Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy

Total Page:16

File Type:pdf, Size:1020Kb

Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy Paco Ca´rdenas1*¤, Joana R. Xavier2,3, Julie Reveillaud4,5, Christoffer Schander1,6, Hans Tore Rapp1,6 1 Department of Biology, University of Bergen, Bergen, Norway, 2 CIBIO – Research Centre for Biodiversity and Genetic Resources, CIBIO-Azores, Biology Department, University of the Azores, Azores, Portugal, 3 CEAB – Center for Advanced Studies of Blanes (CSIC), Blanes, Spain, 4 Marine Biology Section, Biology Department, Ghent University, Ghent, Belgium, 5 CeMoFE, Center for Molecular Phylogeny and Evolution, Ghent, Belgium, 6 Centre for Geobiology, University of Bergen, Bergen, Norway Abstract Background: The Astrophorida (Porifera, Demospongiaep) is geographically and bathymetrically widely distributed. Systema Porifera currently includes five families in this order: Ancorinidae, Calthropellidae, Geodiidae, Pachastrellidae and Thrombidae. To date, molecular phylogenetic studies including Astrophorida species are scarce and offer limited sampling. Phylogenetic relationships within this order are therefore for the most part unknown and hypotheses based on morphology largely untested. Astrophorida taxa have very diverse spicule sets that make them a model of choice to investigate spicule evolution. Methodology/Principal Findings: With a sampling of 153 specimens (9 families, 29 genera, 89 species) covering the deep- and shallow-waters worldwide, this work presents the first comprehensive molecular phylogeny of the Astrophorida, using a cytochrome c oxidase subunit I (COI) gene partial sequence and the 59 end terminal part of the 28S rDNA gene (C1-D2 domains). The resulting tree suggested that i) the Astrophorida included some lithistid families and some Alectonidae species, ii) the sub-orders Euastrophorida and Streptosclerophorida were both polyphyletic, iii) the Geodiidae, the Ancorinidae and the Pachastrellidae were not monophyletic, iv) the Calthropellidae was part of the Geodiidae clade (Calthropella at least), and finally that v) many genera were polyphyletic (Ecionemia, Erylus, Poecillastra, Penares, Rhabdastrella, Stelletta and Vulcanella). Conclusion: The Astrophorida is a larger order than previously considered, comprising ca. 820 species. Based on these results, we propose new classifications for the Astrophorida using both the classical rank-based nomenclature (i.e., Linnaean classification) and the phylogenetic nomenclature following the PhyloCode, independent of taxonomic rank. A key to the Astrophorida families, sub-families and genera incertae sedis is also included. Incongruences between our molecular tree and the current classification can be explained by the banality of convergent evolution and secondary loss in spicule evolution. These processes have taken place many times, in all the major clades, for megascleres and microscleres. Citation: Ca´rdenas P, Xavier JR, Reveillaud J, Schander C, Rapp HT (2011) Molecular Phylogeny of the Astrophorida (Porifera, Demospongiaep) Reveals an Unexpected High Level of Spicule Homoplasy. PLoS ONE 6(4): e18318. doi:10.1371/journal.pone.0018318 Editor: Dirk Steinke, Biodiversity Insitute of Ontario - University of Guelph, Canada Received November 3, 2010; Accepted March 3, 2011; Published April 8, 2011 Copyright: ß 2011 Ca´rdenas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: Participation of P. Ca´rdenas at the ‘Molecular Evolution Workshop’ (Woods Hole, 2009) was made possible by the Bergen Forskningsstiftelse (‘‘Mohn Grant’’, to C. Schander). Visit to the Zoological Museum in Amsterdam (P. Ca´rdenas) received support from the SYNTHESYS Project which is financed by European Community Research Infrastructure Action under the FP6 ‘‘Structuring the European Research Area’’ Program. J.R. Xavier is funded by the Science and Technology Foundation (FCT-Portugal, grant no. SFRH/BPD/62946/2009). J. Reveillaud has received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under the HERMIONE project, grant agreement no. 226354. This work was supported by a grant from the ‘Norwegian Deep Sea Program’ and by the Norwegian Research Council (project number 158923/S40, to H.T. Rapp). