An Adapted Geographically Weighted Lasso (Ada-GWL) Model For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shenzhen Futian District
The living r Ring o f 0 e r 2 0 u t 2 c - e t s 9 i i 1 s h 0 e c n 2 r h g f t A i o s e n e r i e r a D g e m e e y a l r d b c g i a s ’ o n m r r i e e p a t d t c s s a A bring-back culture idea in architecture design in core of a S c u M M S A high density Chinese city - Shenzhen. x Part 1 Part 5 e d n Abstract Design rules I Part 2 Part 6 Urban analysis-Vertical direction Concept Part 3 Part 7 Station analysis-Horizontal Project:The living ring direction Part 4 Part 8 Weakness-Opportunities Inner space A b s t r a c t Part 1 Abstract 01 02 A b s t Abstract r a c Hi,I am very glad to have a special opportunity here to The project locates the Futian Railway Station, which t share with you a project I have done recently about is a very important transportation hub in Futian district. my hometown. It connects Guangzhou and Hong Kong, two very important economic cities.Since Shenzhen is also My hometown, named Shenzhen, a small town in the occupied between these two cities,equally important south of China. After the Chinese economic reform.at political and cultural position. The purpose of my 1978, this small town developed from a fishing village design this time is to allow the cultural center of Futian with very low economic income to a very prosperous District to more reflect its charm as a cultural center, economic capital, a sleep-less city , and became one and to design a landmark and functional use for the of very important economic hubs in China. -
China Railway Signal & Communication Corporation
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. China Railway Signal & Communication Corporation Limited* 中國鐵路通信信號股份有限公司 (A joint stock limited liability company incorporated in the People’s Republic of China) (Stock Code: 3969) ANNOUNCEMENT ON BID-WINNING OF IMPORTANT PROJECTS IN THE RAIL TRANSIT MARKET This announcement is made by China Railway Signal & Communication Corporation Limited* (the “Company”) pursuant to Rules 13.09 and 13.10B of the Rules Governing the Listing of Securities on The Stock Exchange of Hong Kong Limited (the “Listing Rules”) and the Inside Information Provisions (as defined in the Listing Rules) under Part XIVA of the Securities and Futures Ordinance (Chapter 571 of the Laws of Hong Kong). From July to August 2020, the Company has won the bidding for a total of ten important projects in the rail transit market, among which, three are acquired from the railway market, namely four power integration and the related works for the CJLLXZH-2 tender section of the newly built Langfang East-New Airport intercity link (the “Phase-I Project for the Newly-built Intercity Link”) with a tender amount of RMB113 million, four power integration and the related works for the XJSD tender section of the newly built -
Monitoring the Land Subsidence Area in a Coastal Urban Area with Insar and GNSS
sensors Article Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS Bo Hu * , Junyu Chen and Xingfu Zhang Surveying Engineering, Guangdong University of Technology, Guangzhou 510006, China * Correspondence: [email protected]; Tel.: +86-20-3932-2530 Received: 21 May 2019; Accepted: 14 July 2019; Published: 19 July 2019 Abstract: In recent years, the enormous losses caused by urban surface deformation have received more and more attention. Traditional geodetic techniques are point-based measurements, which have limitations in using traditional geodetic techniques to detect and monitor in areas where geological disasters occur. Therefore, we chose Interferometric Synthetic Aperture Radar (InSAR) technology to study the surface deformation in urban areas. In this research, we discovered the land subsidence phenomenon using InSAR and Global Navigation Satellite System (GNSS) technology. Two different kinds of time-series InSAR (TS-InSAR) methods: Small BAseline Subset (SBAS) and the Permanent Scatterer InSAR (PSI) process were executed on a dataset with 31 Sentinel-1A Synthetic Aperture Radar (SAR) images. We generated the surface deformation field of Shenzhen, China and Hong Kong Special Administrative Region (HKSAR). The time series of the 3d variation of the reference station network located in the HKSAR was generated at the same time. We compare the characteristics and advantages of PSI, SBAS, and GNSS in the study area. We mainly focus on the variety along the coastline area. From the results generated by SBAS and PSI techniques, we discovered the occurrence of significant subsidence phenomenon in the land reclamation area, especially in the metro construction area and the buildings with a shallow foundation located in the land reclamation area. -
(Presentation): Improving Railway Technologies and Efficiency
