Understanding the Role of Transforming Growth Factor Beta Signalling and Epigenomics in Osteoarthritis

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Role of Transforming Growth Factor Beta Signalling and Epigenomics in Osteoarthritis Understanding the role of Transforming Growth Factor Beta signalling and Epigenomics in Osteoarthritis by ©Erfan Aref-Eshghi A thesis submitted to the School of Graduate Studies In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Medicine - Human Genetics Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada May 2016 i Abstract Osteoarthritis (OA) is the most common form of arthritis with a high socioeconomic burden, with an incompletely understood etiology. Evidence suggests a role for the transforming growth factor beta (TGF-ß) signalling pathway and epigenomics in OA. The aim of this thesis was to understand the involvement of the TGF-ß pathway in OA and to determine the DNA methylation patterns of OA-affected cartilage as compared to the OA-free cartilage. First, I found that a common SNP in the BMP2 gene, a ligand in the Bone morphogenetic protein (BMP) subunit of TGF-ß pathway, was associated with OA in the Newfoundland population. I also showed a genetic association between SMAD3 - a signal transducer in the TGF-ß subunit of the TGF-ß signalling pathway - and the total radiographic burden of OA. I further demonstrated that SMAD3 is over-expressed in OA cartilage, suggesting an over activation of the TGF-ß signalling in OA. Next, I examined the connection of these genes in the regulation of matrix metallopeptidase 13 (MMP13) - an enzyme known to destroy extracellular matrix in OA cartilage - in the context of the ‎TGF-ß signalling. The analyses showed that TGF-ß, MMP13, and SMAD3 were overexpressed in OA cartilage, whereas the expression of BMP2 was significantly reduced. The expression of TGF-ß ‎was positively correlated with that of SMAD3 and MMP13, suggesting that TGF-ß signalling is involved in up-regulation of MMP13. This regulation, however, appears not to be controlled by SMAD3 signals, possibly due to the involvement of collateral signalling, and to be suppressed by BMP ‎regulation in healthy cartilage, whose levels were reduced in end-stage OA. ‎ In a genome-wide DNA methylation analysis, I reported CpG sites ‎differentially methylated in OA and showed that the cartilage methylome has a potential to ‎distinguish between OA-affected ii and non-OA cartilage. Functional clustering analysis of the ‎genes harbouring differentially methylated loci revealed that they are enriched in the skeletal system morphogenesis ‎pathway, which could ‎be a potential candidate for further OA studies. Overall, ‏the findings from the present thesis provide evidence that the TGF-ß signalling ‎pathway is associated with the development of OA, and epigenomics might be involved as a ‎potential mechanism in OA. iii Acknowledgements I would like to thank, first and foremost, my supervisor, Dr. Guangju Zhai, who gave me the opportunity to work under his supervision and to enjoy being a member of the research team in the Newfoundland Osteoarthritis Study (NFOAS). I also appreciate the support and advice I received from my supervisory committee, Drs. Andrew Furey and Guang Sun, particularly for their inputs into this thesis project. I would also like to remember my previous co-supervisor, Dr. Roger Green, who sadly and unexpectedly passed away in August 2015. Roger, you will be missed, and I will never forget the assistance I received from you in various steps of this project. To everyone who assisted me with this work and helped in solving the problems at different stages of the project. Special thanks to Ming Liu, Patricia Harper, Yuhua Zhang, Edward Yaskowiak, Hongwei Zhang, Zoha Rabie, Michelle Simms, and all the staff at the operating rooms of the Health Sciences and St. Clare’s Mercy Hospitals, who directly and indirectly contributed to this work. To all my friends in St. John’s: thanks for helping me not feel lonely as a new-comer. Special thanks to Atefeh and Justin, who filled my spare time with adventures, and to Shirin and Uzair, whom I shared with lots of memories over the course of my stay in St. John’s. Thanks to all the Feild Hall residents who made me feel like living in a great family in all these years far from home, and thanks to everyone else with whom I shared coffee, had a small talk and made friend or acquaintance in St. John’s, those who made this experience unique. And finally, to my parents and younger sister: thanks for your continued support and hearing your son’s concerns from thousands of kilometres away. I could not have done this without you. iv Table of Contents Abstract ........................................................................................................................................... ii Acknowledgements ........................................................................................................................ iv List of Tables ................................................................................................................................ vii List of Figures ................................................................................................................................ ix List of Abbreviations ...................................................................................................................... x Co-authorship Statement ............................................................................................................... xii Chapter one: Introduction ............................................................................................................... 1 1.1. An introduction to osteoarthritis (OA) ................................................................................. 2 1.1.1. Definition ....................................................................................................................... 2 1.1.2. Pathology of OA ............................................................................................................ 5 1.1.3. Signs and symptoms of OA ........................................................................................... 9 1.1.4. Diagnosis ..................................................................................................................... 11 1.1.5. Management ................................................................................................................ 15 1.2. Epidemiology ..................................................................................................................... 