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. * E-mail: [email protected] ¤ Current address: Muse´um National d’Histoire Naturelle, De´partement Milieux et Peuplements Aquatiques, UMR ‘‘BOREA’’ 7208, Paris, France Introduction monophyletic [1,3,4,5]. The Astrophorida is geographically and bathymetrically widely distributed around the world, and Demospongiaep Sollas, 1885 [Borchiellini et al., 2004] make up represent around 660 extant species (van Soest et al. 2010[6]; this 85% of all living sponges, and is today subdivided in 13 extant study). In tropical and parts of warm temperate waters orders. Based on molecular results, Demospongiaep are subdivided in Astrophorida species are common at quite shallow depths, while four clades: G1/Keratosap [Borchiellini et al., 2004], G2/Myx- in boreal/antiboreal and Arctic/Antarctic waters they are usually ospongiaep [Borchiellini et al., 2004], G3/Haplosclerida and G4/ deep-water species. Astrophorida species have colonized hard- as Democlavia [1,2]. The Astrophorida Sollas, 1888 are found within well as soft-bottoms from various depths. In gravely hard-bottom the Democlavia clade and represent one of the few sponge orders habitats on the outer shelf and upper slope, Astrophorida can to have been consistently and with strong support, shown to be dominate ecosystems in terms of abundance and biomass forming PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18318 Astrophorida Phylogeny sponge grounds [7,8]. Astrophorida species display a wide array of monophyly i) of the Euastrophorida/Streptosclerophorida sub- external morphologies (massive to thin encrusting, subspherical-, orders and ii) of the Astrophorida families and genera. Our second fan-, cup- or irregularly-shaped) and external colors (Fig. 1a–d), aim was to revise the taxonomy of this order using both the and they range in size from a few millimeters to more than a meter classical rank-based nomenclature (i.e. Linnaean classification) and in diameter. There is no single morphological synapomorphy of the phylogenetic nomenclature following the PhyloCode, indepen- the Astrophorida. They are nonetheless well characterized by the dent of taxonomic rank. To be clear, names established under the simultaneous presence of star-shaped microscleres (small spicules PhyloCode are always in italics and will be identified with the symbol called ‘asters’) and tetractinal megascleres (large spicules called ‘p’ (e.g. Demospongiaep). Authors of PhyloCode names are between ‘triaenes’) (Fig. 1e–g). Star-shaped microscleres may be euasters — square brackets (e.g. Demospongiaep Sollas, 1885 [Borchiellini et al., asters in which the rays radiate from a central point (e.g. oxyasters, 2004]). Finally, our third aim was to investigate the evolution of strongylasters, spherasters, sterrasters) or streptasters — asters in Astrophorida megascleres and microscleres in order to evaluate which the rays proceed from an axis that can be straight the importance of homoplastic spicule characters in this order. (amphiasters) or spiral (e.g. spirasters, metasters, plesiasters). According to the latest major revision of the Astrophorida [9], Materials and Methods five families are included: Ancorinidae Schmidt, 1870, Calthro- pellidae Lendenfeld, 1907, Geodiidae Gray, 1867, Pachastrellidae Ethics statement Carter, 1875, and Thrombidae, Sollas, 1888. Thirty-eight genera This study has been approved by the University of Bergen and two subgenera are currently distributed in those families. In through the acceptance of a Ph.D. project proposal. an effort to incorporate some lithistids in the Astrophorida, the sub-orders Euastrophorida Reid, 1963 (Astrophorida with eua- Sponge sampling sters) and Streptosclerophorida Dendy, 1924 (Astrophorida/ Most of our collecting was done in the Northeast Atlantic. lithistids with streptasters) were erected [10,11], but in spite of Sampling in the Korsfjord (60u109N, 05u109E), Langenuen molecular evidence confirming their incorporation within the (59u539N, 05u319E) and the Hjeltefjord (60u249N, 05u059E) Astrophorida [5,12,13], lithistids have been kept apart in the (Western Norway, south of Bergen) were carried out using a Systema Porifera [14]. Other taxa such as the boring sponges Alectona triangular dredge and a bottom trawl between 40 and 500 meters and Neamphius have also been suggested to be derived Astrophor- (between the years 2005 and 2009). Southern Norway samples ida species, based on morphological [15], molecular [16] and (58u139N, 08u359E) were dredged during the BIOSKAG 2006 larval data [17,18], but they are still considered to belong to the cruise. Northern Norway samples were collected during the order Hadromerida in the Systema Porifera [19]. Polarstern ARK-XXII/1a 2007 cruise with large boxcores and the The Astrophorida is an order with one of the most diverse Jago manned-submersible. Localities sampled were Sotbakken spicule repertoire among the Demospongiaep. For
