The Rapid Growth and Decay of an Extratropical Cyclone Over the Central Paci®C Ocean
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Surface Cyclolysis in the North Pacific Ocean. Part I
748 MONTHLY WEATHER REVIEW VOLUME 129 Surface Cyclolysis in the North Paci®c Ocean. Part I: A Synoptic Climatology JONATHAN E. MARTIN,RHETT D. GRAUMAN, AND NATHAN MARSILI Department of Atmospheric and Oceanic Sciences, University of WisconsinÐMadison, Madison, Wisconsin (Manuscript received 20 January 2000, in ®nal form 16 August 2000) ABSTRACT A continuous 11-yr sample of extratropical cyclones in the North Paci®c Ocean is used to construct a synoptic climatology of surface cyclolysis in the region. The analysis concentrates on the small population of all decaying cyclones that experience at least one 12-h period in which the sea level pressure increases by 9 hPa or more. Such periods are de®ned as threshold ®lling periods (TFPs). A subset of TFPs, referred to as rapid cyclolysis periods (RCPs), characterized by sea level pressure increases of at least 12 hPa in 12 h, is also considered. The geographical distribution, spectrum of decay rates, and the interannual variability in the number of TFP and RCP cyclones are presented. The Gulf of Alaska and Paci®c Northwest are found to be primary regions for moderate to rapid cyclolysis with a secondary frequency maximum in the Bering Sea. Moderate to rapid cyclolysis is found to be predominantly a cold season phenomena most likely to occur in a cyclone with an initially low sea level pressure minimum. The number of TFP±RCP cyclones in the North Paci®c basin in a given year is fairly well correlated with the phase of the El NinÄo±Southern Oscillation (ENSO) as measured by the multivariate ENSO index. -
Predictability of Explosive Cyclogenesis Over the Northwestern Pacific Region Using Ensemble Reanalysis
NOVEMBER 2013 K U W A N O - Y O S H I D A A N D E N O M O T O 3769 Predictability of Explosive Cyclogenesis over the Northwestern Pacific Region Using Ensemble Reanalysis AKIRA KUWANO-YOSHIDA Earth Simulator Center, Japan Agency for Marine-Earth Science and Technology, Yokohama, Kanagawa, Japan TAKESHI ENOMOTO Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan (Manuscript received 1 June 2012, in final form 24 May 2013) ABSTRACT The predictability of explosive cyclones over the northwestern Pacific region is investigated using an en- semble reanalysis dataset. Explosive cyclones are categorized into two types according to whether the region of the most rapid development is in the Sea of Okhotsk or Sea of Japan (OJ) or in the northwestern Pacific Ocean (PO). Cyclone-relative composite analyses are performed for analysis increments (the differences between the analysis and the 6-h forecast) and ensemble spreads (the standard deviations of ensemble members of the analysis or first guess) at the time of the maximum deepening rate. The increment composite shows that the OJ explosive cyclone center is forecast too far north compared to the analyzed center, whereas the PO explosive cyclone is forecast shallower than the analyzed center. To understand the cause of these biases, a diagnosis of the increment using the Zwack–Okossi (Z-O) development equation is conducted. The results suggest that the increment characteristics of both the OJ and PO explosive cyclones are associated with the most important cyclone development mechanisms. The OJ explosive cyclone forecast error is related to a deeper upper trough, whereas the PO explosive cyclone error is related to weaker latent heat release in the model. -
Piecewise Potential Vorticity Diagnosis of a Rapid Cyclolysis Event
1264 MONTHLY WEATHER REVIEW VOLUME 130 Surface Cyclolysis in the North Paci®c Ocean. Part II: Piecewise Potential Vorticity Diagnosis of a Rapid Cyclolysis Event JONATHAN E. MARTIN AND NATHAN MARSILI Department of Atmospheric and Oceanic Sciences, University of WisconsinÐMadison, Madison, Wisconsin (Manuscript received 19 March 2001, in ®nal form 26 October 2001) ABSTRACT Employing output from a successful numerical simulation, piecewise potential vorticity inversion is used to diagnose a rapid surface cyclolysis event that occurred south of the Aleutian Islands in late October 1996. The sea level pressure minimum of the decaying cyclone rose 35 hPa in 36 h as its associated upper-tropospheric