17 1.2.1. Prevalence and incidence of OA ................................................................................. 17 1.2.2. Socio-economic burden of OA .................................................................................... 21 1.3. Aetiology and risk factors .................................................................................................. 22 1.3.1. Environmental Factors ................................................................................................. 22 1.3.1.1. Age ........................................................................................................................ 22 1.3.1.2. Sex......................................................................................................................... 23 1.3.1.3. Obesity .................................................................................................................. 24 1.3.1.4. Physical activity, lifestyle, and occupations ......................................................... 25 1.3.1.5. Injuries and joint abnormalities ............................................................................ 26 1.3.2. Genetics ....................................................................................................................... 27 1.3.2.1. Familial aggregation - family based studies ......................................................... 28 1.3.2.2. Heritability - Twin studies .................................................................................... 32 1.3.2.3. Linkage analysis .................................................................................................... 35 1.3.2.4. Candidate gene studies .......................................................................................... 37 1.3.2.5. GWAS ................................................................................................................... 40 1.3.2.6. Epigenetics ............................................................................................................ 43 1.4. Transforming growth factor beta signalling pathway in osteoarthritis .............................. 45 1.5. Hypotheses and objectives ................................................................................................. 49 Chapter two: Attempt to replicate the published osteoarthritis associated genetic variants in the Newfoundland & Labrador Population ......................................................................................... 52 Abstract ..................................................................................................................................... 53 Introduction ............................................................................................................................... 54 v Methods ..................................................................................................................................... 55 Results ......................................................................................................................................
Recommended publications
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Transcriptome Analysis Uncovers the Diagnostic Value of Mir-192-5P/HNF1A-AS1/VIL1 Panel in Cervical Adenocarcinoma
    www.nature.com/scientificreports OPEN Transcriptome analysis uncovers the diagnostic value of miR‑192‑5p/ HNF1A‑AS1/VIL1 panel in cervical adenocarcinoma Junfen Xu1*, Jian Zou1, Luyao Wu1 & Weiguo Lu1,2* Despite the fact that the incidence of cervical squamous cell carcinoma has decreased, there is an increase in the incidence of cervical adenocarcinoma. However, our knowledge on cervical adenocarcinoma is largely unclear. Transcriptome sequencing was conducted to compare 4 cervical adenocarcinoma tissue samples with 4 normal cervical tissue samples. mRNA, lncRNA, and miRNA signatures were identifed to discriminate cervical adenocarcinoma from normal cervix. The expression of VIL1, HNF1A‑AS1, MIR194‑2HG, SSTR5‑AS1, miR‑192‑5p, and miR‑194‑5p in adenocarcinoma were statistically signifcantly higher than that in normal control samples. The Receiver Operating Characteristic (ROC) curve analysis indicated that combination of miR‑192‑5p, HNF1A‑AS1, and VIL1 yielded a better performance (AUC = 0.911) than any single molecule -and could serve as potential biomarkers for cervical adenocarcinoma. Of note, the combination model also gave better performance than TCT test for cervical adenocarcinoma diagnosis. However, there was no correlation between miR‑192‑5p or HNF1A‑AS1 and HPV16/18 E6 or E7. VIL1 was weakly correlated with HPV18 E7 expression. In summary, our study has identifed miR‑192‑5p/HNF1A‑AS1/VIL1 panel that accurately discriminates adenocarcinoma from normal cervix. Detection of this panel may provide considerable clinical value in the diagnosis of cervical adenocarcinoma. Abbreviations SCC Cervical squamous cell carcinoma NcRNA Non-coding RNA MiRNA MicroRNA LncRNA Long non-coding RNA ROC Receiver operating characteristic AUC​ Area under the ROC curve RT-qPCR Quantitative reverse-transcriptase PCR HNF1A-AS1 LncRNA HNF1A antisense RNA 1 VIL1 Villin 1 Cervical cancer ranks fourth for both cancer incidence and mortality in women worldwide 1.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Genomic and Transcriptome Analysis Revealing an Oncogenic Functional Module in Meningiomas
    Neurosurg Focus 35 (6):E3, 2013 ©AANS, 2013 Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas XIAO CHANG, PH.D.,1 LINGLING SHI, PH.D.,2 FAN GAO, PH.D.,1 JONATHAN RUssIN, M.D.,3 LIYUN ZENG, PH.D.,1 SHUHAN HE, B.S.,3 THOMAS C. CHEN, M.D.,3 STEVEN L. GIANNOTTA, M.D.,3 DANIEL J. WEISENBERGER, PH.D.,4 GAbrIEL ZADA, M.D.,3 KAI WANG, PH.D.,1,5,6 AND WIllIAM J. MAck, M.D.1,3 1Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; 2GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China; 3Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; 4USC Epigenome Center, Keck School of Medicine, University of Southern California, Los Angeles, California; 5Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, California; and 6Division of Bioinformatics, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California Object. Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%–5% display malignant pathological features. The key molecular pathways involved in malignant trans- formation remain to be determined. Methods. Illumina expression microarrays were used to assess gene expression levels, and Illumina single- nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant me- ningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones).
