First Pass
    Euler’s Formula: The purpose of these notes is to explain Euler’s famous formula eiθ = cos(θ)+ i sin(θ). (1) 1 Powers of e: First Pass Euler’s equation is complicated because it involves raising a number to an imaginary power. Let’s build up to this slowly. Integer Powers: It’s pretty clear that e2 = e e and e3 = e e e, × × × and so on. For any positive integer p, we have ep = e ... e, a total of p times. For negative integers, the definition is also pretty× clear.× For instance e−2 =1/(e e) and e−3 =1/(e e e). And so on. × × × Fractional Powers: How would you define e2/3. This really means the cube root of e e. So e2/3 is the number y such that y y y = e e. Using this system, it× is pretty clear that you can make good sense× × of ep/q×where p/q is any positive fraction. You can make sense of negative fractions using the formula e−p/q =1/ep/q. Real Powers: If a is a positive real number, then you could define ea to pn/qn be the limit of expressions of the form e , where pn/qn is a sequence of rational numbers converging to a. To give an example of what I’m talking about, let a = √2. 17/12 is close to √2 and e17/12 =4.1233529... • 41/29 is closer to √2 and e41/29 =4.111521... • 577/408 is closer to √2 and e577/408 =4.113259 • 1393/985 is closer to √2 and e1393/985 =4.1132488.
    [Show full text]
  • Notes on Complex Numbers
    Computer Science C73 Fall 2021 Scarborough Campus University of Toronto Notes on complex numbers This is a brief review of complex numbers, to provide the relevant background that students need to follow the lectures on the Fast Fourier Transform (FFT). Students have previously encountered this material in their linear algebra courses. p • The \imaginary unit" i = −1. This is a quantity which, multiplied by itself, yields −1; i.e., i2 = −1. It is called \imaginary" because no real number has this property. • Standard representation of complex numbers. A complex number has the form z = a + bi, where a and b are real numbers; a is the \real part" of z and b is the \imaginary part" of z. We can think of z as the pair (a; b), and so complex numbers can be mapped to the Cartesian plane. Just as we can geometrically view the set of real numbers as the set of points along a straight line (the \real line"), we can view complex numbers as the set of points on a plane (the \complex plane"). So in a sense complex numbers are a way of \packaging" a pair of real numbers into a single quantity. • Equality between complex numbers. We define two complex numbers to be equal to each other if and only if they have the same real parts and the same imaginary parts. In other words, if viewed as points on the plane, the two numbers coincide. • Operations on complex numbers. We can perform addition and multiplication on compex num- bers. Let z = a + bi and z0 = a0 + b0i.
    [Show full text]
  • Contents 0 Complex Numbers
    Linear Algebra and Dierential Equations (part 0s): Complex Numbers (by Evan Dummit, 2016, v. 2.15) Contents 0 Complex Numbers 1 0.1 Arithmetic with Complex Numbers . 1 0.2 Complex Exponentials, Polar Form, and Euler's Theorem . 2 0 Complex Numbers In this supplementary chapter, we will outline basic properties along with some applications of complex numbers. 0.1 Arithmetic with Complex Numbers • Complex numbers may seem daunting, arbitrary, and strange when rst introduced, but they are (in fact) very useful in mathematics and elsewhere. Plus, they're just neat. • Some History: Complex numbers were rst encountered by mathematicians in the 1500s who were trying to write down general formulas for solving cubic equations (i.e., equations like x3 + x + 1 = 0), in analogy with the well-known formula for the solutions of a quadratic equation. It turned out that their formulas required manipulation of complex numbers, even when the cubics they were solving had three real roots. ◦ It took over 100 years before complex numbers were accepted as something mathematically legitimate: even negative numbers were sometimes suspect, so (as the reader may imagine) their square roots were even more questionable. ◦ The stigma is still evident even today in the terminology (imaginary numbers), and the fact that complex numbers are often glossed over or ignored in mathematics courses. ◦ Nonetheless, they are very real objects (no pun intended), and have a wide range of uses in mathematics, physics, and engineering. ◦ Among neat applications of complex numbers are deriving trigonometric identities with much less work (see later) and evaluating certain kinds of denite and indenite integrals.
    [Show full text]