4 S1-Us A-Bo-Le Gist'y

Total Page:16

File Type:pdf, Size:1020Kb

4 S1-Us A-Bo-Le Gist'y March 31, 1970 G. ZWEG ET All 3,504,185 APPARATUS FOR MEASURING AND CONTROLING CEL POPULATION DENSITY IN A LIQUID MEDIUM Filed May 9, 1968 2. Sheets-Sheet :9 O - 32. 33 : o SAHH 3. ?m WeavroAs, GUNT.R Z. We G ROBERT e. PP-ER JOAn . - 4 S1-us a-bo-le Gist'y. March 31, 1970 G. ZWEG ET All- 3,504,185 APPARATUS FOR MEASURING AND CONTROLLING CELL POPULATION DENSITY IN A LIQUID MEDIUM Filed May 9, 1968 2. Sheets-Sheet 2 N /Ayyam AOes. GUnTER ZWEG RO2ERT E. PPHER JOAN. E. HTT 3,504,185 United States Patent Office Patented Mar. 31, 1970 2 3,504,185 medium to dilute the cultured medium until the cultured APPARATUS FOR MEASURING AND CONTROL medium becomes less turbid again and the output of the LING CELL POPULATION DENSITY IN A LIQUID comparator is no longer energized so that the switch is MEDUM no longer operated and the valve is shut off. Gunter Zweig, Syracuse, Robert E. Pipher, Cortland, and A constant fluid level is maintained in the chamber Joan E. Hitt, Syracuse, N.Y., assignors to Syracuse Uni versity Research Corporation, Syracuse, N.Y., a corpo in which the cultured medium is contained and the over ration of New York flow resulting from dilution is collected for use. Usually Filed May 9, 1968, Ser. No. 727,910 continual agitation of the fluid in the chamber is required nt. C. G01n 21/26 to keep the cells in suspension in the medium and physical U.S. C. 250- 218 S Claims 10 conditions which are necessary for optimum growth speed are maintained in the usual manner. ABSTRACT OF THE DISCLOSURE BRIEF DESCRIPTION OF THE DRAWINGS A glass chamber for cell growth in a liquid medium has FIGURE 1 is a diagrammatic view of the culture means for adding medium controlled by a solenoid valve. 5 chamber and associated apparatus of the invention; and One photocell faces a light source through the medium FIGURE 2 is a circuit diagram of the electrical con and another photocell faces the source directly. The pho trol portions of the apparatus of FIGURE 1. tocells are connected with resistances in a Wheatstone bridge whose midpoints are connected to a voltage com DESCRIPTION OF THE PREFERRED parator whose output operates the valve for diluting the 20 EMBODIMENT medium when cell growth causes increased turbidity in Referring to FIGURE 1, a growth chamber 10 has a the chamber and changes voltage in the bridge. A strip glass sidewall 11 in the form of a water jacket with chart recorder potentiometer connected across the bridge entrance 12 and exit 13 through which water is con records changes in voltage in the bridge. 25 stantly pumped, the water being maintained at a chosen constant temperature by conventional means not shown. The chamber is stoppered at top 14 and bottom 15, as BACKGROUND OF THE INVENTION shown, the top of the chamber being vented to atmos This invention relates to the growth of single cell organ phere by the tube 16. isms in a liquid medium and more particularly to a device 30 Chamber 10 contains a liquid medium, usually nutri for measuring such growth and for controlling the cell ent, containing organic and inorganic salts and other sub density in the medium. stances and a population of living cells such as algae, In growing single cell organisms, such as algae, bac bacteria, mold or animal cells in suspension in the medium teria, mold and yeast, in a liquid medium difficulty has and capable of growth therein. A tube 17 leading from a been experienced in that, as the medium becomes more 35 Source, not shown, through the top 14 extends substan densely populated, a point is reached where the rate of tially to the bottom of the chamber for supplying gas growth is slowed because the medium is too densely popu which bubbles up through the medium. Nitrogen, oxygen, lated. Usually there is an optimum population density, or or carbon dioxide or a mixture may be used and one or a range of densities, where the cell reproduction is fastest. more of the gases may be necessary for cell growth. The As the medium becomes more densely populated, it be 40 continuous stream of bubbles from tube 17 agitates the comes more turbid or opaque so that attempts have been cultured medium to keep the cell population in suspension. made to measure the density by optical means so that the Alternatively or additionally, a mechanical agitating de optimum density may be obtained by adding more medi vice may be used. um to dilute the populated or cultured medium in which A sampling tube 18 with shut off valve 19 is provided growth takes place. Such optical equipment has been ex 