wave quickly acquired a positive tilt while undergoing a rapid transformation from a nearly circular to a linear morphology. The inversion results demonstrate that the upper-tropospheric potential vorticity (PV) anomaly exerted the greatest control over the evolution of the lower-tropospheric height ®eld associated with the cyclone. A portion of the signi®cant height rises that characterized this event was directly associated with a diminution of the upper-tropospheric PV anomaly that resulted from negative PV advection by the full wind. This forcing has a clear parallel in more traditional synoptic/dynamic perspectives on lower-tropospheric development, which emphasize differential vorticity advection. Additional height rises resulted from promotion of increased anisotropy in the upper-tropospheric PV anomaly by upper-tropospheric deformation in the vicinity of a southwesterly jet streak. As the PV anomaly was thinned and elongated by the deformation, its associated geopotential height perturbation decreased throughout the troposphere in what is termed here PV attenuation. -
Explosive Cyclogenesis: a Global Climatology Comparing Multiple Reanalyses
6468 JOURNAL OF CLIMATE VOLUME 23 Explosive Cyclogenesis: A Global Climatology Comparing Multiple Reanalyses JOHN T. ALLEN,ALEXANDRE B. PEZZA, AND MITCHELL T. BLACK The University of Melbourne, Melbourne, Victoria, Australia (Manuscript received 17 September 2009, in final form 23 August 2010) ABSTRACT A global climatology for rapid cyclone intensification has been produced from the second NCEP reanalysis (NCEP2), the 25-yr Japanese Reanalysis (JRA-25), and the ECMWF reanalyses over the period 1979–2008. An improved (combined) criterion for identifying explosive cyclones has been developed based on preexisting definitions, offering a more balanced, normalized climatological distribution. The combined definition was found to significantly alter the population of explosive cyclones, with a reduction in ‘‘artificial’’ systems, which are found to compose 20% of the population determined by earlier definitions. Seasonally, winter was found to be the dominant formative period in both hemispheres, with a lower degree of interseasonal variability in the Southern Hemisphere (SH). Considered over the period 1979–2008, little change is observed in the frequency of systems outside of natural interannual variability in either hemisphere. Significant statistical differences have been found between reanalyses in the SH, while in contrast the Northern Hemisphere (NH) was characterized by strong positive correlations between reanalyses in almost all examined cases. Spatially, explosive cyclones are distributed into several distinct regions, with two regions in the northwest Pacific and the North Atlantic in the NH and three main regions in the SH. High-resolution and modern reanalysis data were also found to increase the climatology population of rapidly intensifying systems. This indicates that the reanalyses have apparently undergone increasing improvements in consistency over time, particularly in the SH. -
The Effects of Diabatic Heating on Upper
THE EFFECTS OF DIABATIC HEATING ON UPPER- TROPOSPHERIC ANTICYCLOGENESIS by Ross A. Lazear A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Atmospheric and Oceanic Sciences) at the UNIVERSITY OF WISCONSIN - MADISON 2007 i Abstract The role of diabatic heating in the development and maintenance of persistent, upper- tropospheric, large-scale anticyclonic anomalies in the subtropics (subtropical gyres) and middle latitudes (blocking highs) is investigated from the perspective of potential vorticity (PV) non-conservation. The low PV within blocking anticyclones is related to condensational heating within strengthening upstream synoptic-scale systems. Additionally, the associated convective outflow from tropical cyclones (TCs) is shown to build upper- tropospheric, subtropical anticyclones. Not only do both of these large-scale flow phenomena have an impact on the structure and dynamics of neighboring weather systems, and consequently the day-to-day weather, the very persistence of these anticyclones means that they have a profound influence on the seasonal climate of the regions in which they exist. A blocking index based on the meridional reversal of potential temperature on the dynamic tropopause is used to identify cases of wintertime blocking in the North Atlantic from 2000-2007. Two specific cases of blocking are analyzed, one event from February 1983, and another identified using the index, from January 2007. Parallel numerical simulations of these blocking events, differing only in one simulation’s neglect of the effects of latent heating of condensation (a “fake dry” run), illustrate the importance of latent heating in the amplification and wave-breaking of both blocking events. -