Recommended publications
  • New Zealand Oceanographic Institute Memoir 100
    ISSN 0083-7903, 100 (Print) ISSN 2538-1016; 100 (Online) , , II COVER PHOTO. Dictyodendrilla cf. cavernosa (Lendenfeld, 1883) (type species of Dictyodendri/la Bergquist, 1980) (see page 24), from NZOI Stn I827, near Rikoriko Cave entrance, Poor Knights Islands Marine Reserve. Photo: Ken Grange, NZOI. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NATIONAL INSTITUTE OF WATER AND ATMOSPHERIC RESEARCH The Marine Fauna of New Zealand: Index to the Fauna 2. Porifera by ELLIOT W. DAWSON N .Z. Oceanographic Institute, Wellington New Zealand Oceanographic Institute Memoir 100 1993 • This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Cataloguing in publication DAWSON, E.W. The marine fauna of New Zealand: Index to the Fauna 2. Porifera / by Elliot W. Dawson - Wellington: New Zealand Oceanographic Institute, 1993. (New Zealand Oceanographic Institute memoir, ISSN 0083-7903, 100) ISBN 0-478-08310-6 I. Title II. Series UDC Series Editor Dennis P. Gordon Typeset by Rose-Marie C. Thompson NIWA Oceanographic (NZOI) National Institute of Water and Atmospheric Research Received for publication: 17 July 1991 © NIWA Copyright 1993 2 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ CONTENTS Page ABSTRACT 5 INTRODUCTION 5 SCOPE AND ARRANGEMENT 7 SYSTEMATIC LIST 8 Class DEMOSPONGIAE 8 Subclass Homosclcromorpha ..............................................................................................
    [Show full text]
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
    marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds.
    [Show full text]
  • WIDECAST Sea Turtle Recovery Action Plan for the Netherlands Antilles
    CEP Technical Report: 11 1992 WIDECAST Sea Turtle Recovery Action Plan for the Netherlands Antilles PREFACE Sea turtle stocks are declining throughout most of the Wider Caribbean region; in some areas the trends are dramatic and are likely to be irreversible during our lifetimes. According to the IUCN Conservation Monitoring Centre's Red Data Book, persistent over-exploitation, especially of adult females on the nesting beach, and the widespread collection of eggs are largely responsible for the Endangered status of five sea turtle species occurring in the region and the Vulnerable status of a sixth. In addition to direct harvest, sea turtles are accidentally captured in active or abandoned fishing gear, resulting in death to tens of thousands of turtles annually. Coral reef and sea grass degradation, oil spills, chemical waste, persistent plastic and other marine debris, high density coastal development, and an increase in ocean-based tourism have damaged or eliminated nesting beaches and feeding grounds. Population declines are complicated by the fact that causal factors are not always entirely indigenous. Because sea turtles are among the most migratory of all Caribbean fauna, what appears as a decline in a local population may be a direct consequence of the activities of peoples many hundreds of kilometers distant. Thus, while local conservation is crucial, action is also called for at the regional level. In order to adequately protect migratory sea turtles and achieve the objectives of CEP's Regional Programme for Specially Protected Areas and Wildlife (SPAW), The Strategy for the Development of the Caribbean Environment Programme (1990-1995) calls for "the development of specific management plans for economically and ecologically important species", making particular reference to endangered, threatened, or vulnerable species of sea turtle.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
    Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida).