45 through the bottom 15 and another tube 20 through the pensive and continuous attention to the measurement and bottom leads to a constant level overflow device 21 for addition of fresh medium is necessary. maintaining the medium in the chamber 10 at a chosen level 22. The drain 23 from the constant level device SUMMARY OF THE INVENTION carries the withdrawn cultured medium to a collecting The present invention provides means for continuously 50 tank 24. electrically scanning the cultured medium by means of a Another tube 25 through the top 14 is led through a photoelectric cell and measuring the voltage of this photo normally closed solenoid operated valve 26 from a reser cell. In order to obtain the measurement a second match voir tank 27 of fresh uncultured liquid medium for dilut ing photocell, in constant direct view of the same light ing the cultured medium in chamber 10 when the cell pop source is used together with two resistances connected in ulation in the chamber rises above a chosen population the well known Wheatstone bridge, one resistance being density. All of the above described apparatus is kept un variable so that the range of the bridge may be adjusted. contaminated as by autoclaving before assembly. A strip chart recorder may be used to record the measure Valve 26 is operated by a control circuit 30 which ment, the potentiometer which operates the stylus of the includes a moving strip chart recorder 31 having a recorder being connected in conventional manner to the 60 potentiometer-operated stylus 32 for marking the strip balance point of the bridge. chart 33. Furthermore, a known type of voltage comparator is A Source of light 34 is located adjacent the chamber also connected to the balance points of the bridge and 10 and two matched photo-electric cells 35 and 36 are the output of the comparator is energized by changes in connected in the circuit 30. The light source 34 may be voltage of the scanning photocell in the bridge. As cell 65 of the fluorescent type required for the growth of cer population density increases the turbidity of the medium tain photo-Synthetic cells but, in any event, is located increases resulting in increased resistance and lower volt on one side of chamber 10 while the photocell 35 is lo age in the Scanning cell as compared to the non-scanning cated on the other side of the chamber for receiving light cell. from the source through the cultured medium in the Automatic control of the cell density is accomplished 70 chamber. Care is taken to install the photocell 35 so that by using the output of the comparator for operating a gas bubbles from the tube 17 do not pass between the switch arrangement which opens a valve to admit fresh photocell and the light source. 3,504,185 3 4. The second photocell 36 is located, preferably Sub terminal of coil 73 is connected to the cathode of diode stantially equidistantly from the light source 34, for 74 and to line 63. receiving light directly from the source as indicated The normally closed contacts 75, 75 or relay 73 nor diagrammatically in FIGURE 1. mally complete a circuit from the line terminals at 51 Referring now to FIGURE 2, photo-electric cells 35 through the solenoid of valve 26 so that the valve is and 36 are wired in a Wheatstone bridge arrangement normally held closed by the solenoid. with resistors 37 and 38, resistor 37 being variable and In operation the comparator 41 may be disconnected in the form of a ten-turn potentiometer for controlling from the Wheatstone bridge arrangement or rendered the balance point of the bridge. inoperative by a suitable switch in the driver arrange The midpoints 39 and 40 of the Wheatstone bridge O ment. Recorder 31, then operates to graph the increas are connected to the respective terminals of the recorder ing turbidity of the cultured medium in chamber 10 as potentiometer and are also each connected through a the cells of the culture multiply. NPN transistor to a respective input terminal of a com The variable resistance 37 is set at a value to bring mercially available high-speed differential voltage comr the balance points 39 and 40 into approximate equality. parator 41. Point 39 between photocell 35 and resistor 5 As the resistance of photo-electric cell 35 changes due 37 is connected to the base of transistor 42 and point 40 to the increasing turbidity of the medium in chamber between photocell 36 and resistor 38 is connected to the 10 the voltage difference between the balance points 39 base of transistor 43. The emitter of transistor 42 is and 40 is recorded by the voltage sensitive recorder.