RegionalConfidential EST Training CourseCustomizedat for UnitedLorem Ipsum Nations LLC University-Urban Railways Shanshan Li, Vice Country Director, ITDP China FebVersion 27, 2018 1.0 Improving Railway Technologies and Efficiency -Case of China China has been ramping up investment in inner-city mass transit project to alleviate congestion. Since the mid 2000s, the growth of rapid transit systems in Chinese cities has rapidly accelerated, with most of the world's new subway mileage in the past decade opening in China. The length of light rail and metro will be extended by 40 percent in the next two years, and Rapid Growth tripled by 2020 From 2009 to 2015, China built 87 mass transit rail lines, totaling 3100 km, in 25 cities at the cost of ¥988.6 billion. In 2017, some 43 smaller third-tier cities in China, have received approval to develop subway lines. By 2018, China will carry out 103 projects and build 2,000 km of new urban rail lines. Source: US funds Policy Support Policy 1 2 3 State Council’s 13th Five The Ministry of NRDC’s Subway Year Plan Transport’s 3-year Plan Development Plan Pilot In the plan, a transport white This plan for major The approval processes for paper titled "Development of transportation infrastructure cities to apply for building China's Transport" envisions a construction projects (2016- urban rail transit projects more sustainable transport 18) was launched in May 2016. were relaxed twice in 2013 system with priority focused The plan included a investment and in 2015, respectively. In on high-capacity public transit of 1.6 trillion yuan for urban 2016, the minimum particularly urban rail rail transit projects. -
A Hybrid Method for Predicting Traffic Congestion During Peak Hours In
sensors Article A Hybrid Method for Predicting Traffic Congestion during Peak Hours in the Subway System of Shenzhen Zhenwei Luo 1, Yu Zhang 1, Lin Li 1,2,* , Biao He 3, Chengming Li 4, Haihong Zhu 1,2,*, Wei Wang 1, Shen Ying 1,2 and Yuliang Xi 1 1 School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China; [email protected] (Z.L.); [email protected] (Y.Z.); [email protected] (W.W.); [email protected] (S.Y.); [email protected] (Y.X.) 2 RE-Institute of Smart Perception and Intelligent Computing, Wuhan University, Wuhan 430079, China 3 School of Architecture and Urban Planning, Shenzhen University, Shenzhen 518000, China; [email protected] 4 Chinese Academy of Surveying and Mapping, 28 Lianghuachi West Road, Haidian Qu, Beijing 100830, China; [email protected] * Correspondence: [email protected] (L.L.); [email protected] (H.Z.); Tel.: +86-27-6877-8879 (L.L. & H.Z.) Received: 11 October 2019; Accepted: 23 December 2019; Published: 25 December 2019 Abstract: Traffic congestion, especially during peak hours, has become a challenge for transportation systems in many metropolitan areas, and such congestion causes delays and negative effects for passengers. Many studies have examined the prediction of congestion; however, these studies focus mainly on road traffic, and subway transit, which is the main form of transportation in densely populated cities, such as Tokyo, Paris, and Beijing and Shenzhen in China, has seldom been examined. This study takes Shenzhen as a case study for predicting congestion in a subway system during peak hours and proposes a hybrid method that combines a static traffic assignment model with an agent-based dynamic traffic simulation model to estimate recurrent congestion in this subway system. -
China Clean Energy Study Tour for Urban Infrastructure Development
China Clean Energy Study Tour for Urban Infrastructure Development BUSINESS ROUNDTABLE Tuesday, August 13, 2019 Hyatt Centric Fisherman’s Wharf Hotel • San Francisco, CA CONNECT WITH USTDA AGENDA China Urban Infrastructure Development Business Roundtable for U.S. Industry Hosted by the U.S. Trade and Development Agency (USTDA) Tuesday, August 13, 2019 ____________________________________________________________________ 9:30 - 10:00 a.m. Registration - Banquet AB 9:55 - 10:00 a.m. Administrative Remarks – KEA 10:00 - 10:10 a.m. Welcome and USTDA Overview by Ms. Alissa Lee - Country Manager for East Asia and the Indo-Pacific - USTDA 10:10 - 10:20 a.m. Comments by Mr. Douglas Wallace - Director, U.S. Department of Commerce Export Assistance Center, San Francisco 10:20 - 10:30 a.m. Introduction of U.S.-China Energy Cooperation Program (ECP) Ms. Lucinda Liu - Senior Program Manager, ECP Beijing 10:30 a.m. - 11:45 a.m. Delegate Presentations 10:30 - 10:45 a.m. Presentation by Professor ZHAO Gang - Director, Chinese Academy of Science and Technology for Development 10:45 - 11:00 a.m. Presentation by Mr. YAN Zhe - General Manager, Beijing Public Transport Tram Corporation 11:00 - 11:15 a.m. Presentation by Mr. LI Zhongwen - Head of Safety Department, Shenzhen Metro 11:15 - 11:30 a.m. Tea/Coffee Break 11:30 - 11:45 a.m. Presentation by Ms. WANG Jianxin - Deputy General Manager, Tianjin Metro Operation Corporation 11:45 a.m. - 12:00 p.m. Presentation by Mr. WANG Changyu - Director of General Engineer's Office, Wuhan Metro Group 12:00 - 12:15 p.m. -
Dwelling in Shenzhen: Development of Living Environment from 1979 to 2018