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Background Document for Deep-Sea Sponge Aggregations 2010
    Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research.
    [Show full text]
  • Porifera) in Singapore and Description of a New Species of Forcepia (Poecilosclerida: Coelosphaeridae)
    Contributions to Zoology, 81 (1) 55-71 (2012) Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of Forcepia (Poecilosclerida: Coelosphaeridae) Swee-Cheng Lim1, 3, Nicole J. de Voogd2, Koh-Siang Tan1 1 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 2 Netherlands Centre for Biodiversity, Naturalis, PO Box 9517, 2300 RA Leiden, The Netherlands 3 E-mail: [email protected] Key words: intertidal, Southeast Asia, sponge assemblage, subtidal, tropical Abstract gia) patera (Hardwicke, 1822) was the first sponge de- scribed from Singapore in the 19th century. This was A surprisingly high number of shallow water sponge species followed by Leucosolenia flexilis (Haeckel, 1872), (197) were recorded from extensive sampling of natural inter- Coelocarteria singaporensis (Carter, 1883) (as Phloeo­ tidal and subtidal habitats in Singapore (Southeast Asia) from May 2003 to June 2010. This is in spite of a highly modified dictyon), and Callyspongia (Cladochalina) diffusa coastline that encompasses one of the world’s largest container Ridley (1884). Subsequently, Dragnewitsch (1906) re- ports as well as extensive oil refining and bunkering industries. corded 24 sponge species from Tanjong Pagar and Pu- A total of 99 intertidal species was recorded in this study. Of lau Brani in the Singapore Strait. A further six species these, 53 species were recorded exclusively from the intertidal of sponge were reported from Singapore in the 1900s, zone and only 45 species were found on both intertidal and subtidal habitats, suggesting that tropical intertidal and subtidal although two species, namely Cinachyrella globulosa sponge assemblages are different and distinct.
    [Show full text]
  • The Essentials of Marine Biotechnology. Frontiers in Marine Science [Online], 8, Article 629629
    ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021. The essentials of marine biotechnology. Frontiers in marine science [online], 8, article 629629. Available from: https://doi.org/10.3389/fmars.2021.629629 The essentials of marine biotechnology. ROTTER, A., BARBIER, M., BERTONI, F. et al. 2021 Copyright © 2021 Rotter, Barbier, Bertoni, Bones, Cancela, Carlsson, Carvalho, Cegłowska, Chirivella-Martorell, Conk Dalay, Cueto, Dailianis, Deniz, Díaz-Marrero, Drakulovic, Dubnika, Edwards, Einarsson, Erdoˇgan, Eroldoˇgan, Ezra, Fazi, FitzGerald, Gargan, Gaudêncio, Gligora Udoviˇc, Ivoševi´c DeNardis, Jónsdóttir, Kataržyt˙e, Klun, Kotta, Ktari, Ljubeši´c, Luki´c Bilela, Mandalakis, Massa-Gallucci, Matijošyt˙e, Mazur-Marzec, Mehiri, Nielsen, Novoveská, Overling˙e, Perale, Ramasamy, Rebours, Reinsch, Reyes, Rinkevich, Robbens, Röttinger, Rudovica, Sabotiˇc, Safarik, Talve, Tasdemir, Theodotou Schneider, Thomas, Toru´nska-Sitarz, Varese and Vasquez.. This article was first published in Frontiers in Marine Science on 16.03.2021. This document was downloaded from https://openair.rgu.ac.uk fmars-08-629629 March 10, 2021 Time: 14:8 # 1 REVIEW published: 16 March 2021 doi: 10.3389/fmars.2021.629629 The Essentials of Marine Biotechnology Ana Rotter1*, Michéle Barbier2, Francesco Bertoni3,4, Atle M. Bones5, M. Leonor Cancela6,7, Jens Carlsson8, Maria F. Carvalho9, Marta Cegłowska10, Jerónimo Chirivella-Martorell11, Meltem Conk Dalay12, Mercedes Cueto13, 14 15 16 17 Edited by: Thanos Dailianis , Irem Deniz , Ana R. Díaz-Marrero , Dragana Drakulovic , 18 19