Recommended publications
  • ON Semiconductor Is an Equal Opportunity/Affirmative Action Employer
    ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others.
    [Show full text]
  • Chapter 12 Three-Phase Controlled Rectifiers ∫
    CHAPTER 12 THREE-PHASE CONTROLLED RECTIFIERS Author : Juan Dixon (Ph.D.) Department of Electrical Engineering Pontificia Universidad Católica de Chile Vicuña Mackenna 4860 Santiago, CHILE. 12.1 INTRODUCTION Three-phase controlled rectifiers have a wide range of applications, from small rectifiers to large High Voltage Direct Current (HVDC) transmission systems. They are used for electro-chemical process, many kinds of motor drives, traction equipment, controlled power supplies, and many other applications. From the point of view of the commutation process, they can be classified in two important categories: Line Commutated Controlled Rectifiers (Thyristor Rectifiers), and Force Commutated PWM Rectifiers. 12.2 LINE COMMUTATED CONTROLLED RECTIFIERS. 12.2.1 Three- phase hal - wavef rectifie r The figure 12.1 shows the three-phase half-wave rectifier topology. To control the load voltage, the half wave rectifier uses three, common-cathode thyristor arrangement. In this figure, the power supply, and the transformer are assumed ideal. The thyristor will conduct (ON state), when the anode-to-cathode voltage vAK is positive, and a firing current pulse iG is applied to the gate terminal. Delaying the firing pulse by an angle a does the control of the load voltage. The firing angle a is measured from the crossing point between the phase supply voltages, as shown in figure 12.2. At that point, the anode-to-cathode thyristor voltage vAK begins to be positive. The figure 12.3 shows that the possible range for gating delay is between a=0° and a=180°, but in real situations, because of commutation problems, the maximum firing angle is limited to around 160°.
    [Show full text]
  • Bremner, Duncan James (2015) 25 Years of Network Access Technologies: from Voice to Internet; the Changing Face of Telecommunications
    Bremner, Duncan James (2015) 25 years of network access technologies: from voice to internet; the changing face of telecommunications. PhD thesis. http://theses.gla.ac.uk/6670/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] 25 years of Network Access Technologies: From Voice to Internet; the changing face of telecommunications Duncan James Bremner A Thesis submitted to School of Engineering College of Science and Engineering University of Glasgow in fulfilment of the requirements for the Degree of Doctor of Philosophy by published work May 2015 Abstract This work contributes to knowledge in the field of semiconductor system architectures, circuit design and implementation, and communications protocols. The work starts by describing the challenges of interfacing legacy analogue subscriber loops to an electronic circuit contained within the Central Office (Telephone Exchange) building. It then moves on to describe the globalisation of the telecom network, the demand for software programmable devices to enable system customisation cost effectively, and the creation of circuit and system blocks to realise this.
    [Show full text]
  • Users Guide for the Non-Inverted LM3875 Kit Written by Brian Bell and Sandy H
    Users Guide for the Non-Inverted LM3875 Kit Written by Brian Bell and Sandy H. 1 (26) Users Guide for the Non-Inverted LM3875 Kit (also known as the Gainclone kit) 1 INTRODUCTION.......................................................................................................................................... 2 1.1 HISTORY ................................................................................................................................................... 3 1.2 TERMINOLOGY USED IN THIS DOCUMENT................................................................................................. 4 2 BUILDING INSTRUCTIONS FOR THE KIT ........................................................................................... 5 2.1 PREMIUM KIT CONTENTS ......................................................................................................................... 5 2.2 BASIC KIT CONTENTS............................................................................................................................... 5 2.3 SOLDERING TIPS ....................................................................................................................................... 6 2.4 ASSEMBLING THE AMPLIFIER PCB........................................................................................................... 7 2.5 ASSEMBLING THE RECTIFIER PCB ......................................................................................................... 13 2.6 PICTURE OF FINISHED PCBS ..................................................................................................................
