Electric Road Systems a Feasibility Study Investigating a Possible Future of Road Transportation
Total Page:16
File Type:pdf, Size:1020Kb
Electric Road Systems A feasibility study investigating a possible future of road transportation Archit Singh Master of Science Thesis EGI_2016-090 MSC KTH Sustainable Energy Engineering Energy and Environment SE-100 44 STOCKHOLM Master of Science Thesis EGI_2016-090 MSC Electric Road Systems A feasibility study investigating a possible future of road transportation Archit Singh Approved Examiner Supervisor 2016-10-10 Hatef Madani Björn Hasselgren Company Supervisor Contact person Gunnar Asplund Björn Hasselgren Abstract The transportation sector is a vital part of today’s society and accounts for 20 % of our global total energy consumption. It is also one of the most greenhouse gas emission intensive sectors as almost 95 % of its energy originates from petroleum-based fuels. Due to the possible harmful nature of greenhouse gases, there is a need for a transition to more sustainable transportation alternatives. A possible alternative to the conventional petroleum-based road transportation is implementation of Electric Road Systems (ERS) in combination with electric vehicles (EVs). ERS are systems that enable dynamic power transfer to the EV's from the roads they are driving on. Consequently, by utilizing ERS in combination with EVs, both the cost and weight of the EV-batteries can be kept to a minimum and the requirement for stops for recharging can also be eliminated. This system further enables heavy vehicles to utilize battery solutions. There are currently in principal three proven ERS technologies, namely, conductive power transfer through overhead lines, conductive power transfer from rails in the road and inductive power transfer through the road. The aim of this report is to evaluate and compare the potential of a full- scale implementation of these ERS technologies on a global and local (Sweden) level from predominantly, an economic and environmental perspective. Furthermore, the thesis also aims to explore how an expansion of ERS might look like until the year 2050 in Sweden using different scenarios. To answer these questions two main models (global and Swedish perspective) with accompanying submodels were produced in Excel. The findings show that not all countries are viable for ERS from an economic standpoint, however, a large number of countries in the world do have good prospects for ERS implementation. Findings further indicated that small and/or developed countries are best suited for ERS implementation. From an economic and environmental perspective the conductive road was found to be the most attractive ERS technology followed by overhead conductive and inductive road ERS technologies. The expansion model developed demonstrates that a fast expansion and implementation of an ERS-based transportation sector is the best approach from an economical perspective where the conductive road technology results in largest cost savings until 2050. i Examensarbete EGI_2016-090 MSC Elektriska vägsystem Genomförbarhetsstudie kring en möjlig framtid för vägstransport Archit Singh Godkänt Examinator Handledare 2016-10-10 Hatef Madani Björn Hasselgren Företagshandledare Kontaktperson Gunnar Asplund Björn Hasselgren Sammanfattning Transportsektorn är en viktig del av dagens samhälle och står för 20% av den totala globala energiförbrukningen. Det är också en av de sektorer med mest växthusgasutsläpp, där nästan 95% av energin härstammar från petroleumbaserade bränslen. På grund av växthusgasers potentiellt skadliga karaktär finns det ett behov för en övergång till mer hållbara transportmedel. En möjlig alternativ till den konventionella petroleumbaserade vägtransporten är implementering av elektriska vägsystem (ERS) i kombination med elfordon. Elektriska vägsystem är system som möjliggör dynamisk kraftöverföring till fordon från vägarna de kör på. Sålunda kan man genom att använda ERS i kombination med elbilar, minimera både kostnaden och vikten av batterierna samt även minska eller eliminera antalet stopp för omladdningar. Dessutom möjliggör detta system att även tunga fordon kan använda sig av batterilösningar. Det finns för närvarande i princip tre beprövade ERS-tekniker, nämligen konduktiv kraftöverföring genom luftledningar, konduktiv kraftöverföring från räls i vägen och induktiv kraftöverföring genom vägen. Syftet med denna rapport är att utvärdera och jämföra potentialen för en fullskalig implementering av dessa ERS-teknik på en global och lokal (Sverige) nivå från, framförallt, ett ekonomiskt- och ekologiskt perspektiv. Rapporten syftar också till att undersöka, med hjälp av olika scenarier, hur en utbyggnad av ERS i Sverige skulle kunna se ut fram till år 2050. För att besvara dessa frågor producerades två huvudmodeller (global och lokal perspektiv) med kompletterande undermodeller i Excel. De erhållna resultaten visar att ERS inte är lönsamt ur ett ekonomisk perspektiv i precis alla de undersökta länder, dock har ett stort antal länder i världen visat sig ha goda förutsättningar för ERS. Vidare visar resultaten att små och/eller utvecklade länder är bäst lämpade för ERS. Ur ett ekonomiskt- och ekologiskt perspektiv har konduktiv kraftöverföring från räls i väg tekniken visat sig vara den mest attraktiva, följt av konduktiv kraftöverföring genom luftledningar och induktiv kraftöverföring genom väg teknikerna. Expansionsmodellen som utvecklats visar att en snabb expansion och implementation av en ERS-baserad vägtransportsektor är det bästa alternativet, där tekniken för konduktiv kraftöverföring från räls i väg ger de största kostnadsbesparingar fram till 2050. ii Acknowledgements I would like to express my upmost gratitude towards Elways and the department of Energy Technology at the Royal Institute of Technology for supporting and enabling this master thesis. Especially, I would like to thank my supervisor Gunnar Asplund at Elways who gave me the inspiration for the master thesis and has since helped and supported me meticulously throughout the process. I am also very grateful toward my supervisor Björn Hasselgren at the Royal Institute of Technology for being a great mentor, contributing with insightful inputs and active engagement during my thesis. Furthermore, I would like to give a special thanks to my examiner Hatef Madani for his support and guidance during the thesis. Last but not least, I would like to extend my appreciation to my fellow students Mårten Lundqvist, Martin Isacsson and Eric Schmidt for their perceptive feedbacks while proof reading the thesis report. Archit Singh Stockholm, August 2016 iii Table of Contents ABSTRACT ..................................................................................................................................................................... I SAMMANFATTNING ....................................................................................................................................................... II ACKNOWLEDGEMENTS ................................................................................................................................................... III LIST OF TABLES ............................................................................................................................................................ VI LIST OF FIGURES ........................................................................................................................................................... VII NOMENCLATURE AND ABBREVIATIONS .............................................................................................................................. IX 1 INTRODUCTION........................................................................................................................................ 1 1.1 BACKGROUND AND PROBLEM DESCRIPTION .............................................................................................................. 1 1.2 PURPOSE............................................................................................................................................................ 3 1.3 METHOD ............................................................................................................................................................ 3 1.4 DELIMITATIONS ................................................................................................................................................... 4 1.5 ASSUMPTIONS..................................................................................................................................................... 5 1.5.1 Model 1 – World .................................................................................................................................... 7 1.5.2 Model 2 – Sweden ................................................................................................................................. 8 2 FRAME OF REFERENCE ....................................................................................................................... 10 2.1 ELECTRIC ROAD SYSTEMS .................................................................................................................................... 10 2.1.1 Overhead Conductive Transmission Technology ................................................................................. 11 2.1.2 Conductive Power Transfer from Road ................................................................................................ 14 2.1.3 Inductive Power Transfer from Road ..................................................................................................