A Review of Convective and Artificial Vortices for Power Generation
A.T. Mustafa et al., Int. J. Sus. Dev. Plann. Vol. 10, No. 5 (2015) 650–665 A REVIEW OF CONVECTIVE AND ARTIFICIAL VORTICES FOR POWER GENERATION A.T. MUSTAFA, H.H. AL-KAYIEM & S.I.U. GILANI Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Malaysia 31750 Tronoh, Perak, Malaysia. ABSTRACT Thermal energy transfer in the atmosphere occurs from a high temperature zone to a low one by means of convective vortices where mechanical energy is produced. There are two ways of driving vertical flow in the core of a vortex: (1) by the direct action of buoyancy acting on hot air and (2) by producing a vertical pressure gradient along the axis of a vortex because of core development involving the lateral spread of the vortex with height. In particular, it indicates that the intensity of convective vortices depends on the depth of the convec- tive layer via thermodynamic efficiency, the enthalpy perturbation across them, and the existence of sources of vorticity. The atmospheric vortex engine (AVE) is a device for producing an artificial vortex. The operation of AVE is based on the fact that the atmosphere is heated from the bottom and cooled at the top. By artificial vortex generation, it is aimed to eliminate the physical solar updraft tower and reduce the capital cost of solar chimney power plants. This paper reviews natural convective vortices and vortex creation via physical prin- ciples of vortex generation. Vortex analysis and modelling are presented. Furthermore, a new model of a solar vortex engine (SVE) is proposed and discussed. An idea on utilizing the solar energy as the heat source for establishing the vortex and operating the SVE model is adopted. -
Absorption Abyssal Circulation Acoustic Measurements/Effects
1 Absorption 2 Abyssal circulation 3 Acoustic measurements/effects 4 Adaptation 5 Adaptive models 6 Advection 7 Aerosols/particulates 8 Aerosol hygroscopicity 9 Aerosol indirect effect 10 Aerosol nucleation 11 Aerosol optical properties 12 Aerosol radiative effect 13 Aerosol-cloud interaction 14 Africa 15 Ageostrophic circulations 16 Agriculture 17 Air pollution 18 Air quality 19 Air quality and climate 20 Air quality and health 21 Air quality forecasts 22 Air quality trends 23 Aircraft observations 24 Airflow 25 Airshed modeling 26 Air-sea interaction 27 Albedo 28 Algorithms 29 Altimetry 30 Amazon region 31 Anelastic models 32 Angular momentum 33 Animal studies 34 Annual variations 35 Annular mode 36 Anomalies 37 Antarctic Oscillation 38 Antarctica 39 Anthropogenic effects/forcing 40 Anticyclones 41 Aqueous-phase chemistry 42 Arctic 43 Arctic Oscillation 44 Artificial intelligence 45 Asia 46 Asymmetry 47 Atlantic Ocean 48 Atmosphere 49 Atmosphere-land interaction 50 Atmosphere-ocean interaction 51 Atmospheric circulation 52 Atmospheric composition 53 Atmospheric electricity 54 Atmospheric oxidation 55 Atmospheric river 56 Australia 57 Automated systems 58 Automatic weather stations 59 Baroclinic flows 60 Baroclinic models 61 Barotropic flows 62 Bayesian methods 63 Behavioral models 64 Bias 65 Biennial oscillation 66 Biofouling 67 Biomass burning 68 Biosphere emissions 69 Biosphere-atmosphere interactions 70 Blocking 71 Boreal meteorology 72 Bottom currents/bottom water 73 Boundary conditions 74 Boundary currents 75 Boundary layer 76 -
Extreme Wet Seasons – Their Definition and Relationship with Synoptic-Scale