    [Show full text]
  • Carbone Monoxide (CO) Detection Device Based on the Nickel Antimonate Oxide and a DC Electronic Circuit
    applied sciences Article Carbone Monoxide (CO) Detection Device Based on the Nickel Antimonate Oxide and a DC Electronic Circuit José Trinidad Guillen Bonilla 1,2,* ,Héctor Guillén Bonilla 3, Verónica María Rodríguez Betancourtt 4, Antonio Casillas Zamora 3, Jorge Alberto Ramírez Ortega 3, Lorenzo Gildo Ortiz 5, María Eugenia Sánchez Morales 6 , Oscar Blanco Alonso 5 and Alex Guillén Bonilla 7,* 1 Departamento de Electrónica, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.), Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico 2 Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.), Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico 3 Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.), Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico 4 Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.), Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico 5 Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías (C.U.C.E.I.), Universidad de Guadalajara, Blvd. M. García Barragán 1421, Guadalajara 44410, Jalisco, Mexico 6 Departamento de Ciencias Tecnológicas, Centro Universitario de la Ciénega (CUCienéga), Universidad de Guadalajara, Av. Universidad No. 1115, LindaVista, Ocotlán C.P. 47810, Jalisco, Mexico 7 Departamento de Ciencias Computacionales e Ingenierías, Centro Universitario de los Valles (CUValles), Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, Mexico * Correspondence: [email protected] (J.T.G.B.); [email protected] (A.G.B.); Tel.: +52-(375)-7580-500 (ext.
    [Show full text]
  • Lecture 8 - Effect of Source Inductance on Rectifier Operation
    ELEC4240/9240 Power Electronics Lecture 8 - Effect of source inductance on rectifier operation Ideal VS real rectifier with source inductance The output DC voltages of the rectifier circuits discussed so far have been found by assuming that diode currents transfer (commutate) from one diode to another instantaneously. However this can not happen when the AC source has some inductance Ls. (Change of current through any inductance must take some time!). This source inductance is associated with the leakage inductance of the supply transformer and the inductance of the AC supply network to the input transformer. The commutation process (or the overlap process) forces more than one diode or a pair of diodes (in a bridge rectifier) to conduct simultaneously, resulting in a drop voltage from the output terminals which is proportional to the load current. The output dc voltage Vd of a rectifier falls with load current Id, by an amount which is much larger than additional voltage drop across the conducting diodes when the current through the diodes increases. The AC source inductance, which consists of the AC line and the input transformer leakage inductances, is mostly responsible for the additional voltage drop. Consider the half-wave diode rectifier shown below. D is Ls vs Id IDf D Load vs = Vmaxsinωt ∼ vi f Figure 8.1. Half-wave diode rectifier with source inductance. Let us assume that the load current Id is smooth and ripple-free (i.e., of constant, due to the highly inductive load). Assume also that for ωt > 0, the load current flows through the rectifier diode and that for ωt > π, it commutates to the free-wheeling diode Df.
    [Show full text]
  • Project Administration Data Sheet
    (7, ■■••••••"'". GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION PROJECT ADMINISTRATION DATA SHEET ORIGINAL E REVISION NO. Project No. E-21-616 R58480A0 GTRIAW DATE 10/ 24/ 84 Project Director: Dr. J. A. Connelly SchooRgt EE Spimisort Honeywell Inc., Underseas System Division 600 Second Street Northeast Hopkins, MN 55343 Type Agreement: Unnumbered Research Agreement Award Period: From 9,'15/84 To (Performance) 12/15/84 (Reports) Sponsor Amount: This Change Total to Date Estima•:ed: $ 24,495 $ 24,495 Fundk: $ 24,495 $24,495 Cost Sharing Amount $ N/A Cost Sharing No: Title: Sea Water Bulk Sensor Design ADMINISTRATIVE DATA OCA Contact Dennis Farmer x41370 1) Sponsor Technical Contact: . 2) Sponsor Admin/Contractual Matters: X/ Curt Motchenbacher, Sr. Staff Engineer LaNeal Pewewardy, Subcontract Man ager Honeywell Inc._. Subsystems Procurement Underseas System Operations Honeywell Inc. 600 2nd Street 600 2nd Street N.E. Hopkins, MN 55343 Hopkins, MN 55343 (612) 931-6511 Defense Priority Rating: Military Security Classification: (or) Company/Industrial Proprietary: Non-;;.Di-scIosUreagre'emenil RESTRICTIONS See Attached Supplemental Information Sheet for Additional Requirements. Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor approval where tstal will exceed greater of $500 or 125% of approved proposal budget category none proposed Equipment: Title vests with 064 (.1 \ COMMENTS:. P.O. No. 130000 is referenced in the a Mr. Pewewar the P.O. because he thought the research agreement should be sufficient. should reference P.O. No. 130000 when submitted for payment. COPIES TO: - Project Director Procurement/E ES Supply Services GTRI Research Administrative Network Services Library .