    [Show full text]
  • Qt38n028mr Nosplash A3e1d84
    ! ""! ACKNOWLEDGEMENTS I dedicate this thesis to my parents who inspired me to become a scientist through invigorating scientific discussions at the dinner table even when I was too young to understand what the hippocampus was. They also prepared me for the ups and downs of science and supported me through all of these experiences. I would like to thank my advisor Dr. Elizabeth Blackburn and my thesis committee members Dr. Eric Verdin, and Dr. Emmanuelle Passegue. Liz created a nurturing and supportive environment for me to explore my own ideas, while at the same time teaching me how to love science, test my questions, and of course provide endless ways to think about telomeres and telomerase. Eric and Emmanuelle both gave specific critical advice about the proper experiments for T cells and both volunteered their lab members for further critical advice. I always felt inspired with a sense of direction after thesis committee meetings. The Blackburn lab is full of smart and dedicated scientists whom I am thankful for their support. Specifically Dr. Shang Li and Dr. Brad Stohr for their stimulating scientific debates and “arguments.” Dr. Jue Lin, Dana Smith, Kyle Lapham, Dr. Tet Matsuguchi, and Kyle Jay for their friendships and discussions about what my data could possibly mean. Dr. Eva Samal for teaching me molecular biology techniques and putting up with my late night lab exercises. Beth Cimini for her expertise with microscopy, FACs, singing, and most of all for being a caring and supportive friend. Finally, I would like to thank Dr. Imke Listerman, my scientific partner for most of the breast cancer experiments.
    [Show full text]
  • SYSTEMS BIOLOGY and BIOMEDICINE (Sbiomed-2018) Symposium
    Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics SB RAS Novosibirsk State University BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE\SYSTEMS BIOLOGY (BGRS\SB-2018) The Eleventh International Conference SYSTEMS BIOLOGY AND BIOMEDICINE (SBioMed-2018) Symposium Abstracts 21–22 August, 2018 Novosibirsk, Russia Novosibirsk ICG SB RAS 2018 УДК 575 S98 Systems Biology and Biomedicine (SBioMed-2018) : Symposium (21–22 Aug. 2018, Novosibirsk, Russia); Abstracts / Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences. – Novosibirsk: ICG SB RAS, 2018. – 174 pp. – ISBN 978-5-91291-040-1. Program committee Chairman A.Y. Letyagin, Professor, Novosibirsk Executive Secretary V.V. Klimontov, Professor, Novosibirsk Members D.A. Afonnikov, Novosibirsk, Russia A.V. Baranova, Fairfast, USA N.P. Bgatova, Novosibirsk, Russia V.I. Konenkov, Novosibirsk, Russia A.V. Kochetov, Novosibirsk, Russia A.A. Lagunin, Moscow, Russia L. Lipovich, Detroit, USA T.I. Merculova, Novosibirsk, Russia V.A. Mordvinov, Novosibirsk, Russia M.P. Moshkin, Novosibirsk, Russia Yu.L. Orlov, Novosibirsk, Russia S.E. Peltek, Novosibirsk, Russia A.G. Pokrovsky, Novosibirsk, Russia T.I. Pospelova, Novosibirsk, Russia O.V. Poveschenko, Novosibirsk, Russia V.P. Puzyrev, Tomsk, Russia S.V. Sennikov, Novosibirsk, Russia M.Yu. Skoblov, Moscow, Russia V.A. Stepanov, Tomsk, Russia Yu.I. Ragino, Novosibirsk, Russia A.N. Tulpakov, Moscow, Russia M.I. Voevoda, Novosibirsk, Russia Organizing committee Chairman M.A.