Weather Clim. Dynam., 2, 71–88, 2021 https://doi.org/10.5194/wcd-2-71-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Extreme wet seasons – their definition and relationship with synoptic-scale weather systems Emmanouil Flaounas, Matthias Röthlisberger, Maxi Boettcher, Michael Sprenger, and Heini Wernli Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland Correspondence: Emmanouil Flaounas (emmanouil.fl[email protected]) Received: 30 June 2020 – Discussion started: 8 July 2020 Revised: 24 December 2020 – Accepted: 13 January 2021 – Published: 1 February 2021 Abstract. An extreme aggregation of precipitation on the But interlatitudinal influences are also shown to be impor- seasonal timescale, leading to a so-called extreme wet sea- tant: tropical moisture exports, i.e., the poleward transport son, can have substantial environmental and socio-economic of tropical moisture, can contribute to extreme wet seasons impacts. This study has a twofold aim: first to identify and in the midlatitudes, while breaking Rossby waves, i.e., the statistically characterize extreme wet seasons around the equatorward intrusion of stratospheric air, may decisively globe and second to elucidate their relationship with specific contribute to the formation of extreme wet seasons in the weather systems. tropics. Three illustrative examples provide insight into the Extreme wet seasons are defined independently at every synergetic effects of the four identified weather systems on grid point of ERA-Interim reanalyses as the consecutive 90 d the formation of extreme wet seasons in the midlatitudes, the period with the highest accumulated precipitation in the 40- Arctic and the (sub)tropics. -
The Atmosphere Geog0005
DEPARTMENT OF GEOGRAPHY The Atmosphere Geog0005 Dr Eloise Marais • Associate Professor in Physical Geography • Atmospheric chemistry modelling • Air quality and human health • Human influence on the atmosphere The Atmosphere • Lecture 1: Weather • Lecture 2: Climate • Lecture 3: Climate Change DEPARTMENT OF GEOGRAPHY Weather Earth geog0005 Weather • Weather is: – the instantaneous state of the atmosphere – We will focus on Earth’s weather (there is also space weather) – what we experience on a daily basis • Type of weather depends on location – latitude, altitude, terrain, water bodies • Climate is long-term average weather Atmospheric Layers Troposphere: Where Earth’s weather occurs ASIDE Key physical concepts Atmospheric Pressure gravitational constant (10 m/s2) Pressure P = ρgh height above surface (m) (Pa, kg/ms2) air density (kg/m3) • Measured in millibars (mb) – 1 mb = 100 Pa = 1 hPa – Average sea level pressure is 1013 mb • Air density decreases with altitude – Most air molecules held tightly to surface (gravity) – Pressure decreases with altitude Reference Frames • A reference frame describes where we look at dynamics from • But the reference frame is moving too (due to Earth’s rotation). This is termed a non-inertial reference frame • Objects in the Earth’s reference frame experience virtual forces related to the movement of the reference frame Inertial vs Non-Inertial Reference Frame Inertial Inertial (static) frame of reference: Black ball appears to move in a straight line Non-inertial Non-inertial (moving) reference frame (observer): Black ball follows a curved path This is due to the Coriolis Force/Effect Coriolis Effect • The Coriolis effect is a quasi-force or fictitious force exerted on a body when it moves in a rotating reference frame: F = ma = m 2W |U| = m 2W n’ • The force F is at 90o angle with respect to the object U. -
Cooperative Institute for Mesoscale Meteorological Studies the University of Oklahoma
COOPERATIVE INSTITUTE FOR MESOSCALE METEOROLOGICAL STUDIES THE UNIVERSITY OF OKLAHOMA Final Report for Cooperative Agreement NA67RJ0150 July 1, 1996-June 30, 2001 Peter J. Lamb, Director Randy A. Peppler, Associate Director John V. Cortinas, Jr., Assistant Director I. Introduction The University of Oklahoma (OU) and NOAA established the Cooperative Institute for Mesoscale Meteorological Studies (CIMMS) in 1978. Through 1995, CIMMS promoted cooperation and collaboration on problems of mutual interest among research scientists in the NOAA Environmental Research Laboratories (ERL) National Severe Storms Laboratory (NSSL), and faculty, postdoctoral scientists, and students in the School of Meteorology and other academic departments at OU. The Memorandum of Agreement (MOA) between OU and NOAA that established CIMMS was updated in 1995 to include the National Weather Service (NWS). This expanded the formal OU/NOAA collaboration to the Radar Operations Center (ROC) for the WSR-88D (NEXRAD) Program, the NCEP (National Centers for Environmental Prediction) Storm Prediction