    [Show full text]
  • THD Mitigation in Line Currents of 6-Pulse Diode Bridge Rectifier Using the Delta-Wye Transformer As a Triplen Harmonic Filter A
    16th NATIONAL POWER SYSTEMS CONFERENCE, 15th-17th DECEMBER, 2010 210 THD Mitigation in Line Currents of 6-Pulse Diode Bridge Rectifier Using the Delta-Wye Transformer as a Triplen Harmonic Filter A. N. Arvindan and B. Abinaya Dept. of Electrical & Electronics Engineering, SSN College of Engineering, Anna University (Chennai), India Abstract—The uncontrolled three-phase bridge rectifier has the least line current distortion among six-pulse rectifiers; however, its total harmonic distortion (THD) of 31.08% is unacceptable as per the contemporary power quality standards. This paper seeks to address the issue by elimination of triplen harmonics in the line currents by providing a delta- wye transformer at the ac interface i.e. between the three-phase supply and the diode bridge rectifier. The triplen harmonics circulate in the delta loop of the primary winding but are not manifested in the line currents thus reducing their THD values. The efficacy of the technique is proved by simulations considering the bridge rectifier with and without the delta-wye transformer of vector group Dy1. Experimental results with the Dy1 transformer and without it are presented. Keywords— diode bridge rectifier, improved power quality, total harmonic distortion, triplen harmonics. Fig. 1. An ac utility directly connected to a three-phase diode bridge rectifier feeding an inductive load. I. INTRODUCTION as stipulated by IEEE 519-1992. This paper investigates the HE three-phase diode bridge is, perhaps, the most effect of connecting the six-pulse diode bridge topology to T popular of the six-pulse rectifiers and is extensively the three-phase ac utility via a delta-wye (Δ-Y) transformer used, however, with the stringent contemporary power in terms of trapping the triplen harmonics in the delta loop, quality standards [1], [2] stipulating specific permissible thus eliminating them from the ac utility line currents and levels of total harmonic distortion (THD) at the ac utility also thereby improving the THD at the utility.
    [Show full text]
  • Pulse Service Documentation
    Crown Pulse Series Service Documenation The information furnished in this manual does not include all of the details of design, production, or variations of the equipment. Nor does it cover every possible situation which may arise during installation, operation or maintenance. If you need special assistance beyond the scope of this manual, please contact the Crown Technical Support Group. 1718 W. Mishawaka Road Elkhart IN 46517 Phone: (800) 342-6939 / (219) 294-8200 FAX: (219) 294-8301 CAUTION AVIS TO PREVENT ELECTRIC SHOCK DO NOT REMOVE TOP OR BOTTOM À PRÉVENIR LE CHOC COVERS. NO USER SERVICEABLE ÉLECTRIQUE N’ENLEVEZ PARTS INSIDE. REFER SERVICING PAS LES COUVERTURES. TO QUALIFIED SERVICE RIEN DES PARTIES PERSONNEL. DISCONNECT UTILES À L’INTÉRIEUR. POWER CORD BEFORE REMOVING DÉBRANCHER LA BORNE REAR INPUT MODULE TO ACCESS AVANT D’OUVRIR LA GAIN SWITCH. MODULE EN ARRIÈRE. WARNING TO REDUCE THE RISK OF ELECTRIC SHOCK, DO NOT EXPOSE THIS EQUIPMENT TO RAIN OR MOISTURE! The lightning bolt The exclamation point triangle is used to triangle is used to alert the alert the user to the user to important operating risk of electric shock. or maintenance instructions. ©2005 Crown Audio, Inc. Cautions and Warnings Lightning Bolt Symbol: Exclamation Mark Symbol: This symbol is used to alert the user This symbol is used to alert the user to to the presence of dangerous make special note of important voltages and the possible risk of operating or maintenance instructions. electric shock. DANGER: The outputs of the amplifier can produce LETHAL energy levels! Be very careful when making connections. Do not attempt to change output wiring until the amplifier has been off at least 10 seconds.