    [Show full text]
  • A Genome-Wide Association Study for Irinotecan-Related Severe Toxicities in Patients with Advanced Non-Small-Cell Lung Cancer
    The Pharmacogenomics Journal (2013) 13, 417 -- 422 & 2013 Macmillan Publishers Limited All rights reserved 1470-269X/13 www.nature.com/tpj ORIGINAL ARTICLE A genome-wide association study for irinotecan-related severe toxicities in patients with advanced non-small-cell lung cancer J-Y Han1, ES Shin2, Y-S Lee3, HY Ghang4, S-Y Kim3, J-A Hwang3, JY Kim1 and JS Lee1 The identification of patients who are at high risk for irinotecan-related severe diarrhea and neutropenia is clinically important. We conducted the first genome-wide association study (GWAS) to search for novel susceptibility genes for irinotecan-related severe toxicities, such as diarrhea and neutropenia, in non-small-cell lung cancer (NSCLC) patients treated with irinotecan chemotherapy. The GWAS putatively identified 49 single-nucleotide polymorphisms (SNPs) associated with grade 3 diarrhea (G3D) and 32 SNPs associated with grade 4 neutropenia (G4N). In the replication series, the SNPs rs1517114 (C8orf34), rs1661167 (FLJ41856) and rs2745761 (PLCB1) were confirmed as being associated with G3D, whereas rs11128347 (PDZRN3) and rs11979430 and rs7779029 (SEMAC3) were confirmed as being associated with G4N. The final imputation analysis of our GWAS and replication study showed significant overlaps of association signals within these novel variants. This GWAS screen, along with subsequent validation and imputation analysis, identified novel SNPs associated with irinotecan-related severe toxicities. The Pharmacogenomics Journal (2013) 13, 417--422; doi:10.1038/tpj.2012.24; published online 5 June 2012 Keywords: C8orf34; FLJ41856; PLCB1; PDZRN3; SEMA3C; irinotecan INTRODUCTION technologies has paved the way for a genome-wide association 13 Irinotecan is one of the most active chemotherapeutic agents for study (GWAS) to identify novel susceptibility genes.
    [Show full text]
  • C-Met As a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas
    cells Review C-Met as a Key Factor Responsible for Sustaining Undifferentiated Phenotype and Therapy Resistance in Renal Carcinomas Paulina Marona 1 , Judyta Górka 1 , Jerzy Kotlinowski 1 , Marcin Majka 2 , Jolanta Jura 1 and Katarzyna Miekus 1,* 1 Department of General Biochemistry, Faculty of Biochemistry, Biopphisics and Biotechnology, Jagiellonian University, Gronostajowa Street 7, 30-387 Krakow, Poland; [email protected] (P.M.); [email protected] (J.G.); [email protected] (J.K.); [email protected] (J.J.) 2 Department of Transplantation, Jagiellonian University Medical College, Jagiellonian University, Wielicka 265, 30-663 Krakow, Poland; [email protected] * Correspondence: [email protected] Received: 28 February 2019; Accepted: 19 March 2019; Published: 22 March 2019 Abstract: C-Met tyrosine kinase receptor plays an important role under normal and pathological conditions. In tumor cells’ overexpression or incorrect activation of c-Met, this leads to stimulation of proliferation, survival and increase of motile activity. This receptor is also described as a marker of cancer initiating cells. The latest research shows that the c-Met receptor has an influence on the development of resistance to targeted cancer treatment. High c-Met expression and activation in renal cell carcinomas is associated with the progression of the disease and poor survival of patients. C-Met receptor has become a therapeutic target in kidney cancer. However, the therapies used so far using c-Met tyrosine kinase inhibitors demonstrate resistance to treatment. On the other hand, the c-Met pathway may act as an alternative target pathway in tumors that are resistant to other therapies.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • Novel Pharmacogenomic Markers of Irinotecan-Induced Severe Toxicity in Metastatic Colorectal Cancer Patients
    Novel pharmacogenomic markers of irinotecan-induced severe toxicity in metastatic colorectal cancer patients Thèse Siwen Sylvialin Chen Doctorat en sciences pharmaceutiques Philosophiae doctor (Ph.D.) Québec, Canada © Siwen Sylvialin Chen, 2015 ii Résumé L’irinotécan est un agent de chimiothérapie largement utilisé pour le traitement de tumeurs solides, particulièrement pour le cancer colorectal métastatique (mCRC). Fréquemment, le traitement par l’irinotécan conduit à la neutropénie et la diarrhée, des effets secondaires sévères qui peuvent limiter la poursuite du traitement et la qualité de vie des patients. Plusieurs études pharmacogénomiques ont évalué les risques associés à la chimiothérapie à base d’irinotécan, en particulier en lien avec le gène UGT1A, alors que peu d’études ont examiné l’impact des gènes codant pour des transporteurs. Par exemple, le marqueur UGT1A1*28 a été associé à une augmentation de 2 fois du risque de neutropénie, mais ce marqueur ne permet pas de prédire la toxicité gastrointestinale ou l’issue clinique. L’objectif de cette étude était de découvrir de nouveaux marqueurs génétiques associés au risque de toxicité induite par l’irinotécan, en utilisant une stratégie d’haplotype/SNP-étiquette permettant de maximiser la couverture des loci génétiques ciblés. Nous avons analysé les associations génétiques des loci UGT1 et sept gènes codants pour des transporteurs ABC impliqués dans la pharmacocinétique de l’irinotécan, soient ABCB1, ABCC1, ABCC2, ABCC5, ABCG1, ABCG2 ainsi que SLCO1B1. Les profils de 167 patients canadiens atteints de mCRC sous traitement FOLFIRI (à base d’irinotécan) ont été examinés et les marqueurs significatifs ont par la suite été validés dans une cohorte indépendante de 250 patients italiens.