Dwelling in Shenzhen: Development of Living Environment from 1979 to 2018 Xiaoqing Kong Master of Architecture Design A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2020 School of Historical and Philosophical Inquiry Abstract Shenzhen, one of the fastest growing cities in the world, is the benchmark of China’s new generation of cities. As the pioneer of the economic reform, Shenzhen has developed from a small border town to an international metropolis. Shenzhen government solved the housing demand of the huge population, thereby transforming Shenzhen from an immigrant city to a settled city. By studying Shenzhen’s housing development in the past 40 years, this thesis argues that housing development is a process of competition and cooperation among three groups, namely, the government, the developer, and the buyers, constantly competing for their respective interests and goals. This competing and cooperating process is dynamic and needs constant adjustment and balancing of the interests of the three groups. Moreover, this thesis examines the means and results of the three groups in the tripartite competition and cooperation, and delineates that the government is the dominant player responsible for preserving the competitive balance of this tripartite game, a role vital for housing development and urban growth in China. In the new round of competition between cities for talent and capital, only when the government correctly and effectively uses its power to make the three groups interacting benignly and achieving a certain degree of benefit respectively can the dynamic balance be maintained, thereby furthering development of Chinese cities. -
A Data-Driven Urban Metro Management Approach for Crowd Density Control
Hindawi Journal of Advanced Transportation Volume 2021, Article ID 6675605, 14 pages https://doi.org/10.1155/2021/6675605 Research Article A Data-Driven Urban Metro Management Approach for Crowd Density Control Hui Zhou ,1 Zhihao Zheng ,2 Xuekai Cen ,1 Zhiren Huang ,1 and Pu Wang 1 1School of Traffic and Transportation Engineering, Rail Data Research and Application Key Laboratory of Hunan Province, Central South University, Changsha 410000, China 2Department of Civil Engineering and Applied Mechanics, McGill University, Montreal H3A 0C3, Quebec, Canada Correspondence should be addressed to Pu Wang; [email protected] Received 9 November 2020; Revised 1 March 2021; Accepted 17 March 2021; Published 31 March 2021 Academic Editor: Yajie Zou Copyright © 2021 Hui Zhou et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Large crowding events in big cities pose great challenges to local governments since crowd disasters may occur when crowd density exceeds the safety threshold. We develop an optimization model to generate the emergent train stop-skipping schemes during large crowding events, which can postpone the arrival of crowds. A two-layer transportation network, which includes a pedestrian network and the urban metro network, is proposed to better simulate the crowd gathering process. Urban smartcard data is used to obtain actual passenger travel demand. +e objective function of the developed model minimizes the passengers’ total waiting time cost and travel time cost under the pedestrian density constraint and the crowd density constraint. -
The Case in Changsha, China
T J T L U http://jtlu.org V. 14 N. 1 [2021] pp. 563–582 Evaluation of the land value-added benefit brought by urban rail transit: The case in Changsha, China Wenbin Tang (corresponding author) Qingbin Cui Changsha University of Science and University of Maryland Technology [email protected] [email protected] HongyanYan Feilian Zhang Hunan University of Finance and Economics Central South University [email protected] [email protected] Abstract: Accurate evaluation of land value-added benefit brought Article history: by urban rail transit (URT) is critical for project investment decision Received: August 4, 2019 making and value capture strategy development. Early studies have Received in revised form: focused on the value impact strength under the assumption of the October 8, 2020 same impact range for all stations. However, the value impact range at Accepted: February 11, 2021 different stations may vary owing to different accessibilities. Therefore, Available online: May 7, 2021 the present study releases this assumption and incorporates the changed impact range into the land value-added analysis. It presents a method to determine the range of land value-added impact and sample selection using the generalized transportation cost model, then spatial econometric models are further developed to estimate the impact strength. On the basis of these models, the entire value-added benefit brought by URT is evaluated. A case study of the Changsha Metro Line 2 in China is discussed to demonstrate the procedure, model, and analysis of spatial impact. The empirical analysis shows a dumbbell-shaped impact on the land value-added benefit along the transit line with a distance-dependent pattern at each station. -
Etonhouse Opens in Shenzhen, Its 40Th Campus in China