    [Show full text]
  • Service Manual
    Service Manual Issue 1.0 P1 AmpliÞ er AARCAMRCAM BBringingringing mmusicusic & mmoviesovies ttoo llifeife Contents List Circuit description Circuit diagrams o L929AY switch PCB o L962AY amplifier main PCB Transformers o L929TX – 115/230VAC toroidal o L927TX – 100VAC toroidal o L907TX – 100VAC frame Exploded view diagram Mechanical & packing parts list Circuit board silk screen & parts list o L929AY switch PCB o L962AY amplifier main PCB Fmj P1 Amplifier circuit description by A.Moore Power supply/Control description Product description The mains input is applied via SKT1. Y capacitors C1 and C2 and X capacitor, C5 The P1 has been has been designed to provide filtering and EMC suppression R2 provide unsurpassed sound quality, the main provides a discharge path for the capacitors. design features are as follows. SW1 allows the selection of the mains voltage that the unit will operate from, the main standby o Gain switchable between Arcam gain transformer TX1 and the main transformer TX2 and THX gain (29dB closed loop) a 0dB have duel primary windings, these windings are signal equates to 100 watts into 8 connected in parallel for 115v operation and in ohms. series for 230v operation. o Input switchable between unbalance TX1 is powered at all times when a mains phono and balance XLR. voltage is applied to the mains input socket the o The amp is capable of producing >180 secondary of this transformer is fused by via FS3 watts of sinusoidal output into an 8 and rectified by diode bridge DBR1 and ohm load and greater than 300 watts regulated to 5V by low dropout regulator at into a 3.2 ohm load (subject to thermal location REG2 to provide a constant +5v(D) dissipation limits).
    [Show full text]
  • Introduction to Power Electronics
    ELG3336: Power Electronics Systems Objective To Realize and Design Various Power Supplies and Motor Drives! Power electronics refers to control and conversion of electrical power by power semiconductor devices wherein these devices operate as switches. Advent of silicon-controlled rectifiers, abbreviated as SCRs, led to the development of a new field of application called the power electronics. Before SCRs, mercury-arc rectifiers were used for controlling electrical power, but such rectifier circuits were part of industrial electronics and the scope for applications of mercury-arc rectifiers was limited. The application spread to many fields such as drives, power supplies, aviation electronics, high frequency inverters and power electronics. 1 Why Power Electronics? Power electronics is a growing field due to the improvement in switching technologies and the need for more and more efficient switching circuits. Control Analog/Digital Electronics Power Equipment Devices/Circuits Static/Rotating 3 Applications • Heating and lighting control • Induction heating • Uninterruptible power supplies (UPS) • Fluorescent lamp ballasts: Passive; Active • Electric power transmission • Automotive electronics • Electronic ignitions • Motor drives • Battery chargers • Alternators • Energy storage • Electric vehicles • Alternative power sources: Solar; Wind; Fuel Cells • And more! 4 Power Train of a Hybrid Car Some Applications of Power Electronics • In a conventional car, power electronics applications are a major area of future expansion. Look inside the audio system, for example; the amplifiers in today’s car stereos are usually capable of delivering 40 W or more. But a 12 V supply applied to an 8 Ohm speaker produces 18 W output at best. To solve this power supply problem, designers use a boost converter (DC to DC Converter) to provide higher voltage power to the amplifier circuit.
    [Show full text]
  • High-Voltage Direct-Current Transmission Converters, Systems and Dc Grids
    HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION HIGH-VOLTAGE DIRECT-CURRENT TRANSMISSION CONVERTERS, SYSTEMS AND DC GRIDS Dragan Jovcic and Khaled Ahmed School of Engineering, University of Aberdeen, UK This edition first published 2015 © 2015 John Wiley & Sons, Ltd Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]