    [Show full text]
  • Clinical, Molecular, and Immune Analysis of Dabrafenib-Trametinib
    Supplementary Online Content Chen G, McQuade JL, Panka DJ, et al. Clinical, molecular and immune analysis of dabrafenib-trametinib combination treatment for metastatic melanoma that progressed during BRAF inhibitor monotherapy: a phase 2 clinical trial. JAMA Oncology. Published online April 28, 2016. doi:10.1001/jamaoncol.2016.0509. eMethods. eReferences. eTable 1. Clinical efficacy eTable 2. Adverse events eTable 3. Correlation of baseline patient characteristics with treatment outcomes eTable 4. Patient responses and baseline IHC results eFigure 1. Kaplan-Meier analysis of overall survival eFigure 2. Correlation between IHC and RNAseq results eFigure 3. pPRAS40 expression and PFS eFigure 4. Baseline and treatment-induced changes in immune infiltrates eFigure 5. PD-L1 expression eTable 5. Nonsynonymous mutations detected by WES in baseline tumors This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/30/2021 eMethods Whole exome sequencing Whole exome capture libraries for both tumor and normal samples were constructed using 100ng genomic DNA input and following the protocol as described by Fisher et al.,3 with the following adapter modification: Illumina paired end adapters were replaced with palindromic forked adapters with unique 8 base index sequences embedded within the adapter. In-solution hybrid selection was performed using the Illumina Rapid Capture Exome enrichment kit with 38Mb target territory (29Mb baited). The targeted region includes 98.3% of the intervals in the Refseq exome database. Dual-indexed libraries were pooled into groups of up to 96 samples prior to hybridization.
    [Show full text]
  • Robles JTO Supplemental Digital Content 1
    Supplementary Materials An Integrated Prognostic Classifier for Stage I Lung Adenocarcinoma based on mRNA, microRNA and DNA Methylation Biomarkers Ana I. Robles1, Eri Arai2, Ewy A. Mathé1, Hirokazu Okayama1, Aaron Schetter1, Derek Brown1, David Petersen3, Elise D. Bowman1, Rintaro Noro1, Judith A. Welsh1, Daniel C. Edelman3, Holly S. Stevenson3, Yonghong Wang3, Naoto Tsuchiya4, Takashi Kohno4, Vidar Skaug5, Steen Mollerup5, Aage Haugen5, Paul S. Meltzer3, Jun Yokota6, Yae Kanai2 and Curtis C. Harris1 Affiliations: 1Laboratory of Human Carcinogenesis, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 2Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 3Genetics Branch, NCI-CCR, National Institutes of Health, Bethesda, MD 20892, USA. 4Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan. 5Department of Chemical and Biological Working Environment, National Institute of Occupational Health, NO-0033 Oslo, Norway. 6Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), 08916 Badalona (Barcelona), Spain. List of Supplementary Materials Supplementary Materials and Methods Fig. S1. Hierarchical clustering of based on CpG sites differentially-methylated in Stage I ADC compared to non-tumor adjacent tissues. Fig. S2. Confirmatory pyrosequencing analysis of DNA methylation at the HOXA9 locus in Stage I ADC from a subset of the NCI microarray cohort. 1 Fig. S3. Methylation Beta-values for HOXA9 probe cg26521404 in Stage I ADC samples from Japan. Fig. S4. Kaplan-Meier analysis of HOXA9 promoter methylation in a published cohort of Stage I lung ADC (J Clin Oncol 2013;31(32):4140-7). Fig. S5. Kaplan-Meier analysis of a combined prognostic biomarker in Stage I lung ADC.
    [Show full text]