EtonHouse opens in Shenzhen, its 40th campus in China The first Singapore based group to open in Shenzhen, celebrating the 40th anniversary of the economic reform process in China Shenzhen, China, December 2018- The EtonHouse International Education Group opened its first pre-school campus in Shenzhen, making it the 40th EtonHouse campus in China. The Group set up its first campus in 2003 in Suzhou and is now present in 28 Chinese cities and has 7500 students in China alone. EtonHouse is also the only Singapore based education provider to establish its presence in Shenzhen. Located near the Overseas China Town (OCT) Tencent and High Technology Park, in the heart of Nanshan District, Shenzhen, the boutique campus covers an area of over 2,500 square meters and has a capacity of 250 students. The pre-school caters to students from 2- 6 years of age has many unique and innovative features such as a spacious playground, rooftop garden, a children’s kitchen, a light studio and performing and visual art spaces. These learning spaces encourage children to explore creative play and inquiries in a child- responsive environment. The EtonHouse international inquiry based curriculum ‘Inquire Think Learn’ will be delivered in this campus in a dual language environment offered in English and Chinese. The philosophy is inspired by the globally renowned pedagogy of Reggio Emilia, a teaching project from Italy. The EtonHouse curriculum, successful in more than 12 countries and 100 campuses is international in its approach but connected to the local community in the way that it is delivered, thus offering a wonderful blend of the East and the West. -
An Anthropological Study of a City Thoroughfare
Between promises and uncertainties: an anthropological study of a city thoroughfare A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Humanities 2016 Ximin Zhou Social Anthropology | School of Social Sciences Table of Contents List of figures .................................................................................................................................... 5 Abstract .............................................................................................................................................. 6 Declaration ....................................................................................................................................... 7 Copyright statement ...................................................................................................................... 7 A note on language and the Chinese administrative division ......................................... 8 Abbreviations .................................................................................................................................. 9 Glossary ............................................................................................................................................. 9 Chronology ..................................................................................................................................... 11 Acknowledgements .................................................................................................................... -
Handshake 302 Is a Repurposed, 12.5 M2 Efficiency Apartment on the Third Floor of a Stereotypic “Hand- Shake Building”
HANDSHAKE 302 ART CENTER REDEFINING URBAN POSSIBILITY THROUGH CREATIVE ENGAGEMENT 深圳市福田区益田路3008号皇都广场B座1108室 Rm 1108, Bldg B, Huangdu Plaza, 3008 Yitian Rd, Futian Dist, Shenzhen City +86 136 3260 7582 [email protected] Handshake 302 is a repurposed, 12.5 m2 efficiency apartment on the third floor of a stereotypic “hand- shake building”. Throughout Shenzhen, teenage mi- grants, recent college graduates, and working class families live in densely populated urbanized villages. Baishizhou, for example, has an area of .6 km2 and an estimated population of 140,000 residents, bring- ing the population density to almost 280,000 per square kilometer. Of course, any one of Baishizhou’s 2,340 buildings is a multi-story building, with a floor area ratio that falls between 2 and 12. These build- ings are packed so tightly together that it is pos- sibly to reach out one’s window and shake hands with the neighbor. Handshake 302 projects exploit the semiotic discrepancies between “art space” and “low cost housing” to provide an accessible sociology of Baishizhou. AWARDS 2016 Handshake 302, One Foundation, Social Innovation, Tencent Corporation 2015 Handshake 302, Comprehensive Creativity, Shenzhen Qicai Awards for Design HANDSHAKE 302 PROJECTS Handshake 302 was designated a collatoral exhibition, Shenzhen-Hong Kong Bi-City Biennale of Architecture and Urbanism, 2015 and 2013. 2016-present Handshake 302 Village Artist Residency 2015 Handshake with the Future 2015 My White Wall Compulsions 2014 白鼠笔记/Village Hack 2014 Paper Crane Tea 2013 Accounting CURATORIAL EXPERIENCE 2016 Art Sprouts, P+V Gallery Dalang 2015 “Youth”, mural at the Dalang Dream Center Dormitory for migrant workers.