Center (SPC), and our local NWS Forecast Office, all located in Norman, Oklahoma. Management of the NSSL came under the auspices of the NOAA Office of Oceanic and Atmospheric Research (OAR) in 1999. The Norman NOAA groups at that time became known as the NOAA Weather Partners. Through CIMMS, university scientists collaborate with NOAA scientists on research supported by NOAA programs and laboratories as well as by other agencies such as the National Science Foundation (NSF), the U.S. Department of Energy (DOE), the Federal Aviation Administration (FAA), and the National Aeronautics and Space Administration (NASA). This document describes the significant research progress made by CIMMS scientists at OU and at our NOAA collaborating institutions during the five-year period July 1, 1996-June 30, 2001. -
16 Tropical Cyclones
Copyright © 2017 by Roland Stull. Practical Meteorology: An Algebra-based Survey of Atmospheric Science. v1.02 16 TROPICAL CYCLONES Contents Intense synoptic-scale cyclones in the tropics are called tropical cyclones. As for all cyclones, trop- 16.1. Tropical Cyclone Structure 604 ical cyclones have low pressure in the cyclone center 16.2. Intensity & Geographic distribution 605 near sea level. Low-altitude winds also rotate cy- 16.2.1. Saffir-Simpson Hurricane Wind Scale 605 clonically (counterclockwise in the N. Hemisphere) 16.2.2. Typhoon Intensity Scales 607 around these storms and spiral in towards their cen- 16.2.3. Other Tropical-Cyclone Scales 607 ters. 16.2.4. Geographic Distribution and Movement 607 Tropical cyclones are called hurricanes over 16.3. Evolution 608 the Atlantic and eastern Pacific Oceans, the Carib- 16.3.1. Requirements for Cyclogenesis 608 bean Sea, and the Gulf of Mexico (Fig. 16.1). They 16.3.2. Tropical Cyclone Triggers 610 are called typhoons over the western Pacific. Over 16.3.3. Life Cycle 613 the Indian Ocean and near Australia they are called 16.3.4. Movement/Track 615 cyclones. In this chapter we use “tropical cyclone” 16.3.5. Tropical Cyclolysis 616 to refer to such storms anywhere in the world. 16.4. Dynamics 617 Comparing tropical and extratropical cyclones, 16.4.1. Origin of Initial Rotation 617 tropical cyclones do not have fronts while mid-lati- 16.4.2. Subsequent Spin-up 617 tude cyclones do. Also, tropical cyclones have warm 16.4.3. Inflow and Outflow 618 cores while mid-latitude cyclones have cold cores. -
Explosive Cyclones in the North Atlantic: Nao Influence and Multidecadal Variability
EXPLOSIVE CYCLONES IN THE NORTH ATLANTIC: NAO INFLUENCE AND MULTIDECADAL VARIABILITY Íñigo GÓMARA CARDALLIAGUET1,2, Belén RODRÍGUEZ DE FONSECA1,2, Pablo ZURITA GOTOR1,2 1Depto. de Geofísica y Meteorología. Universidad Complutense de Madrid 2Instituto de Geociencias (IGEO). UCM/CSIC [email protected], [email protected], [email protected] ABSTRACT In this study we have analyzed the variability of explosive cyclones affecting Europe at different timescales. Cyclones have been identified and tracked through an automatic algorithm that has been applied to the MSLP NCEP reanalysis data. Subsequently, explosive cyclones affecting Europe have been selected from the whole climatology of extratropical North Atlantic cyclones (406 total cases from Oct-Mar 1950-2010). In the first part of the work, the general circulation conditions that appear to be beneficial for the development of explosive cyclones affecting Europe have been assessed through the North Atlantic Oscillation (NAO) characteristics. By using a Daily NAO Index (DNI), results have shown that a positive NAO phase seems to foster such events over Europe. Under this phase, events become more frequent and more intense. This fact can be partially explained by a more intense, northeastwardly displaced and zonally elongated (compared to climatology) Jetstream, which is characteristic of a NAO positive phase. In the second part of the work, multidecadal variability of explosive cyclones has been studied in January through their basic characteristics (average latitude, frequency and intensity). Preliminary results suggest that the Pacific Decadal Oscillation (PDO) might be modulating the average latitude of explosive cyclones affecting Europe. Additionally, a significant correlation was also found at multidecadal scales between the cyclone count and the Atlantic Multidecadal Oscillation (AMO).