    [Show full text]
  • Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astroporida) from Korea
    Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astroporida) from Korea Eun Jung Shim1,* Chung Ja Sim2 1Natural History Museum of Hannam University, Daejeon 306-791, Korea 2Department of Biological Sciences, College of Life Sciences and Nano Technology, Hannam University, Daejeon 305-811, Korea ABSTRACT Two sponges, Stelletta subtilis (Sollas, 1886) and Stryphnus sollasi n. sp., were collected from depth of 24-30 m at Jeju-do Island and Chuja-do Island by SCUBA diving from July 2003 to June 2010. The new species Stryphnus sollasi n. sp is similar with Stryphnus niger Sollas, 1886 in the composition of spicules, however they differ in colour and spicule size. This new species has smaller oxeas and larger oxyasters than those of S. niger. This new species has two size categories of oxyaster but S. niger has one size category of oxyaster. The colour of S. sollasi n. sp is white, but the latter puce black. Stelletta subtilis (Sollas, 1886) is first recorded in Korean fauna. Keywords: Stelletta, Stryphnus, Ancorinidae, new species, Korea Running title: Two Ancorinid Sponges from Korea * To whom correspondence should be addressed. Tel: 82-42-629-8455 Fax: 82-42-629-8280 E-mail: [email protected] INTRODUCTION The genera Stelletta Schmidt, 1862 and Stryphnus Sollas, 1886 are contained in the family Ancorinidae. This family is characterized by the long-rhabdome triaenes and oxeas as megascleres and euasters, sanidasters or microrhabds as microscleres. The genus Stelletta is characterized by presence of long-shafted triaenes as megascleres and euasters without marked centrum as microscleres. Twelve Stelletta species have been reported in Korean waters so far (Shim and Sim, 2009).
    [Show full text]
  • Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astrophorida) from Korea
    Anim. Syst. Evol. Divers. Vol. 29, No. 1: 31-35, January 2013 http://dx.doi.org/10.5635/ASED.2013.29.1.31 Short communication Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astrophorida) from Korea Eun Jung Shim1,*, Chung Ja Sim2 1Natural History Museum of Hannam University, Daejeon 306-791, Korea 2Department of Biological Sciences, College of Life Sciences and Nano Technology, Hannam University, Daejeon 305-811, Korea ABSTRACT Two sponges, Stelletta subtilis (Sollas, 1886) and Stryphnus sollasi n. sp., were collected from depth of 24-30 m at Jeju-do Island and Chuja-do Island by SCUBA diving from July 2003 to June 2010. The new species Stry- phnus sollasi n. sp is similar with Stryphnus niger Sollas, 1886 in the composition of spicules, however they differ in colour and spicule size. This new species has smaller oxeas and larger oxyasters than those of S. niger. This new species has two size categories of oxyaster but S. niger has one size category of oxyaster. The colour of S. sollasi n. sp is white, but the latter puce black. Stelletta subtilis (Sollas, 1886) is first recorded in Korean fauna. Keywords: Stelletta, Stryphnus, Ancorinidae, new species, Korea INTRODUCTION do and Chuja-do by SCUBA diving from July 2003 to June 2010. A holotype has been deposited in the National Institute The genera Stelletta Schmidt, 1862 and Stryphnus Sollas, 1886 of Biological Resources (NIBR), Incheon, Korea, and para- are contained in the family Ancorinidae. This family is cha- types have been deposited in the Natural History Museum racterized by the long-rhabdome triaenes and oxeas as mega- of Hannam University (HUNHN).
    [Show full text]